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m: irreducible admissible representation of G
Problem: Compute the (distribution) character 6, of 7
Harish-Chandra: function on the regular semisimple set

Roughly: fix H,

> a(m,w)e"*(g)

O0x(g) = o)

Problem: Compute a(m, w)
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Why?

0. determines 7 - e.g., how do you tell when two
representations are isomorphic?

Applications: the Langlands program, lifting, base change,. ..

Stability
Application: Given a unipotent Arthur paramter ¥, compute
the Arthur packet II.

Need to compute: AV (7) (a set of real nilpotent orbits)
(not just AV (Ann(m)) (a single complex nilpotent orbit))

Not known... use character theory to get some information
(see www .liegroups.org/tables/unipotent)
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Theme: When can you encapsulate very complicated objects
with surprisingly little data?

Example: Reductive groups of rank m, and semisimple rank n:

’pair of m x n integral matrices (A, B) ‘

such that A x B! is a Cartan matrix

(A, B) ~ (¢'A,Bg™") for g € GL(m,Z)



Example: Here is complete information about representations of
SL(2,R), including their characters.

block: block

0(0,1): 0O [i1] 1 (2,%) 0
1(1,1): 0 [i1] O (2,%) 0 e
2(2,0): 1 [r1] 2 (0,1) 1

block: klbasis

0: 0: 1
1: 1: 1
2: 0: 1
1: 1
2: 1

5 nonzero polynomials, and O zero polynomials,
at 5 Bruhat-comparable pairs.
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History
Inducted character formula, focus on the discrete series

Harish-Chandra: compact Cartan subgroup T,
A character of T}, (later)

D(g) =11 = e7*(g9))e”(9)

3 unique irreducible representation 7 = w(A) satisfying:

0.(g) = ngn(;v()g(;vf\)@)

Question: Formula for €; on other Cartans? notoriously
difficult

Herb:

(1) Stable sums of discrete series (two-structures)
(2) Endoscopy

Other approaches (Schmid, Goresky-Kottwitz-MacPherson,
Zuckerman,. .. )
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Alternative Approach:
All representations at once, using KLV polynomials

(atlas software)
Assume regular infinitesimal character A

Theorem:

—

(G, \) = {(H,A) | A € H(R),,dA ~ \}/G(R)

I(H,A) standard (induced) module
m(H,A) irreducible Langlands quotient

(H,A)—>{
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Harish-Chandra’s character formula for discrete series -+
induced character formula =:

Proposition: Formula for 07z ) on H(R):

sen(w)(wA)(h
by = = e g

Wr = W(G(R),H(R)) C W(G, H)

: I'm surpressing an irksome sign

—

Corollary: IT" € H(R),:

a(I(H,A),T) =

+1 T'=wA
0 otherwise
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Question: Formula for 67y ) on other Cartan subgroups?
Theory of leading terms (growth of matrix coefficients):

If
(*) Re(dA,a¥) >0 forall a € A

then A occurs in I(H, A) and the character formula for no other
standard module:

Theorem: Fix (H, A) satisfying (*):

41 (H,A) ~ (H',A)

0 otherwise

a(I(H’,A’),A):{
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{m(H,A\)} and {I(H,A)} are both bases of the Grothendieck
group

I= Z m(/, 7)I (multiplicity formula)
T = Z M(I,7)I (character formula)

This is precisely what is computed by the
Kazhdan-Lustig-Vogan polynomials (the klbasis command)
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Corollary: Assuming (*),

a(m, A) = =M(I(H, A), 7)
==+P; (1) (KLV polynomial)

General A: use coherent continuation (wgraph command)

a(m,w x A) = +=MI(H,A),w™ - 7)

Conclusion: KLV-polynomials =

explicit formulas for all a(m, A)
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R¥ x R*: Irreducible Modules

™ GO [ (02 [ @&-D [ (L2 [ 1,-2 [ 2D [ -1,-2) | (=2,-1)
7(0) 1,1 1,0 0,1
(1) T,1 1,0 0,1
7(2) 1,0 —1,0
7(3) 1,0 —1,0
(1) 11 1,1 1,1 11
7(5) 7,0 1,0 1,0 1,0
7(6) 7,0 1,0 1,0 7,0
7 (7) 1,0 1,0 1,0 1,0 1,0 1,0
7(8) 1,0 1,0 1,0 1,0 1,0 1,0
7(9) T1 1,1 1,1 2,0 T,-1 2,0
7(10) 1,0 1,0 1,0 1,0 7,0 1,0 1,0 7,0
7 (11) 0,1 0,-1 0,1 1,0 0,-1 1,0 1,0 1,0




