Math/Cmsc 456, Jeffrey Adams Test I, March 11, 2009 SOLUTIONS

- 1. (a) We can take any b, but a has to be relatively prime to 25.
 - (b) There are 25 choices of b. Since $\phi(25) = 25(1-\frac{1}{5}) = 20$, there are 20 choices of b, and $25 \times 20 = 500$ keys.
 - (c) We have $E_{6,3}(E_{7,9}(x)) = E_{6,3}(7x+9) = 6(7x+9) + 3 \pmod{25}$, or $42x + 57 \pmod{25}$, or $17x + 7 \pmod{25}$. This is $E_{17,7}(x)$.
- 2. [15]
 - (a) It can't be 1 since 1 is followed by 1 or 0. It can't be 2 since 11 is followed by 1 or 0. It can't be 3 since 111 is followed by 1 or 0. It can be 4 (and in fact $x_n = x_{n-2} + x_{n-4}$).
 - (b) The relation is $a_{n+1} = a_1$.
- 3.

$$\frac{1}{-9} \begin{pmatrix} 13 & -9\\ -1 & 2 \end{pmatrix} = -3 \begin{pmatrix} 13 & -9\\ -1 & 2 \end{pmatrix}$$
$$= \begin{pmatrix} -39 & 27\\ 3 & -6 \end{pmatrix}$$
$$= \begin{pmatrix} 13 & 1\\ 3 & -6 \end{pmatrix}$$

So we have

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 13 & 1 \\ 3 & -6 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$$

Multiplying this out gives

$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 14 & 15 \\ -3 & -9 \end{pmatrix}$$

- 4. Recall $\phi(n) = n \prod (1 \frac{1}{p})$ where the product is over distinct primes dividing n.
 - (a) $\phi(100) = 100(1-\frac{1}{4})(1-\frac{1}{5}) = 40$. Since 101 is prime $\phi(101) = 100$. Since $102 = 2 \times 3 \times 17$, $\phi(102) = 102(1-\frac{1}{2})(1-\frac{1}{3})(1-\frac{1}{17}) = 32$.
 - (b) We know that $m^{\phi(1024)} = 1 \pmod{1024}$ for any (m, 1024) = 1, i.e. m odd. That is $m^{\phi(1024)+1} = m \pmod{1024}$, so solve $3b = \phi(1024) + 1$. Since $1024 = 2^{10}$, $\phi(1024) = 1024(1 - \frac{1}{2}) = 512$. (Directly: every odd numer is relative prime to 1024, which is half of the numbers, i.e. 1024/2 = 512). Therefore 3b = 513, or b = 171.
- 5. (a) The ciphertext is $2^{13} = 2^6 2^6 2 = 9 \times 9 \times 2 = 26 \times 2 = 52 \pmod{55}$.
 - (b) Since $\phi(55) = 40$, we have to solve $13d = 1 \pmod{40}$. Note that $3 \times 13 = 39 = -1 \pmod{40}$, so $3 \times (-13) = 1 \pmod{40}$. So $d = -13 = 27 \pmod{40}$.
 - (c) Note that $11^2 = 121 = 11 \pmod{55}$. Then $11^e = 11 \times 11 \times 11 \cdots \times 11 = (\text{multiplying one at a time}) = 11 \pmod{55}$. So 11 encrypts to 11 for any key (35, e).