Math/Cmsc 456, Jeffrey Adams

Test II, May 12, 2008

For full credit you must show your work.

Calculators allowed but not required

1. [20 points] Recall that if I have a random function from a set with m elements to a set with n elements, the probability that it is injective (one-to-one) is approximately $e^{-m^{2} / 2 n}$.
(a) I have a list of 10^{10} random numbers, each between 1 and 10^{30}. What is the approximate probability that two of the numbers are the same?
(b) I want to choose m so that if I have a list of m random numbers, each between 1 and 10^{30}, then the probability that two of them are the same is very high, close to 100%. What is a reasonable value for m ? (The question is not precise, so only a rough answer is needed.)
(c) I want to choose m so that if I have a list of m random numbers, each between 1 and 10^{30}, then two of them are guaranteed to be the same. What is the minimal value for m ?
2. [20 points]
(a) Suppose $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}$ where a_{0}, a_{1}, a_{2} and a_{3} are unknown. Suppose the points $(1,-3),(2,5),(3,10)$ and $(4,12)$ are on the curve. Write down a matrix equation for the coefficients a_{0}, \ldots, a_{3}. It is not necessary to solve for the coefficients.
(b) Consider polynomials $f(x)=a_{0}+a_{1} x+\ldots$ defined $(\bmod 13)$. Find a polynomial $f(x)$ of degree 3 such that $f(1)=f(2)=$ $f(3)=0$ and $f(4)=1$. What is $f(5)$?
3. [20 points] Suppose E is an elliptic curve defined $(\bmod 401)$. (Note: 401 is prime.)
(a) What are all the possibilites for the number of points N of E ?
(b) Suppose you find a point P on E of order 7 . How many possibilities are there for N ?
(c) Suppose in addition to the point P of order 7, you find another point Q of order p for some prime $p \neq 7$. What is the smallest value of p which will determine N exactly? If there is such a point, what is N ?
4. [20 points] Naive Nelson tries to make a zero knowledge scheme as follows. He picks primes p, q, both equivalent to $3(\bmod 4)$, and sends $n=p q$ to Victor. He wants to prove to Victor that he knows the factorization of n. He has Victor pick a random x, compute $y=x^{2}$ $(\bmod n)$, and send him y. He computes a square root z of y, and sends it to Victor. Victor confirms that $z^{2}=y$, and concludes that Victor must know the factorization of n.
(a) Briefly, how does Nelson compute z ? In particular it should be clear how he uses p, q and not just n.
(b) Suppose Eve is eavesdropping and intercepts n, y and z. Can she factor n ?
(c) Show that Victor has a 50% chance of factoring n (so this is not a valid zero knowledge protocol).
5. [20 points] Consider the elliptic curve $E: y^{2}=x^{3}+2 x+4(\bmod 31)$.
(a) Compute $(9,10)+(9,-10)$ on E.
(b) Compute $\infty+(9,10)$ on E.
(c) Compute $(2,4)+(7,12)$ on E.
(d) Find all points of the form $(8, y)$ on E.

You may use the addition formulas on the curve $y^{2}=x^{3}+a x+b$: $\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(x_{3}, y_{3}\right)$ where

$$
\begin{aligned}
x_{3} & =m^{2}-x_{1}-x_{2} \\
y_{3} & =m\left(x_{1}-x_{3}\right)-y_{1}
\end{aligned}
$$

where

$$
m= \begin{cases}\left(3 x_{1}^{2}+a\right) /\left(2 y_{1}\right) & x_{1}=x_{2}, y_{1}=y_{2} \\ \left(y_{2}-y_{1}\right) /\left(x_{2}-x_{1}\right) & \text { else }\end{cases}
$$

There are additional special cases when P and/or $Q=\infty$, and when $m=\infty$.

