Math/Cmsc 456, Jeffrey Adams
Test I, March 11, 2009 SOLUTIONS

1. (a) We can take any b, but a has to be relatively prime to 25 .
(b) There are 25 choices of b. Since $\phi(25)=25\left(1-\frac{1}{5}\right)=20$, there are 20 choices of b, and $25 \times 20=500$ keys.
(c) We have $E_{6,3}\left(E_{7,9}(x)\right)=E_{6,3}(7 x+9)=6(7 x+9)+3(\bmod 25)$, or $42 x+57(\bmod 25)$, or $17 x+7(\bmod 25)$. This is $E_{17,7}(x)$.
2. [15]
(a) It can't be 1 since 1 is followed by 1 or 0 . It can't be 2 since 11 is followed by 1 or 0 . It can't be 3 since 111 is followed by 1 or 0 . It can be 4 (and in fact $x_{n}=x_{n-2}+x_{n-4}$).
(b) The relation is $a_{n+1}=a_{1}$.
3.

$$
\begin{aligned}
\frac{1}{-9}\left(\begin{array}{cc}
13 & -9 \\
-1 & 2
\end{array}\right) & =-3\left(\begin{array}{cc}
13 & -9 \\
-1 & 2
\end{array}\right) \\
& =\left(\begin{array}{cc}
-39 & 27 \\
3 & -6
\end{array}\right) \\
& =\left(\begin{array}{cc}
13 & 1 \\
3 & -6
\end{array}\right)
\end{aligned}
$$

So we have

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
13 & 1 \\
3 & -6
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right)
$$

Multiplying this out gives

$$
M=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
14 & 15 \\
-3 & -9
\end{array}\right)
$$

4. Recall $\phi(n)=n \prod\left(1-\frac{1}{p}\right)$ where the product is over distinct primes dividing n.
(a) $\phi(100)=100\left(1-\frac{1}{4}\right)\left(1-\frac{1}{5}\right)=40$. Since 101 is prime $\phi(101)=100$. Since $102=2 \times 3 \times 17, \phi(102)=102\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{17}\right)=32$.
(b) We know that $m^{\phi(1024)}=1(\bmod 1024)$ for any $(m, 1024)=1$, i.e. m odd. That is $m^{\phi(1024)+1}=m(\bmod 1024)$, so solve $3 b=$ $\phi(1024)+1$. Since $1024=2^{10}, \phi(1024)=1024\left(1-\frac{1}{2}\right)=512$. (Directly: every odd numer is relative prime to 1024 , which is half of the numbers, i.e. $1024 / 2=512$). Therefore $3 b=513$, or $b=171$.
5. (a) The ciphertext is $2^{13}=2^{6} 2^{6} 2=9 \times 9 \times 2=26 \times 2=52(\bmod 55)$.
(b) Since $\phi(55)=40$, we have to solve $13 d=1(\bmod 40)$. Note that $3 \times 13=39=-1(\bmod 40)$, so $3 \times(-13)=1(\bmod 40)$. So $d=-13=27(\bmod 40)$.
(c) Note that $11^{2}=121=11(\bmod 55)$. Then $11^{e}=11 \times 11 \times 11 \cdots \times$ $11=($ multiplying one at a time $)=11(\bmod 55)$. So 11 encrypts to 11 for any key $(35, e)$.
