Computer Computations in Representation Theory II: Root Systems and Weyl Groups

Jeffrey Adams University of Maryland

September 11, 2002
www.math.umd.edu/~jda/minicourse
$6 \quad G L(n, \mathbb{R})$

Recall $G=G L(n, \mathbb{R})$ is the group of $n \times n$ invertible matrices over \mathbb{R}.n

$$
\text { Let } V=M_{n \times n}(\mathbb{R}) \simeq \mathbb{R}^{n^{2}}(\text { as a vector space })
$$

and define a representation of G on V by

$$
\pi(g)(X)=g X g^{-1} \quad(g \in G, X \in V)
$$

The subspace of matrices of trace 0 is an irreducible representation of G.

Now let $T \subset G$ be the subgroup of diagonal
matrices. Then V is a representation of T by
restriction:

$$
\pi(t)(X)=t X t^{-1} \quad(t \in T, X \in V)
$$

Problem: Decompose V, as a representation of T, into a direct sum of irreducible representations.

Note that T is abelian; in fact $T \simeq \mathbb{R}^{* n}$. Here are some one-dimensional representations of T.

Let

$$
\mathbb{Z}^{n} \ni \vec{k}=\left(k_{1}, \ldots, k_{n}\right): T \rightarrow \mathbb{R}^{*}
$$

be the map

$$
\operatorname{diag}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \rightarrow x_{1}^{k_{1}} x_{2}^{k_{2}} \ldots x_{n}^{k_{n}}
$$

This is a group homomorphism.
Let $E_{i, j}$ be the matrix with a 1 in the $i^{\text {th }}$ row and $j^{\text {th }}$ column, and 0 elsewhere. Let $t=$ $\operatorname{diag}\left(x_{1}, \ldots, x_{n}\right)$. Then

$$
\pi(t) E_{i, j}=\frac{x_{i}}{x_{j}} E_{i, j}
$$

That is $\mathbb{C}<E_{i, j}>$ is a one-dimensional repre-
sentation of T given by
$\vec{k}= \begin{cases}(0, \ldots, 0) & i=j \\ \left(0, \ldots, 0,1_{i}, 0, \ldots, 0,-1_{j}, 0, \ldots, 0\right) & i \neq j\end{cases}$
with 1 in the $i^{\text {th }}$ place and -1 in the $j^{\text {th }}$ place.

Write e_{1}, \ldots, e_{n} for the standard basis of \mathbb{R}^{n} (or
$\left.\mathbb{Z}^{n}\right)$. Then $(i \neq j)$

$$
\pi(t) E_{i, j}=\left(e_{i}-e_{j}\right)(t) E_{i, j}
$$

This gives the solution to the Problem: V is
the direct sum of one-dimensional representa-
tions

$$
e_{i}-e_{j} \quad(1 \leq i \neq j \leq n)
$$

and the trivial representation $\overrightarrow{0}$ with multiplic-
ity n.

The set

$$
R=\left\{e_{i}-e_{j} \mid 1 \leq i \neq j \leq n\right\} \subset \mathbb{R}^{n}
$$

is an example of a root system.

Now let

$$
W=\operatorname{Norm}_{G}(T) / T
$$

For example any permutation matrix is contained in $\operatorname{Norm}_{G}(T)$, and acts on T (by conjugation) by the natural permutation action. For example

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{lll}
x_{1} & & \\
& x_{2} & \\
& & x_{3}
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)^{-1}=\left(\begin{array}{lll}
x_{2} & & \\
& x_{3} & \\
& & x_{1}
\end{array}\right)
$$

In fact $W \simeq S_{n}$. This is an example of a Weyl group.
Note that the action of W on T by conjugation gives an action of W on R, again by the natural permutation action.

6.1 Other Groups

Now let G be $S p(2 n, \mathbb{R})$ or $S O(n, \mathbb{R})$. Recall

$$
G=\left\{g \in G L(m, \mathbb{R}) \mid g J g^{t}=J\right\}
$$

with J as in Lecture I.
Let

$$
\mathfrak{g}=\left\{X \in M_{m \times m}(\mathbb{R}) \mid X J+J X^{t}=0\right\}
$$

The \mathfrak{g} is a representation of G by

$$
\pi(g)(X)=g X g^{-1} \quad(g \in G, X \in \mathfrak{g})
$$

(check this).
Let T be the diagonal subgroup:

$$
T=\left\{\operatorname{diag}\left(x_{1}, \ldots, x_{n}, \frac{1}{x_{1}}, \ldots, \frac{1}{x_{n}}\right)\right.
$$

(with an additional 1 in the case of $S O(2 n+1)$).
Again T is isomorphic to $\mathbb{R}^{* n}$, and we have the one-dimensional representations $\vec{k} \in \mathbb{Z}^{n}$ of T. As before, decompose \mathfrak{g} as a representation of T.

We get $\left\{e_{i}-e_{j} \mid 1 \leq i \neq j \leq k\right\}$ as before.
Let

$$
F_{i, j}=\left(\begin{array}{ccccccccc}
0 & & & & & & & & \\
& 0 & & & & & & & \\
& & \ddots & & & & & 1_{i, j} \\
& & & 0 & & & 1_{j, i} & \\
& & & & 0 & & & & 0 \\
0 & & & & 0 & & & \\
& 0 & & & & 0 & & & \\
& & \ddots & & & & \ddots & & \\
& & & 0 & & & & 0 & \\
& & & & 0 & & & & \\
& & &
\end{array}\right)
$$

Then

$$
\pi(t) F_{i, j}=\left(e_{i}+e_{j}\right)(t) F_{i, j}
$$

(if $i=j$ this is $2 e_{i}(t) F_{i, i}$).
Let $R \subset \mathbb{Z}^{n}$ be the non-zero elements which occur. We define W as before

$$
W=\operatorname{Norm}_{G}(T) / T
$$

This is a finite group.
$G L(n, \mathbb{R})$:

$$
R=\left\{ \pm\left(e_{i}-e_{j}\right) \mid 1 \leq i<j \leq n\right\}
$$

$W \simeq S_{n}$ consists of all permutations in n coordinates
$S p(2 n, \mathbb{R})$:
$R=\left\{ \pm e_{i} \pm e_{j} \mid 1 \leq i<j \leq n\right\} \cup\left\{2 e_{i} \mid 1 \leq i \leq n\right\}$
W consists of all permutations and sign changes in n coordinates.
$S O(2 n, \mathbb{R})$:

$$
R=\left\{ \pm e_{i} \pm e_{j} \mid 1 \leq i<j \leq n\right\}
$$

W consists of all permutations and an even number sign changes in n coordinates.
$S O(2 n+1, \mathbb{R})$:
$R=\left\{ \pm e_{i} \pm e_{j} \mid 1 \leq i<j \leq n\right\} \cup\left\{e_{i} \mid 1 \leq i \leq n\right\}$
W consists of all permutations and sign changes in n coordinates.

6.2 Formal Definition of Root Systems

Basic references are [1] and [2]. A root system R is a finite subset of $V=\mathbb{R}^{n}$ with the following properties. Write $(v, w)=v \cdot w$ for the standard inner product on V.
Let σ_{v} be the reflection in the plane orthogonal to v. Then

$$
\sigma_{v}(w)=w-<w, v>v
$$

where

$$
<w, v>=2(w, v) /(v, v)
$$

The requirements are:

1. $0 \notin R$ and R spans V
2. if $\alpha \in R$ then $\pm \alpha$ are the only multiples of α in R
3. If $\alpha, \beta \in R$ then $\langle v, w\rangle \in \mathbb{Z}$
4. If $\alpha \in R$ then $\sigma_{\alpha}: R \rightarrow R$

That is $\alpha, \beta \in R$ implies $\beta-<\beta, \alpha>\alpha \in$ R.

Given R let W be the group generated by the reflections

$$
\left\{\sigma_{\alpha} \mid \alpha \in R\right\} .
$$

Thus W acts on R.
In the case of a root system coming from a group the Weyl group is isomorphic to $\operatorname{Norm}_{G}(T) / T$. Example: In the root system of $G L(n, \mathbb{R})$, $S p(2 n, \mathbb{R})$ or $S O(2 n+1, \mathbb{R}), \alpha=e_{i}-e_{j}$ gives the transposition $(i j)$ in S^{n}. These generate S_{n}. In the case of $G L(n, \mathbb{R})$ this is all of W. Example: In the case of $S p(2 n, \mathbb{R})$ or $S O(2 n+$ $1, \mathbb{R})$, if $\alpha=e_{i}$ or $2 e_{i}$ then σ_{α} is the sign change in the $i^{\text {th }}$ coordinate. These generate all permutations and sign changes, i.e. the Weyl group of type B_{n}.

Now root systems are very rigid. In fact the possible angles between roots are $2 \pi / n$ with $n=1,2,3,4,6$. Note that $2 \pi / 5$ is not allowed.

Theorem 6.1 The irreducible root systems are: $A_{n}, B_{n}, C_{n}, D_{n}(n \geq 1)$ and $E_{6}, E_{7}, E_{8}, F_{4}$ and G_{2}.

The root systems of $G L(n, \mathbb{R}), S O(2 n+1, \mathbb{R})$, $S p(2 n, \mathbb{R})$ and $S O(2 n, \mathbb{R})$ are the "classical" root systems of type A_{n-1}, B_{n}, C_{n} and D_{n}, respectively.
The root systems $E_{6}, E_{7}, E_{8}, F_{4}$ and G_{2} are called the exceptional root systems.

Rank 2 root systems

A2

B2

The Weyl groups are

$$
\begin{aligned}
& W\left(A_{1}\right) \simeq \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \\
& W\left(B_{2}\right) \simeq W\left(C_{2}\right) \simeq D_{4} \\
& W\left(G_{2}\right) \simeq D_{6}
\end{aligned}
$$

The exceptional root systems and Weyl groups

$$
\begin{aligned}
& E_{8}: \pm e_{i} \pm e_{j}, 1 \leq i<j \leq 8 \\
& \frac{1}{2}\left(\epsilon_{1}, \ldots, \epsilon_{8}\right), \epsilon_{i}= \pm 1, \prod_{i} \epsilon_{i}=1 \\
& F_{4}: \pm e_{i} \pm e_{j}, 1 \leq i<j \leq 4 \\
& \frac{1}{2}\left(\epsilon_{1}, \ldots, \epsilon_{4}\right), \epsilon_{i}= \pm 1 \\
& G_{2}: \pm e_{i} \pm e_{j}, 1 \leq i<j \leq 3 \\
& \pm(2,-1-1), \pm(-1,2,-1), \pm(-1-1,2) \\
& \text { Type }|R| \quad \operatorname{Order}(\mathrm{W}) \text { realization } \\
& E_{6} \quad 72 \quad 51,840 \quad O\left(6, \mathbb{F}_{2}\right) \\
& E_{7} \quad 126 \quad 2,903,040 \quad O\left(7, \mathbb{F}_{2}\right) \times \mathbb{Z} / 2 \mathbb{Z} \\
& E_{8} \quad 240 \quad 696,729,600 \mathrm{~W} \xrightarrow{2} O\left(8, \mathbb{F}_{2}\right) \\
& F_{4} \quad 48 \quad 1152 \\
& \begin{array}{llll}
G_{2} & 12 & 12 & D_{6}
\end{array}
\end{aligned}
$$

6.3 Lie groups and root systems

Recall the groups $G L(n, \mathbb{R}), S p(2 n, \mathbb{R})$ and $S O(m, \mathbb{R})$ each give rise to a root system and its Weyl group. The converse holds:

Theorem 6.2 (Fantastic Theorem:) Let R be a root system. Then there is a Lie group G for which this is the root system.

More precisely:

- There is a subgroup G of some $G L(m, \mathbb{R})$, and
- a subspace \mathfrak{g} of $M_{m \times m}(\mathbb{R})$, such that
- G acts on \mathfrak{g} by $\pi(g)(X)=g X g^{-1}$
- The diagonal subgroup T is isomorphic to $\mathbb{R}^{* n}$
- The one-dimensional representations of T on \mathfrak{g} are the root system $R \subset \mathbb{Z}^{n} \subset \mathbb{R}^{n}$
- The Weyl group of R is isomorphic to $\operatorname{Norm}_{G}(T)$

The Lie groups of type $E_{6}, E_{7}, E_{8}, F_{4}$ and G_{2} are among the most fascinating objects in mathematics.
Example: $E_{8}\left(\mathbb{F}_{2}\right)$ The preceding construction works over any field (this is one of the remarkable things about it). The group $E_{8}\left(\mathbb{F}_{2}\right)$ is a finite simple group of order
$337,804,753,143,634,806,261,388,190,614,085,595,079,991$, $692,242,467,651,576,160,959,909,068,800,000 \simeq 10^{75}$

7 More on Root Systems

Let R be a root system of rank n, i.e. the ambient vector space is of dimension n. Then there is a basis $\alpha_{1}, \ldots, \alpha_{n} \in R$ of V.
For example if R is of type A_{n-1} then we can take $\alpha_{i}=e_{i}-e_{i+1}$. The corresponding reflections are the transpositions $(i, i+1)$ in S_{n}, which generate S_{n}. This is an example of a basis with further nice properties: a set of "simple" roots.

Definition 7.1 A set $\alpha_{1}, \ldots, \alpha_{n}$ is a set of simple roots if it is a basis of V and every root $\beta \in R$ can be written

$$
\beta=\sum_{i} a_{i} \alpha_{i}
$$

with all $a_{i} \geq 0$ or all $a_{i} \leq 0$.

Example: \mathbf{B}_{2}

Given a set of simple roots $S=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ let $s_{i}=s_{\alpha_{i}}$. For $w \in W$ let $\operatorname{length}(w)$ be the minimum k so that

$$
w=s_{i_{1}} s_{i_{2}} \ldots s_{i_{k}}
$$

Theorem 7.2 Let $\alpha_{1}, \ldots, \alpha_{n}$ be a set of simple roots.

- W is generated by $\left\{s_{i}=s_{\alpha_{i}} \mid 1 \leq i \leq n\right\}$.
- There is a unique longest element w_{0} of the Weyl group

Note: In types $B_{n}, C_{n}, D_{2 n}, E_{7}, E_{8}, F_{4}$ and $G_{2}, w_{0}=-I$.

Weyl group of type B_{2}

$W:\left\{1, s_{\alpha}, s_{\beta}, s_{\alpha} s_{\beta}, s_{\beta} s_{\alpha}, s_{\alpha} s_{\beta} s_{\alpha}, s_{\beta} s_{\alpha} s_{\beta}, s_{\alpha} s_{\beta} s_{\alpha} s_{\beta}\right\}$

 B2

7.1 Hyperplanes

Let $R \subset V=\mathbb{R}^{n}$ be a root system. Recall for $\alpha, \beta \in R$,

$$
<\alpha, \beta>=2(\alpha, \beta) /(\beta, \beta)
$$

where $(\alpha, \beta)=\alpha \cdot \beta$. This makes sense for any $v \in V$:

Definition 7.3 For $\alpha \in R, v \in V$,

$$
<v, \alpha>=2(v, \alpha) /(\alpha, \alpha)
$$

Note: if there is only one root length (types A,D,E) we may take (α, α) $=2$ for all $\alpha \in R$, and then

$$
<v, \alpha>=(v, \alpha)
$$

You may want to think about this case at first.
Now each $\alpha \in R$ gives a hyperplane

$$
\{v \mid<v, \alpha>=0\}
$$

Hyperplanes of A_{3}

More generally each $k \in \mathbb{Z}, \alpha \in R$ gives a hyperplane

$$
\{v \mid<v, \alpha>=k
$$

This breaks V up into countably many facets.

B2

References

[1] J. Humphreys. Introduction to Lie Algebras and Representation Theory. Springer-Verlag, Berlin,Heidelberg,New York, 1972.
[2] James E. Humphreys. Reflection groups and Coxeter groups, volume 29 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1990.

