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6 Recap

In Lecture I we showed that SL(2,R) has in-

teresting infinite dimensional unitary represen-

tations. That is we found representations πν on

a Hilbert space L2(R) for which the operators

πν are unitary, i.e. (πν(g)v, φν(g)w) = (v, w)

for all v, w ∈ L2(R) and g ∈ SL(2,R). Here

ν ∈ iR (with (, ) the usual inner product) or

−1 ≤ ν ≤ 1 (with a different inner product).

We are interested in similar representations of

other Lie groups such as GL(n,R), Sp(2n,R)



and SO(n,R). We are also interested in the

exceptional groups E6, E7, E8, F4 and G2.

Each of the groups under discussion contains

a subgroup T isomorphic to R
∗n, which gives

rise to the root system R ⊂ R
n and the Weyl

groupW . RecallR is a finite set of roots satisfy-

ing certain conditions. In particular if α, β ∈ R

then

< α, β >=
2(α, β)

(β, β)
∈ Z

and the corresponding reflection

σα(v) = v− < v, α > α



takes R to itself. The Weyl group is the group

generated by the reflections σα (α ∈ R). This

acts on R
n.

Recall a set of simple roots ∆ ⊂ R is a basis

of V satisfying certain other condition.

We say ν is dominant if < ν, α >≥ 0 for all

α ∈ ∆.

Lemma 6.1 Given ν there exists w ∈ W

such that wν is dominant.
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7 Representations

Let G be one of our groups. The diagonal sub-

group T is isomorphic to R
∗ × · · · × R

∗. I’ll

assume the number of factors is n, i.e. T ' R
∗n.

For example takeG to beGL(n,R), Sp(2n,R), SO(2n,R)

or SO(2n + 1,R).

Note that if ν = (z1, . . . , zn) ∈ C
n then

ν gives a one–dimensional representation ν of

T ' R
∗n by

ν(x1, . . . , xn) = |x1|z1 . . . |xn|zn

Lemma 7.1 For every ν ∈ C
n there is an



irreducible representation, denoted πν, of G.

It is unitary if (but not only if !) ν ∈ iRn.

Finally, πν ' πwν for all w ∈ W .

By the last statement we may as well assume

ν is dominant.

The representation πν is on a space of func-

tions F on G. It is an example of an induced

representation. In the case of SL(2,R) these

are the representations of Lecture I.

Recall in the case of SL(2,R) πν is unitary

if ν ∈ iR or −1 ≤ ν ≤ 1. The interesting and



hard case is the latter one.

From now on we assume ν is real, i.e. ν ∈ R
n.

In our setting we are interested in the follow-

ing problem:

Problem: For which ν ∈ R
∗n is πν unitary?

Recall the Weyl groupW acts on R
n, and w0

is the longest element of W .

Lemma 7.2 If πν is unitary then w0ν = −ν.

In some cases w0 = −1, in which case this is

no condition.



8 A calculation in W

We now give a formal construction in the Weyl

group which will answer the question posed in

the previous section.

Let V = R
n, with the standard inner product

(v, w) = v · w. Suppose R ⊂ R
n is a root

system, and W is the Weyl group of R. Pick a

set ∆ of simple roots. Write

w0 = sNsN−1 . . . s1

where si = sα for some α ∈ ∆. HereN = 1
2|N |.

Fix a representation τ of W of dimension m.



Definition 8.1 Suppose ν ∈ V .

(1) For α ∈ ∆ define

Aπ,α(ν) = π(1)+ < ν, α > π(sα)

(2) Define

Aπ(ν) = AαN (sαN−1
. . . sα1ν) . . . Aα2(sα1ν)Aα1(ν)

Thus A(ν) is an m × m matrix. Note that

π(sα) = diag(±1, . . . ,±1) in some basis, so

Aπ,α =





1± < ν, α >
. . .

1± < ν, α >





In particularAπ,α is invertible if< ν, α >6= ±1.



Example: Sp(4,R)

We’ll compute Aπ(ν) where π is the reflection

representation.

This group has type C2, and the root system

looks like this (n = 2):
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The simple roots are α, β. Write ν = (x, y).

We have sα is reflection in the x coordinate, and

sβ is reflection in the line x = y:

sα(x, y) = (−x, y) sβ(x, y) = (y, x)

That is, the reflection representation π is given

by matrices

π(sα) =

(

−1 0
0 1

)

and

π(sβ) =

(

0 1
1 0

)



Also note that

< ν, α >= 2(2x)/4 = x

< ν, β >= 2(x− y)/2 = x− y

As noted in Lecture II,w0 = sβsαsβsα. There-

fore Aπ(ν) is the following product:

Aπ,sβ(sαsβsαν)Aπ,sα(sβsαν)Aπ,sβ(sαν)Aπ,sα(ν)

Thus

Aπ,sα(ν) = π(1)+ < ν, α > π(sα)

= π(1) + xπ(sα)

=

(

1− x 0
0 1 + x

)

Next< sαν, β >=< (−x, y), (1,−1) > −x−



y, and

Aπ,sβ(sαν) = π(1)+ < sαν, β > π(sβ)

= π(1) + (−x− y)π(sβ)

=

(

1 −x− y
−x− y 1

)

For the next step

< sβsαν, α >=< (y,−x), (2, 0) >= y

and

Aπ,sα(sβsαν) = π(1)+ < sβsαν, α > π(sα)

= π(1) + yπ(sα)

=

(

1− y 0
0 1 + y

)

Finally< sαsβsαν, β >=< (−y,−x), (1,−1) >



y − x, and

Aπ,sβ(sαν) = π(1)+ < sαsβsαν, β > π(sβ)

= π(1) + (−x− y)π(sβ)

=

(

1 y − x
y − x 1

)

This gives

Aπ(ν) =

(

1 y − x
y − x 1

)(

1− y 0
0 1 + y

)

(

1 −x− y
−x− y 1

)(

1− x 0
0 1 + x

)

or










(1 + y)(1 + x)+

(1 + y)(1− x)(x− y)(x+ y)
2x(y2 − 1)

2x(y2 − 1)
(1− y)(1− x)+

(1− y)(1 + x)(x− y)(x+ y)













Definition 8.2 A real symmetric matrix is positive

semi–definite if its eigenvalues are all ≥ 0.
Remark: The eigenvalues of a real symmetric matrix

are real.

Example:

X :=





1 2 3

2 3 4

3 4 7





According to Mathematica the eigenvalues are:
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3
+

23 5
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3
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241 + 9 i
√
34

)
1

3

+
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5
(

241 + 9 i
√
34
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1

3

3

11
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− 23 5
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3

(

1 + i
√
3
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6
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241 + 9 i
√
34
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1

3
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(

1− i
√
3
) (

5
(

241 + 9 i
√
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√
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√
3
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5
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√
34

))
1
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Numerically:

10.79 + 0.i

−0.34 + 4.44× 10−16i

0.54− 4.44× 10−16i

Moral: Don’t trust what computers tell you.



Theorem 8.3 1. Aπ(ν) is well–defined

2. Aπ(ν) is a polynomial function in ν

3. Aπ(ν) is invertible unless < ν, α >= ±1 for some
root α

4. Aπ(ν) is symmetric if w0ν = −ν

Conjecture 8.4 Assume ν ∈ R
n and w0ν = −ν.

Then πν is unitary if and only if Aπ(ν) is positive

semi–definite for all irreducible representations π of

W .

This is almost certainly true. It is true for classical

groups. If it isn’t true it would be good to know why.

Theorem 8.5 The conjecture is true if you replace

R with a “p–adic” field.

Problem: Compute the set of ν for which Aπ(ν) is pos-

itive definite for all π. Given the conjecture this answers

the Problem stated earlier.

We may assume ν is dominant. The eignevalues of

Aπ(ν) are continuous functions of ν; they can only change

sign at where < wν, α >= 1 for some α ∈ ∆ and w ∈
W .



We therefore divide the dominant region into a finite

number of facets: those cut out by the planes < v, α >=

1 (α ∈ ∆).

Example: Sp(4,R)
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Here are the regions for whichAπ(ν) is positive semidef-

inite where π is the reflection representation:

The eigenvalues of Aπ(ν) are:

[1 + x2 + xy − x3y − y2 + xy3]±
[5x2 − 2x4 + x6 + 2xy − 2x5y + y2 − 4x2y2−
x4y2 + 4x3y3 − 2y4 + 3x2y4 − 2xy5 + y6]

1
2

In the picture the (dominant) points where both eigen-

values are ≥ 0 are colored black (and made Weyl group
invariant).



In all representations of W :

This is the picture of the unitary representations of

Sp(4,R).



Example: G2

The facets for G2

It suffices to use a reducible four-dimensional represen-

tation. The first eigvenvalue is:



(54− 108x2 + 54x4 + 144
√
3xy + 72

√
3x5y + 36y2−

36x2y2 − 192
√
3xy3 − 240

√
3x3y3 − 90y4 + 72

√
3xy5−

[(54− 108x2 + 54x4 + 144
√
3xy + 72

√
3x5y + 36y2 − 36x2y2−

192
√
3xy3 − 240

√
3x3y3 − 90y4 + 72

√
3xy5)2 + 108(−27 + 216x2−

594x4 + 756x6 − 459x8+

108x10 + 216y2 − 1188x2y2 + 1332x4y2 − 108x6y2 − 108x8y2−
144x10y2 − 594y4 + 2892x2y4 − 2178x4y4 + 216x6y4 + 960x8y4+

652y6 − 2796x2y6 + 1224x4y6 − 1888x6y6 − 267y8 + 828x2y8+

960x4y8 + 36y10− 144x2y10)]
1
2)/54

The (1, 1) entry of Aπ(ν) is

(1− x+ 3(x+ y)− 3(−2x− y + 3(x+ y)))(1 + 3x+ y − 6(x+ y)+

3(−2x− y + 3(x+ y)))((1 + x− 3(x+ y))(1− 2x− y + 3(x+ y))(3x(x+ y)+

(1− x)(1 + x+ y)) + 3(−2x− y + 3(x+ y))(x(1− x− y)(1− x+ 3(x+ y))+

(−x+ 3(x+ y))(3x(x+ y) + (1− x)(1 + x+ y)))) + 3(3x+ y − 6(x+ y)

+ 3(−2x− y + 3(x+ y)))((1 + 2x+ y − 3(x+ y))(1 + x− 3(x+ y)+

3(−2x− y + 3(x+ y)))(x(1− x− y)(1− x+ 3(x+ y)) + (−x+ 3(x+ y))

(3x(x+ y) + (1− x)(1 + x+ y))) + (x− 3(x+ y) + 3(−2x− y + 3(x+ y)))

((1 + x− 3(x+ y))(1− 2x− y + 3(x+ y))(3x(x+ y) + (1− x)(1 + x+ y))+

3(−2x− y + 3(x+ y))(x(1− x− y)(1− x+ 3(x+ y))+

(−x+ 3(x+ y))(3x(x+ y) + (1− x)(1 + x+ y)))))



The matrix Aπ(1/4, 1/6) is











207393−81191
√

3
373248

425
1728 0 0

425
1728

207393+81191
√

3
124416 0 0

0 0 167025+39913
√

3
124416

13
54

0 0 13
54

167025−39913
√

3
373248











And the final picture is:

This is the picture of the spherical unitary representa-

tions of G2(R) and also G2(F ) for F a p–adic field.



Example: F4, π = the reflection representation, ν =

(7/12, 7/24, 7/24, 0)

A : {{179084422223504289318018271/27262293279626489757696,
2848741016732394535581473/1009714565912092213248,

43933519598549036670413563/27262293279626489757696,

2048262588525300005047721/3029143697736276639744},
{2848741016732394535581473/1009714565912092213248,
1588707472675380417781223/1009714565912092213248,

2107274845436801783022007/3029143697736276639744,

805420891824960442145471/3029143697736276639744},
{43933519598549036670413563/27262293279626489757696,
2107274845436801783022007/3029143697736276639744,

10953541816452899251348189/27262293279626489757696,

169635969006910190915221/1009714565912092213248},
{2048262588525300005047721/3029143697736276639744,
805420891824960442145471/3029143697736276639744,

169635969006910190915221/1009714565912092213248,

218511037306943908817039/3029143697736276639744}}



9 Computations

Here are the ingredients for computing unitarity of spher-

ical representations.

Note: All computations must be done with rational

numbers. The reason is we need to know whether a num-

ber (for example an eigenvalue) is > 0. If you compute

with a fixed precision you need to be very careful you

don’t make a mistake.

Models of representations of Weyl groups Find

a model for every irreducible representation of an excep-

tional Weyl group. The character tables are known.

W (G2) has 6 irreducible representations, of dimension

2, 2, 1, 1, 1, 1.

W (F4) has 25 representations, the largest of dimension

16.

W (E6) has 25 representation, the largest of dimension

81.

W (E7) has 60 representation, the largest of dimension

512.

W (E8) has 112 representation, the largest of dimen-

sion 5600.

The facets Given a Weyl group, list the facets given by

the hyperplanes < ν, α >= 1. Give a sample point on

each facet. This is a problem in linear programming.



There are 712 facets for E6.

Computation of Aπν This is straightforward, but slow

for large representations.

Compute whether Aπ(ν) is positive semi–definite

Algorithms are known, but this may be difficult for large

matrices. You certainly can’t compute eigenvalues. I

don’t know if it is possible to test a matrix of size 5600.

It would be interesting to find out.

Compute the unitary set Compute the facets for

which Aπ,ν is positive semi–definite for all ν.

Compute a minimal set of π We should only need

a small set of π to give the set of unitary ν. Find a small

set of π which works.



10 Software

Here is some of the mathematical software we have avail-

able, with an emphasis on things useful for this project

or similar one.

• Mathematica, Matlab, Maple: general purpose math-
ematical software, including symbolic computations

• Magma: Powerful algebra package, including finite
groups of Lie type, Weyl groups, and character ta-

bles. Command: magma2.9 (new version of magma).

• Gap: Group Algebra Package, with an emphasis on
group theory. Includes the character tables from the

Atlas of Finite Groups

• LiE: Computations in Lie theory, including finite di-
mensional representations of complex Lie groups and

algebras, Kazhdan–Lusztig polynomials

• Cocoa: Commutative Algebra package (Grobner bases,
ideals, polynomials,. . . )

• Magnus: Combinatorial Group Theory, with a graph-
ical interface. Handles infinite groups

• Pari: Advanced programmable calculator: symbolic
computations, number theoretic functions (elliptic

curves, class field theory...). Command: gp.



• Perl: Nice software for gluing things together, for
example for taking the output of LiE and peparing

it for input to Magma


