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6 GL(n,R)

Recall G = GL(n,R) is the group of n × n

invertible matrices over R.n

Let V = Mn×n(R) ' Rn2
(as a vector space),

and define a representation of G on V by

π(g)(X) = gXg−1 (g ∈ G,X ∈ V )

The subspace of matrices of trace 0 is an ir-

reducible representation of G.

Now let T ⊂ G be the subgroup of diagonal

matrices. Then V is a representation of T by
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restriction:

π(t)(X) = tXt−1 (t ∈ T,X ∈ V )

Problem: Decompose V , as a representation

of T , into a direct sum of irreducible represen-

tations.

Note that T is abelian; in fact T ' R∗n. Here

are some one-dimensional representations of T .
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Let

Zn 3 ~k = (k1, . . . , kn) : T → R∗

be the map

diag(x1, x2, . . . , xn)→ xk1
1 x

k2
2 . . . xkn

n

This is a group homomorphism.

Let Ei,j be the matrix with a 1 in the ith

row and jth column, and 0 elsewhere. Let t =

diag(x1, . . . , xn). Then

π(t)Ei,j =
xi
xj
Ei,j

That is C < Ei,j > is a one-dimensional repre-
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sentation of T given by

~k =

{

(0, . . . , 0) i = j

(0, . . . , 0, 1i, 0, . . . , 0,−1j, 0, . . . , 0) i 6= j

with 1 in the ith place and −1 in the jth place.

Write e1, . . . , en for the standard basis of Rn (or

Zn). Then (i 6= j)

π(t)Ei,j = (ei − ej)(t)Ei,j

This gives the solution to the Problem: V is

the direct sum of one-dimensional representa-

tions

ei − ej (1 ≤ i 6= j ≤ n)

and the trivial representation ~0 with multiplic-

5



ity n.

The set

R = {ei − ej | 1 ≤ i 6= j ≤ n} ⊂ Rn

is an example of a root system.

Now let

W = NormG(T )/T

For example any permutation matrix is con-

tained in NormG(T ), and acts on T (by conju-

gation) by the natural permutation action. For

example
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



0 1 0

0 0 1

1 0 0









x1

x2

x3









0 1 0

0 0 1

1 0 0





−1

=





x2

x3

x1





In fact W ' Sn. This is an example of a
Weyl group.
Note that the action of W on T by conjuga-

tion gives an action of W on R, again by the
natural permutation action.

6.1 Other Groups

Now let G be Sp(2n,R) or SO(n,R). Recall

G = {g ∈ GL(m,R) | gJgt = J}

with J as in Lecture I.
Let

g = {X ∈Mm×m(R) |XJ + JX t = 0}

The g is a representation of G by

π(g)(X) = gXg−1 (g ∈ G,X ∈ g)
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(check this).
Let T be the diagonal subgroup:

T = {diag(x1, . . . , xn,
1

x1
, . . . ,

1

xn
)

(with an additional 1 in the case of SO(2n+1)).
Again T is isomorphic to R∗n, and we have

the one–dimensional representations ~k ∈ Zn of
T . As before, decompose g as a representation
of T .
We get {ei − ej | 1 ≤ i 6= j ≤ k} as before.
Let

Fi,j =

































0
0
. . .

0
0

0
1i,j

1j,i
0

0
0
. . .

0
0

0
0
. . .

0
0
































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Then

π(t)Fi,j = (ei + ej)(t)Fi,j

(if i = j this is 2ei(t)Fi,i).
Let R ⊂ Zn be the non-zero elements which

occur. We define W as before

W = NormG(T )/T

This is a finite group.
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GL(n,R):

R = {±(ei − ej) | 1 ≤ i < j ≤ n}

W ' Sn consists of all permutations in n
coordinates

Sp(2n,R):

R = {±ei±ej | 1 ≤ i < j ≤ n}∪{2ei | 1 ≤ i ≤ n}

W consists of all permutations and sign changes
in n coordinates.

SO(2n,R):

R = {±ei ± ej | 1 ≤ i < j ≤ n}

W consists of all permutations and an even
number sign changes in n coordinates.

SO(2n + 1,R):

R = {±ei±ej | 1 ≤ i < j ≤ n}∪{ei | 1 ≤ i ≤ n}

W consists of all permutations and sign changes
in n coordinates.
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6.2 Formal Definition of Root Systems

Basic references are [1] and [2]. A root systemR
is a finite subset of V = Rn with the following
properties. Write (v, w) = v·w for the standard
inner product on V .
Let σv be the reflection in the plane orthogo-

nal to v. Then

σv(w) = w− < w, v > v

where
< w, v >= 2(w, v)/(v, v)

The requirements are:

1. 0 6∈ R and R spans V

2. if α ∈ R then ±α are the only multiples of
α in R

3. If α, β ∈ R then < v,w >∈ Z

4. If α ∈ R then σα : R→ R

That is α, β ∈ R implies β− < β, α > α ∈
R.
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Given R letW be the group generated by the
reflections

{σα |α ∈ R}.

Thus W acts on R.
In the case of a root system coming from a

group theWeyl group is isomorphic toNormG(T )/T .

Example: In the root system of GL(n,R),
Sp(2n,R) or SO(2n+ 1,R), α = ei − ej gives
the transposition (i j) in Sn. These generate
Sn. In the case of GL(n,R) this is all of W .

Example: In the case of Sp(2n,R) or SO(2n+
1,R), if α = ei or 2ei then σα is the sign change
in the ith coordinate. These generate all permu-
tations and sign changes, i.e. the Weyl group of
type Bn.
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Now root systems are very rigid. In fact the
possible angles between roots are 2π/n with
n = 1, 2, 3, 4, 6. Note that 2π/5 is not allowed.

Theorem 6.1 The irreducible root systems
are: An, Bn, Cn, Dn (n ≥ 1) and E6, E7, E8, F4

and G2.

The root systems ofGL(n,R), SO(2n+1,R),
Sp(2n,R) and SO(2n,R) are the “classical”
root systems of type An−1, Bn, Cn and Dn, re-
spectively.
The root systems E6, E7, E8, F4 and G2 are

called the exceptional root systems.
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Rank 2 root systems

A2

C2

B2

G2

The Weyl groups are

W (A1) ' Z/2Z× Z/2Z
W (B2) ' W (C2) ' D4

W (G2) ' D6
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The exceptional root systems and Weyl groups

E8 : ±ei ± ej, 1 ≤ i < j ≤ 8
1
2
(ε1, . . . , ε8), εi = ±1,

∏

i εi = 1

F4: ±ei ± ej, 1 ≤ i < j ≤ 4
1
2
(ε1, . . . , ε4), εi = ±1

G2: ±ei ± ej, 1 ≤ i < j ≤ 3
±(2,−1− 1),±(−1, 2,−1),±(−1− 1, 2)

Type |R| Order(W) realization
E6 72 51,840 O(6,F2)
E7 126 2,903,040 O(7,F2)× Z/2Z
E8 240 696,729,600 W

2
→ O(8,F2)

F4 48 1152
G2 12 12 D6
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6.3 Lie groups and root systems

Recall the groupsGL(n,R), Sp(2n,R) and SO(m,R)
each give rise to a root system and its Weyl
group. The converse holds:

Theorem 6.2 (Fantastic Theorem:) Let R
be a root system. Then there is a Lie group
G for which this is the root system.

More precisely:

• There is a subgroup G of some GL(m,R),
and

• a subspace g of Mm×m(R), such that

• G acts on g by π(g)(X) = gXg−1

• The diagonal subgroup T is isomorphic to
R∗n

• The one–dimensional representations of T
on g are the root system R ⊂ Zn ⊂ Rn

• TheWeyl group ofR is isomorphic toNormG(T )

16



The Lie groups of type E6, E7, E8, F4 and G2

are among the most fascinating objects in math-
ematics.
Example: E8(F2) The preceding construction
works over any field (this is one of the remark-
able things about it). The group E8(F2) is a
finite simple group of order

337, 804, 753, 143, 634, 806, 261, 388, 190, 614, 085, 595, 079, 991,

692, 242, 467, 651, 576, 160, 959, 909, 068, 800, 000 ' 1075
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7 More on Root Systems

Let R be a root system of rank n, i.e. the ambi-
ent vector space is of dimension n. Then there
is a basis α1, . . . , αn ∈ R of V .
For example if R is of type An−1 then we

can take αi = ei − ei+1. The corresponding
reflections are the transpositions (i, i+1) in Sn,
which generate Sn. This is an example of a basis
with further nice properties: a set of “simple”
roots.

Definition 7.1 A set α1, . . . , αn is a set of
simple roots if it is a basis of V and every
root β ∈ R can be written

β =
∑

i

aiαi

with all ai ≥ 0 or all ai ≤ 0.
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Example: B2

B2

α

β α+β 2α+β
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Given a set of simple roots S = {α1, . . . , αn}
let si = sαi

. For w ∈ W let length(w) be the
minimum k so that

w = si1si2 . . . sik

Theorem 7.2 Let α1, . . . , αn be a set of sim-
ple roots.

• W is generated by {si = sαi
| 1 ≤ i ≤ n}.

• There is a unique longest element w0 of
the Weyl group

Note: In types Bn, Cn, D2n, E7, E8, F4 and
G2, w0 = −I .
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Weyl group of type B2

W : {1, sα, sβ, sαsβ, sβsα, sαsβsα, sβsαsβ, sαsβsαsβ}

B2

α

β 2α+βα+β

β νssα

sαss β νsαβ

νν

ν

ν

sα

sβ
sα sβν

sα sβνsβ

sαsβsα
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7.1 Hyperplanes

Let R ⊂ V = Rn be a root system. Recall for
α, β ∈ R,

< α, β >= 2(α, β)/(β, β)

where (α, β) = α · β. This makes sense for any
v ∈ V :

Definition 7.3 For α ∈ R, v ∈ V ,

< v, α >= 2(v, α)/(α, α)

Note: if there is only one root length (types
A,D,E) we may take (α, α) = 2 for all α ∈ R,
and then

< v, α >= (v, α)

You may want to think about this case at first.
Now each α ∈ R gives a hyperplane

{v | < v, α >= 0}
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Hyperplanes of A3
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More generally each k ∈ Z, α ∈ R gives a
hyperplane

{v | < v, α >= k

This breaks V up into countably many facets.
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A2
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B2
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G2
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