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6 GL(n,R)

Recall G = GL(n,R) is the group of n x n
invertible matrices over R.n
Let V. = My«p(R) ~ R" (as a vector space),

and define a representation of G on V' by
m(g)(X)=9Xg (geG X eV)

The subspace of matrices of trace 0 is an ir-
reducible representation of G.
Now let T' C G be the subgroup of diagonal

matrices. Then V is a representation of 1" by



restriction:
Tt X)=tXt' (teT,XcV)

Problem: Decompose V', as a representation
of T', into a direct sum of irreducible represen-
tations.

Note that T'is abelian; in fact 7" ~ R*". Here

are some one-dimensional representations of 7.



Let
7" > k=(ki,....ky): T — R

be the map

. k1 ko k
diag(xy, Tay. .., Tp) — ] 57 .. 2"

This is a group homomorphism.
Let E;; be the matrix with a 1 in the "
row and § column, and 0 elsewhere. Let ¢t =

diag(xy,...,x,). Then

That is C < E;; > is a one-dimensional repre-
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sentation of 1" given by

c_ J0...0) i =
(0,...,0,15,0,...,0,—1;,0,...,0) i

with 1 in the " place and —1 in the 5% place.
Write eq, . . ., e, for the standard basis of R" (or
Z"). Then (i # j)

m(t)Ei; = (ei — ¢;)(t) Ei

This gives the solution to the Problem: V' is

the direct sum of one-dimensional representa-
tions

ei—ej (1<i#j<n)

and the trivial representation 0 with multiplic-
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1ty n.

The set
R:{ez—e]\lgz#jgn}CR”

is an example of a root system.

Now let
W = Normg(T)/T

For example any permutation matrix is con-
tained in Normg(T), and acts on T (by conju-
gation) by the natural permutation action. For

example



010\ [z 010\ | <
00 1 o 001| = 23
1 00 I3 1 00 I

In fact W ~ §,,. This is an example of a
Weyl group.

Note that the action of W on T' by conjuga-
tion gives an action of W on R, again by the
natural permutation action.

6.1 Other Groups

Now let G be Sp(2n,R) or SO(n,R). Recall
G ={g€ GL(mR)|gJg = J}

with J as in Lecture I.
Let

g={Xe M,nR)|XJ+JX" =0}
The g is a representation of G by
m(g)(X)=9gXg' (g€ G, X €g)
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(check this).
Let T' be the diagonal subgroup:

1 1

T ={diag(x1,...,2p,—,...,—

{ g( 1 n T Qin)
(with an additional 1 in the case of SO(2n+1)).
Again T' is isomorphic to R*", and we have
the one—dimensional representations k € Z" of
T'. As before, decompose g as a representation

of T'.

We get {e; —e; |1 <i# 7 <k} as before.

Let
(0 0 \
0
| Lij
0 Lis
) 0
Fii=10 0

0 0

0 0




Then
m(t)F ;= (e + e;)(t) Fi

(if ¢ = 7 this is 2e;(t) F} ;).
Let R C Z" be the non-zero elements which
occur. We define W as before

W = Normg(T)/T
This is a finite group.



GL(n,R):
R={x(e; —ej)|1 <i<j<n}

W ~ §,, consists of all permutations in n
coordinates

Sp(2n, R):
R={tefe;|1 <i<j<n}tU{2]|1<i<n}

W consists of all permutations and sign changes
in n coordinates.

SO(2n,R):
R:{ﬂ:SZi€]|1§Z<j§n}

W consists of all permutations and an even
number sign changes in n coordinates.

SO(2n + 1,R):
R={xeixe; |1 <i<j<niU{e|l<i<n}

W consists of all permutations and sign changes
in n coordinates.
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6.2 Formal Definition of Root Systems

Basic references are [1] and |2]. A root system R
is a finite subset of V' = R" with the following
properties. Write (v, w) = v-w for the standard
inner product on V.

Let o, be the reflection in the plane orthogo-
nal to v. Then

(W) =w— < w,v > v

where
< w,v >=2(w,v)/(v,v)

The requirements are:

1.0 ¢ R and R spans V'

2. if a € R then *« are the only multiples of
ain R

3. lfa, B € R then <v,w >€ Z

4. It e Rtheno,: R— R

That is o, 8 € R implies — < B, a > « €
R.
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Given R let W be the group generated by the
reflections

{o,]a € RY.

Thus W acts on R.

In the case of a root system coming from a
group the Weyl group is isomorphic to Normg(T)/T .

Example: In the root system of GL(n,R),
Sp(2n,R) or SO(2n + 1,R), a = e; — e, gives
the transposition (z7) in S™. These generate
Sy In the case of GL(n,R) this is all of W.

Example: In the case of Sp(2n,R) or SO(2n+
1,R), if & = ¢; or 2¢; then o, is the sign change
in the i coordinate. These generate all permu-
tations and sign changes, i.e. the Weyl group of
type B,,.
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Now root systems are very rigid. In fact the
possible angles between roots are 27 /n with

n=1,2,3,4,6. Note that 27 /5 is not allowed.

Theorem 6.1 The irreducible root systems
are: Ay, By, Cy, Dy, (n > 1) and Eg, 7, Eg, F)
and G.

The root systems of GL(n, R), SO(2n+1,R),
Sp(2n,R) and SO(2n,R) are the “classical”
root systems of type A,,_1, B,,C,, and D,,, re-
spectively.

The root systems FEg, F7, Eg, Fy and Gy are
called the exceptional root systems.
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Rank 2 root systems

.

il

A B2

A

o 3\
/

C2 G2
The Weyl groups are

W(Ay) >~ Z/27 x 7.]27.

W(Bs) ~ W(Cy) ~ Dy

W(Gs) ~ Dy
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The exceptional root systems and Weyl groups

E8::|:€i:|:€j,1§i<j§8
%<€17"°768>76i:i17 Hzel:l

Fy: ieiiej,1§i<j§4

<€17"‘7€4>7€z’:i1

Go: e e, 1 <i<j<3
+(2,—1—1),+(—1,2,—1), (-1 -1,2)

DO —

Type |R| Order(W) realization
Bs 72 51840  O(6,Fy)
E; 126 2903040 O(7,Fy) x Z/2Z

Es 240 696,729,600 W = O(8,Fy)
F, 48 1152
G, 12 12 Dy

15



6.3 Lie groups and root systems

Recall the groups GL(n, R), Sp(2n, R) and SO(m, R)
each give rise to a root system and its Weyl
oroup. The converse holds:

Theorem 6.2 (Fantastic Theorem:) Let R
be a root system. Then there is a Lie group
G for which this is the root system.

More precisely:

e There is a subgroup G of some GL(m,R),
and

e a subspace g of M« (R), such that
e G actson g by m(g)(X) = gXg !

e The diagonal subgroup 7' is isomorphic to
R*"

e The one-dimensional representations of T
on g are the root system R C Z" C R"

e The Weyl group of R is isomorphic to Normg(T)
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The Lie groups of type Eg, E7, Eg, Fy and G
are among the most fascinating objects in math-

emartics.

Example: Es(IFy) The preceding construction
works over any field (this is one of the remark-
able things about it). The group Eg(Fs) is a
finite simple group of order

337,804, 753, 143, 634, 806, 261, 388, 190, 614, 085, 595, 079, 991,
692, 242, 467, 651, 576, 160, 959, 909, 068, 800, 000 ~ 107
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7 More on Root Systems

Let R be a root system of rank n, i.e. the ambi-
ent vector space is of dimension n. Then there
is a basis ag,...,qa, € Rof V.

For example if R is of type A,_; then we
can take a; = e; — €;41. The corresponding
reflections are the transpositions (4,74 1) in .S,
which generate S,,. This is an example of a basis
with further nice properties: a set of “simple”
roots.

Definition 7.1 A set aq,...,q, 1s a set of
simple roots if it 1s a basis of V and every
root 3 € R can be written

B = Zaiai

with all a; > 0 or all a; < 0.
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Example: B,
B a+3

A

B2
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Given a set of simple roots S = {aq,...,a,}
let s; = $4,. For w € W let length(w) be the
minimum £ so that

W = 5j;Sjg - - - Sik;

Theorem 7.2 Let o, ..., «a, be a set of sim-
ple roots.

o W is generated by {s; = sq, |1 <i < n}.

e There is a unique longest element wy of
the Weyl group

Note: In types B,,C,, Ds,, E7, Eg, Fy and
GQ, Wy = —1I.
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Weyl group of type Bs

W {1, 54, 58, Sa53; S35as SaS35as S3SaSas SaS3SaSs}

B a+p 20+0
A SBV ! SB\)
&V ’
SB%‘SB% \Y% SB %; SBV
SB% V ,, SB% V

B2
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71 Hyperplanes

Let R C V = R" be a root system. Recall for
a, 3 € R,

<o, f>=2a,B3)/(5,0)

where (a, 3) = a - 3. This makes sense for any
veV:

Definition 7.3 fora € R,v eV,

<v,a>=2wv,a)/(a,a)

Note: if there is only one root length (types
A.DE) we may take (o, a) = 2 for all a € R,
and then

<v,a>=(v,q)

You may want to think about this case at first.
Now each v € R gives a hyperplane

{v| <v,a>=0}
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Hyperplanes of Aj
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More generally each k£ € Z,a € R gives a
hyperplane

{v| <v,a>=k

This breaks V' up into countably many facets.
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