Math/Cmsc 456, Jeffrey Adams
Test II, May 12, 2008 SOLUTIONS

1. (a) Here $m=10^{10}$ and $n=10^{30}$. The probability of being injective is $e^{-m^{2} / 2 n}=e^{-10^{20} / 2 \times 10^{30}}=e^{-\frac{1}{210^{10}}}=1 / e^{\frac{1}{210^{10}}}$ is very close to $1 / e^{0}=1$. So the probability that two numbers are the same, i.e. it is not injective is 1 minus this, which is very close to 0 .
(b) We have to take $m^{2} \simeq n$, i.e. $m \simeq \sqrt{n}=\sqrt{10^{30}}=10^{15}$. To be safe take n a bit bigger, say 10^{16}.
(c) We need to take $m=10^{30}+1$. The first 10^{30} could all be different, but the next one would have to be a duplicate.
2. (a)

$$
\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 2 & 4 & 8 \\
1 & 3 & 9 & 27 \\
1 & 4 & 16 & 64
\end{array}\right)\left(\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right)=\left(\begin{array}{c}
-3 \\
5 \\
10 \\
12
\end{array}\right)
$$

(b) This is a Lagrange interpolation polynomial. Take $f_{0}(x)=(x-$ 1) $(x-2)(x-3)$, so $f(1)=f(2)=f(3)=0$, and this has degree 3 . Then $f_{0}(4)=6$, so divide by this to give

$$
f(x)=\frac{1}{6}(x-1)(x-2)(x-3) .
$$

Since $2 \times 6=-1, \frac{1}{6}=-2$, so this becomes

$$
f(x)=-2(x-1)(x-2)(x-3) .
$$

It is easy to compute $f(5)=-2(4 \times 3 \times 2)=-48=4(\bmod 13)$. Note it is much easier to do this than to use matrix computations.
3. (a) By Hasse's theorem $|N-(p+1)| \leq 2 \sqrt{p}$. Since $\sqrt{401}$ is slightly bigger than 20, this gives $|N-(402)| \leq 40$, so $362 \leq N \leq 442$.
(b) The order of E is a multiple of 7 . The number of possibilities for N was $442-362+1=81$, and $81 / 7>11$, so the answer is approximately 11. In fact the multiples of 7 in the range are $357,364, \ldots, 420$, of which there are 10 . The
(c) If there are points P of order 7 and Q of order p, then $P+Q$ has order $7 p$. Therefore $7 p$ divides N, so if $7 p>81$, there is only one multiple of $7 p$ between 362 and 442. Taking $p=5$ clearly doesn't work, but taking $p=11$, we find only one multiple 385 , of 77 between 362 and 442.
4. (a) He computes the square roots of $y \bmod p$ and q, and combines them using the Chinese Remainder Theorem. That is he sets $z_{1}= \pm y^{\frac{p+1}{4}}(\bmod p)$ and $z_{2}= \pm y^{\frac{q+1}{4}}(\bmod q)$. Then $z_{1}^{2}=y$ $(\bmod p)$ and $z_{2}^{2}=y(\bmod q)$. He then solves $z=z_{1}(\bmod p)$ and $z=z_{2}(\bmod q)$ by the CRT.
(b) No, she only knows a number and one square root of it, which is not enough information.
(c) Nelson knows a square root x of y. If $z \neq \pm x$ then $\operatorname{GCD}(z-x, y)$ is a non-trivial factor of n. There is a 50% of this, since there are four square roots $\pm x, \pm x^{\prime}$ of y.
5. (a) This is $P+(-P)=\infty$.
(b) Since ∞ is like 0 , this is $(9,10)$.
(c) First of all $m=(12-4) /(7-2)=8 / 5(\bmod 31)$. We need 5^{-1} $(\bmod 35)$. Clearly $5 \times 6=-1(\bmod 31)$, so $5^{-1}=-6=25$ $(\bmod 31)$. So $m=8 \times 25=200=14(\bmod 31)$, and $x_{3}=$ $14^{2}-2-7=1(\bmod 31)$. Then $y_{3}=14(2-1)-4=10(\bmod 31)$. So the solution is $(1,10)$.
(d) Solve $y^{2}=8^{3}+16+4=5(\bmod 31)$. This is easy: $31+5=36$, so $y=6$ is a solution. So there are exactly two solutions $y= \pm 6$.

