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π: irreducible admissible representation of G

Problem: Compute the (distribution) character θπ of π

Harish-Chandra: function on the regular semisimple set

Roughly: fix H,

θπ(g) =

∑
a(π,w)ewλ(g)

∆(g)

Problem: Compute a(π,w)
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Why?

θπ determines π - e.g., how do you tell when two
representations are isomorphic?

Applications: the Langlands program, lifting, base change,. . .

Stability
Application: Given a unipotent Arthur paramter Ψ, compute
the Arthur packet Πψ.

Need to compute: AV (π) (a set of real nilpotent orbits)

(not just AV (Ann(π)) (a single complex nilpotent orbit))

Not known. . . use character theory to get some information
(see www.liegroups.org/tables/unipotent)
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Theme: When can you encapsulate very complicated objects
with surprisingly little data?

Example: Reductive groups of rank m, and semisimple rank n:

pair of m× n integral matrices (A,B)

such that A×Bt is a Cartan matrix

(A,B) ∼ (gtA,Bg−1) for g ∈ GL(m,Z)



Example: Here is complete information about representations of
SL(2,R), including their characters.

block: block

0(0,1): 0 [i1] 1 (2,*) 0 e

1(1,1): 0 [i1] 0 (2,*) 0 e

2(2,0): 1 [r1] 2 (0,1) 1 1

block: klbasis

0: 0: 1

1: 1: 1

2: 0: 1

1: 1

2: 1

5 nonzero polynomials, and 0 zero polynomials,

at 5 Bruhat-comparable pairs.
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History
Inducted character formula, focus on the discrete series

Harish-Chandra: compact Cartan subgroup T ,
Λ character of Tρ (later)

D(g̃) =
∏
(1− e−α(g))eρ(g̃)

∃ unique irreducible representation π = π(Λ) satisfying:

θπ(g) =

∑
sgn(w)(wΛ)(g̃)

D(g̃)

Question: Formula for θπ on other Cartans? notoriously
difficult

Herb:

(1) Stable sums of discrete series (two-structures)

(2) Endoscopy

Other approaches (Schmid, Goresky-Kottwitz-MacPherson,
Zuckerman,. . . )



Alternative Approach:
All representations at once, using KLV polynomials



Alternative Approach:
All representations at once, using KLV polynomials

(atlas software)



Alternative Approach:
All representations at once, using KLV polynomials

(atlas software)

Assume regular infinitesimal character λ



Alternative Approach:
All representations at once, using KLV polynomials

(atlas software)

Assume regular infinitesimal character λ

Theorem:

Π(G, λ) = {(H,Λ) | Λ ∈ Ĥ(R)ρ, dΛ ∼ λ}/G(R)



Alternative Approach:
All representations at once, using KLV polynomials

(atlas software)

Assume regular infinitesimal character λ

Theorem:

Π(G, λ) = {(H,Λ) | Λ ∈ Ĥ(R)ρ, dΛ ∼ λ}/G(R)

(H,Λ) →

{
I(H,Λ) standard (induced) module

π(H,Λ) irreducible Langlands quotient
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Fix H,∆+, ρ = 1
2

∑
∆+ α,Hρ

D(∆+, g̃) =
∏

(1− e−α(g))eρ(g̃) (g̃ ∈ H(R)ρ)

H(R)+ = {g ∈ H | |eα(g)| > 1 (α real)}

θπ(h) =

∑
a(π,∆+,Λ)Λ(g̃)

D(∆+, g̃)
(g ∈ H(R)+)

(drop ∆+)
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Harish-Chandra’s character formula for discrete series +
induced character formula ⇒:

Proposition: Formula for θI(H,Λ) on H(R):

θI(H,Λ)(h) =

∑
WR

sgn(w)(wΛ)(h)

D(h)
(h ∈ H(R)+)

WR = W (G(R), H(R)) ⊂ W (G,H)

Sue me: I’m surpressing an irksome sign

Corollary: Γ ∈ Ĥ(R)ρ:

a(I(H,Λ),Γ) =

{
±1 Γ = wΛ

0 otherwise
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Question: Formula for θI(H,Λ) on other Cartan subgroups?

Theory of leading terms (growth of matrix coefficients):

If

(*) Re〈dΛ, α∨〉 ≥ 0 for all α ∈ ∆+

then Λ occurs in I(H,Λ) and the character formula for no other
standard module:

Theorem: Fix (H,Λ) satisfying (*):

a(I(H ′,Λ′),Λ) =

{
±1 (H,Λ) ∼ (H ′,Λ′)

0 otherwise
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{π(H,Λ)} and {I(H,Λ)} are both bases of the Grothendieck
group

I =
∑

m(I, π)I (multiplicity formula)

π =
∑

M(I, π)I (character formula)

This is precisely what is computed by the
Kazhdan-Lustig-Vogan polynomials (the klbasis command)
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Corollary: Assuming (*),

a(π,Λ) = ±M(I(H,Λ), π)

= ±PI,π(1) (KLV polynomial)

General Λ: use coherent continuation (wgraph command)

a(π,w × Λ) = ±M(I(H,Λ), w−1 · π)

Conclusion: KLV-polynomials ⇒

explicit formulas for all a(π,Λ)



Example: Sp(4,R)

0( 0,6): 0 [i1,i1] 1 2 ( 4, *) ( 5, *) 0 e

1( 1,6): 0 [i1,i1] 0 3 ( 4, *) ( 6, *) 0 e

2( 2,6): 0 [ic,i1] 2 0 ( *, *) ( 5, *) 0 e

3( 3,6): 0 [ic,i1] 3 1 ( *, *) ( 6, *) 0 e

4( 4,5): 1 [r1,C+] 4 9 ( 0, 1) ( *, *) 1 1

5( 5,4): 1 [C+,r1] 7 5 ( *, *) ( 0, 2) 2 2

6( 6,4): 1 [C+,r1] 8 6 ( *, *) ( 1, 3) 2 2

7( 7,3): 2 [C-,i1] 5 8 ( *, *) (10, *) 2 1,2,1

8( 8,3): 2 [C-,i1] 6 7 ( *, *) (10, *) 2 1,2,1

9( 9,2): 2 [i2,C-] 9 4 (10,11) ( *, *) 1 2,1,2

10(10,0): 3 [r2,r1] 11 10 ( 9, *) ( 7, 8) 3 2,1,2,1

11(10,1): 3 [r2,rn] 10 11 ( 9, *) ( *, *) 3 2,1,2,1



0: 0: 1 9: 0: 1

1: 1

1: 1: 1 2: 1

3: 1

2: 2: 1 4: 1

5: 1

3: 3: 1 6: 1

9: 1

4: 0: 1

1: 1 10: 0: 1

4: 1 1: 1

2: 1

5: 0: 1 3: 1

2: 1 4: 1

5: 1 5: 1

6: 1

6: 1: 1 7: 1

3: 1 8: 1

6: 1 9: 1

10: 1

7: 0: 1

1: 1 11: 2: q

2: 1 3: q

4: 1 9: 1

5: 1 11: 1

7: 1

8: 0: 1

1: 1

3: 1

4: 1

6: 1

8: 1



R
∗
× R

∗: Irreducible Modules
π (2,1) (1, 2) (2,−1) (−1, 2) (1,−2) (−2, 1) (−1,−2) (−2,−1)

π(0) 1, 1 1, 0 0, 1
π(1) 1, 1 1, 0 0, 1
π(2) 1, 0 −1, 0
π(3) 1, 0 −1, 0
π(4) 1,1 -1,-1 -1,1 1,-1
π(5) 1,0 -1,0 -1,0 1,0
π(6) 1,0 -1,0 -1,0 1,0
π(7) 1,0 -1,0 -1,0 1,0 1,0 -1,0
π(8) 1,0 -1,0 -1,0 1,0 1,0 -1,0
π(9) 1,1 -1,-1 -1,1 2,0 1,-1 -2,0
π(10) 1,0 -1,0 -1,0 1,0 1,0 -1,0 -1,0 1,0
π(11) 0,1 0,-1 0,1 1,0 0,-1 -1,0 -1,0 1,0


