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G = finite group,V = C"
Representationt : G - GL(V) = GL(n, C) (invertible linear
transformations)
reducible:V = V1 @ V,, #(G)V, =V, otherwise irreducible

G={irreducible representatioffequivalence
unitary: V has a positive definite Hermitian forfn ) such that
(r(Q)v, w(g)v') = (v,v’) forall g, v, v’
Character ofr: 6,(g) = Trace(z (Q))
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Character table o&: one row for each irreducible representation, one

row for each conjugacy class
The representation theory &f

is completely determined by its character table
Character table ofg

1 1 1 1 1
3 -1 0 = T
3 -1 0 7T =
4 0 1 -1 -1
5 1 -1 0 0
1+/5

7 = Golden RatioT
1-5
2

T =
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Problem Given a row in the character table Gf construcithe
corresponding representation.

For example, ifG has generatorgy, . . ., g, and relationsR, give
matricesAy, ..., Ay, satisfying relationdR (and giving the row).

No known algorithm(that | know of)
(Probabilistic: decomposing the regular representatgingithe
meataxe)

Atlas: carried this out for Weyl groups

Example G = W(Eg)

|G| = 696 729 600

Number of representations: 112
Largest dimension:, 7168
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Character table oWV (Esg)
Class | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Size | 1 1 120 120 3150 3780 3780 37800 37800 113400 2240 4480 89600 268800 15120
Order | 1 2 2 2 2 2 2 2 2 2 3 3 3 3 4
X1 + 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X2 + 1 1 -1 -1 1 1 1 -1 -1 1 1 1 1 1 1
X3 + 8 -8 -6 6 0 4 -4 2 -2 0 5 -4 -1 2 0
X4 + 8 -8 6 -6 0 4 -4 -2 2 0 5 -4 -1 2 0
X5 + 28 28 14 14 -4 4 4 -2 -2 -4 10 10 1 1 4
X6 + 28 28 -14 -14 -4 4 4 2 2 -4 10 10 1 1 4
X7 + 3 35 21 21 3 11 11 5 5 3 14 5 -1 2 -5
X. 8 + 35 35 -21 -21 3 11 11 -5 -5 3 14 5 -1 2 -5
X.9 + 50 50 20 20 18 10 10 4 4 2 5 5 -4 5 10
X. 100 + 4200 4200 0 0 104 40 40 0 0 8 -120 15 -12 6 -40
X.101 + 4200 4200 420 420 -24 40 40 4 4 8 -30 -30 15 -3 40
X.102 + 4480 4480 0 0 -128 0 0 0 0 0 -80 -44 -20 4 64
X. 103 + 4536 -4536 -378 378 0 60 -60 30 -30 0 -81 0 0 0 0
X. 104 + 4536 -4536 378 -378 0 60 -60 -30 30 0 -81 0 0 0 0
X. 105 + 4536 4536 0 0 -72 -72 -72 0 0 24 0 81 0 0 -24
X. 106 + 5600 -5600 0 0 0 -80 80 0 0 0 -10 -100 2 -4 0
X. 107 + 5600 -5600 -280 280 0 -80 80 8 -8 0 20 20 11 2 0
X. 108 + 5600 -5600 280 -280 0 -80 80 -8 8 0 20 20 11 2 0
X. 109 + 5670 5670 0 0 -90 -90 -90 0 0 6 0 -81 0 0 6
X. 110 + 6075 6075 405 405 27 -45 -45 -27 -27 -21 0 0 0 0 -45
X. 111 + 6075 6075 -405 -405 27 -45 -45 27 27 -21 0 0 0 0 -45
X. 112 + 7168 -7168 0 0 0 0 0 0 0 0-128 16 -32 -8 0



Overview

Overview

Three Views of the Admissible Dual

Paradigm: Representations of Finite and compact Groups

Real Reductive Groups

Representations

Admissible and Unitary Duals

The Algorithm
KLV Polynomials
The Future

Example: one matrix from a 27-dimensional representatiow 0E-)

O - - - - - - o -.0oo

O .000000o .0 . - .00O00O
-0 - - - - - - o -.0oo

O .0000o0o .0 . - .000Oo
-0 - - - - - - o .-.0oo0oo

O .00000oo .0 . - -.00O0Oo
O - - - - - - o .-.0o0oo

O .0000o0O0 .0 . - -.0000O
-0 - - - - - - o -.0oo

O .000000 .0 . - .0000O
-0 - - - - - - o -.0ooo

O .0000o00o .0 . - .000O
O - - - - - - o -.0oo

O .000000 .0 . - -.000O
-0 - - - - - - o -.0oo

O .0000o00 .0 . - .0000O
-0 - - - - - - o -.0oo

O .000000 .0 . - .00O00O
O - - - - - - o -.0ooo

O .00000O0 .0 . - .00O0O
O - - - - - - o -.0ooo

O 000000 .0 . - -.00O«H
O - - - - - - o -.0oo0oo

O 000000 .0 . - .00 -HO
O - - - - - - o -.0o0oo

O 000000 .0 . - -.0o-dOoOo
O - - - - - - o -.0ooo

O .000o0o0o .0 . - -.do0o0o
O - - - - - - O .00« .

O 000000 .0 - -. 0000
O - - - - - - o .o - - - - -
O - O000O0OO0 O -1 0O000O0
O - - - - - - o -H - . . . .
OQOOOOOOQ.I..OOOOOO
O - O0000O0 - . O0OO0OO0OO0OO0OO
O - - - - - - “o . - - . - . .
00%000000_7_‘0000100
0Q0000010.0000000
0Q000010000000000
0Q000100000000000
0Q001000000000000
0Q010000000000000
OLloooooooooooooo
O 1 OO0 O0OO0OO0OO0ODO0OO0ODO0OO0OO0OO0OO
O OO0OO0OO0OO0OOO0OODO0OODOOOOOoO

1

[eleoleolololoNe oo}

0
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representationcontinuousmapz : G —» GL(V) = GL(n,C)

Theorem

Every irreducible representation & is finite dimensional and unitary
The irreducible representations are parametrized by iadati R"
intersected with a cone

A finite dimensional representation is determined by itgabier

The Weyl character formula comput@és(g)
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Example
G = SO(3) = {g € M3,3(R) |g'g = |, det(g) = I}

T ={t(0) =S,
cogd) sin@@) O

t@@) = | —sin@) co9d) O
0 0 1



Overview
Paradigm: Representations of Finite and compact Groups
Real Reductive Groups
Representations
Admissible and Unitary Duals

Example
G = SO(3) = {g € M3,3(R) |g'g = |, det(g) = I}

T ={t@©®) =~ S,
cogd) sin@@) O
t@@) = | —sin@) co9d) O
0 0 1

G={1,35,...}={r1, 73, 75...}
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Example
G =SO@3) ={g € Ma3(R)|g'g=1,detlg) = I}
T={®}=3,
cogd) sin@) O
t@@) = | —sin@) co9d) O
0 0 1

G=1{1,3,5,...} = {1, 73, 75...}

Everyg € G is conjugate to somg#), and
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Example
G = SO(3) = {g € M3,3(R) | g'g = |, det(g) = I}

T={t@) ~ S,

cogd) sin@) O
t@@) = | —sin@) co9d) O
0 0 1

G=1{1,3,5,...} = {1, 73, 75...}

Everyg € G is conjugate to somg#), and

ei ng/2 _ e—in€/2
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Conclusion: Everything about representations of a comgatp is
“knowr’.



What class of groups should we study?
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REAL RED

What class of groups should we study?

Two different issues:
1) Gooddata structurdor this class of groups
2) Goodinput/outputmethods
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REAL REDUCTIVE GROUPS

What class of groups should we study?

Two different issues:
1) Gooddata structurdor this class of groups
2) Goodinput/outputmethods

g = Lie(G) ® C should be a complex, reductive Lie algebra
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REAL REDUCTIVE GROUPS

What class of groups should we study?

Two different issues:
1) Gooddata structurdor this class of groups
2) Goodinput/outputmethods

g = Lie(G) ® C should be a complex, reductive Lie algebra

Problem: allow arbitrary finite grou®?
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REAL REDUCTIVE GROUPS

What class of groups should we study?

Two different issues:
1) Gooddata structurdor this class of groups
2) Goodinput/outputmethods

g = Lie(G) ® C should be a complex, reductive Lie algebra

Problem: allow arbitrary finite grou@®? No
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REAL REDUCTIVE GROUPS

What class of groups should we study?

Two different issues:
1) Gooddata structurdor this class of groups
2) Goodinput/outputmethods

g = Lie(G) ® C should be a complex, reductive Lie algebra

Problem: allow arbitrary finite grou@®? No
G connected?
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REAL REDUCTIVE GROUPS

What class of groups should we study?

Two different issues:
1) Gooddata structurdor this class of groups
2) Goodinput/outputmethods

g = Lie(G) ® C should be a complex, reductive Lie algebra

Problem: allow arbitrary finite grou@®? No
G connected? (too restrictive:GL (n, R))
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REAL REDUCTIVE GROUPS

What class of groups should we study?

Two different issues:
1) Gooddata structurdor this class of groups
2) Goodinput/outputmethods

g = Lie(G) ® C should be a complex, reductive Lie algebra

Problem: allow arbitrary finite grou@®? No
G connected? (too restrictive:GL (n, R))

Allow Sp(2n, R), the metaplectic group (not a matrix group)?
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REAL REDUCTIVE GROUPS

What class of groups should we study?

Two different issues:
1) Gooddata structurdor this class of groups
2) Goodinput/outputmethods

g = Lie(G) ® C should be a complex, reductive Lie algebra

Problem: allow arbitrary finite grou@®? No
G connected? (too restrictive:GL (n, R))

Allow Sp(2n, R), the metaplectic group (not a matrix group)?
We'd like to. ..
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REAL REDUCTIVE GROUPS

What class of groups should we study?

Two different issues:
1) Gooddata structurdor this class of groups
2) Goodinput/outputmethods

g = Lie(G) ® C should be a complex, reductive Lie algebra

Problem: allow arbitrary finite grou@®? No
G connected? (too restrictive:GL (n, R))

Allow Sp(2n, R), the metaplectic group (not a matrix group)?

We'd like to. . .but not for now



Our class of groups
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Our class of groups

G(C) is a connected, complex, reductive algebraic group
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Our class of groups

G(C) is a connected, complex, reductive algebraic group

Examples:
SL(n, C), Sp(2n, C), SO(n, C), GL(n, C), Spin(n, C), Eg(C), ...



Overview Overview
Three Views of the Admissible Dual Paradigm: Representations of Finite and compact Groups
The Algorithm Real Reductive Groups
KLV Polynomials Representations
The Future Admissible and Unitary Duals

Our class of groups

G(C) is a connected, complex, reductive algebraic group
Examples:
SL(n, C), Sp(2n, C), SO(n, C), GL(n, C), Spin(n, C), Eg(C), ...

G = G(R) is areal formof G(C).
= G(C)? ( o is an anti-holomorphic involution d&(C))
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Our class of groups
G(C) is a connected, complex, reductive algebraic group

Examples:
SL(n, C), Sp(2n, C), SO(n, C), GL(n, C), Spin(n, C), Eg(C), ...
G = G(R) is areal formof G(C).

= G(C)? ( o is an anti-holomorphic involution d&(C))
Examples:SL (n, R), SU (p, @), Sp(2n, R), Sp(p, a)
So(p, q), GL(na R), U (p, q)’ Spl n(pa q)a E8(D8), s



Data structure for complex groups
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Data structure for complex groups
Definition: (Grothendieck) Aroot datumis a quadruple

D= (X, A, X", AY)
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Data structure for complex groups
Definition: (Grothendieck) Aroot datumis a quadruple

D= (X, A, X", AY)

X, XV: free abelian groups of finite rank
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Data structure for complex groups
Definition: (Grothendieck) Aroot datumis a quadruple

D= (X, A, X", AY)

X, XV: free abelian groups of finite rank
A C X, AV c XY (finite)
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Data structure for complex groups
Definition: (Grothendieck) Aroot datumis a quadruple

D= (X, A, X", AY)

X, XV: free abelian groups of finite rank
A C X, AV c XY (finite)
A 3 a— a¥ e AV (bijection)
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Data structure for complex groups

Definition: (Grothendieck) Aroot datum is a quadruple

D= (X, A, XY,AY)

X, XV: free abelian groups of finite rank
A C X, AV c XY (finite)
A 3 a— a¥ e AV (bijection)
(0,0") =2, 5,(A) = A, 5,v(AY) = AY.

(,): X x XY — Zis a perfect pairing
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In other words:

A group ofrank nandsemisimple rank nfdimension center

= n —m) is given by a pair om x n integral matricesA, B such that
A'B is aCartan matrix
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In other words:

A group ofrank nandsemisimple rank nfdimension center

= n —m) is given by a pair ofn x n integral matricesA, B such that
A'B is aCartan matrix

Example:n =2, m=1:
v,weZlv-w=2
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In other words:

A group ofrank nandsemisimple rank nfdimension center

= n —m) is given by a pair ofn x n integral matricesA, B such that
A'B is aCartan matrix

Example:n =2, m=1:
v,weZlv-w=2

(v, w) = (gv,'97'w) (g e GL(2,Z))
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In other words:

A group ofrank nandsemisimple rank nfdimension center

= n —m) is given by a pair ofn x n integral matricesA, B such that
A'B is aCartan matrix

Example:n =2, m=1:
v,weZlv-w=2

(v, w) = (gv,'g™'w) (g€ GL(22))
((2,0),(1,0)> SL(2,C) x C*
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In other words:

A group ofrank nandsemisimple rank nfdimension center

= n —m) is given by a pair ofn x n integral matricesA, B such that
A'B is aCartan matrix

Example:n =2, m=1:
v,weZlv-w=2

(v, w) = (gv,'97'w) (g e GL(2,Z))

((2,0),(1,0)}> SL(2,C) x C*
((1,0),(2,0)}> PSL(2,C) x C*
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In other words:

A group ofrank nandsemisimple rank nfdimension center

= n —m) is given by a pair ofn x n integral matricesA, B such that
A'B is aCartan matrix

Example:n =2, m=1:

v,weZlv-w=2

(v, w) = (gv,'g™'w) (g € GL(2,72))

((2,0),(1,0)y» SL(2,C) x C*

((2,0),(2,0)» PSL(2,C) x C*

((1,2),(1,1)y> GL(2,C) =SL(2,C) x C*/((—1,-1))
(These arall of them)



Practical way to describ€&:
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Practical way to describ€&:

Defineg (product of abelian and simple complex Lie algebras)
Gsc(C) = (C)" x G1(C) x ..., Gr(C) (Gj(C) simple, simply
connected)

Define a finite subgroup\ of Z(G(C))

G(C) = Gs(C)/A

Define real form ofy (one term at a time, list)

G= corresponding real form d&(C)
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Practical way to describ€&:

Defineg (product of abelian and simple complex Lie algebras)
Gsc(C) = (CH" x G1(C) x ..., Gr(C) (Gj(C) simple, simply
connected)

Define a finite subgroup of Z(G(C))

G(C) = Gs(C)/A

Define real form ofy (one term at a time, list)

G= corresponding real form d&(C)
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Practical way to describ&:

Defineg (product of abelian and simple complex Lie algebras)
Gsc(C) = (C)" x G1(C) x ..., Gr(C) (Gj(C) simple, simply
connected)

Define a finite subgroug of Z (G« (C))

G(C) = G (C)/A

Define real form ofy (one term at a time, list)

G= corresponding real form d&(C)
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Practical way to describ&:

Defineg (product of abelian and simple complex Lie algebras)
Gsc(C) = (C)" x G1(C) x ..., Gr(C) (Gj(C) simple, simply
connected)

Define a finite subgroug of Z (G« (C))

G(C) = G (C)/A

Define real form ofy (one term at a time, list)

G= corresponding real form d&(C)
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Practical way to describé:

Defineg (product of abelian and simple complex Lie algebras)
Gsc(C) = (C)" x G1(C) x ..., Gr(C) (Gj(C) simple, simply
connected)

Define a finite subgroup of Z(G(C))

G(C) = Gs(C)/A

Define real form ofy (one term at a time, list)
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Practical way to describé:

Defineg (product of abelian and simple complex Lie algebras)
Gsc(C) = (C)" x G1(C) x ..., Gr(C) (Gj(C) simple, simply
connected)

Define a finite subgroup of Z(G(C))

G(C) = Gs(C)/A

Define real form ofy (one term at a time, list)

G= corresponding real form d&(C)
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Lemma G(C) =~ (C*)" x G1(C) x --- x GL(C)/A
Gi (C) simply connected, simple
A = finite central subgroup
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Lemma G(C) =~ (C*)" x G1(C) x --- x GL(C)/A
Gi (C) simply connected, simple
A = finite central subgroup

Example
¢:C*SL(2,C) » GL(2,C) (¢(z,9) =9(zl))
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Lemma G(C) = (C)" x G1(C) x --- x Gr(C)/A
G; (C) simply connected, simple
A = finite central subgroup

Example
¢ :C*SL(2,C) » GL(2,C) (¢(z,9) = g(zl))

Surjective, kernel ==(1, I)
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Lemma G(C) = (C)" x G1(C) x --- x Gr(C)/A
G; (C) simply connected, simple
A = finite central subgroup

Example
¢ :C*SL(2,C) » GL(2,C) (¢(z,9) = g(zl))

Surjective, kernel ==(1, I)

GL(2,C) = (C* x SL(2, C))/{(—=1, —1)
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Lemma G(C) = (C)" x G1(C) x --- x Gr(C)/A
G; (C) simply connected, simple
A = finite central subgroup

Example
¢ :C*SL(2,C) » GL(2,C) (¢(z,9) = g(zl))

Surjective, kernel ==(1, I)

GL(2,C) = (C* x SL(2, C))/{(—=1, —1)

In practiceto defineG(C): giveg, A
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COMPLEX LIE ALGEBRA

Simple complex Lie algebral%1

simple, complex, simply connected grouééle
irreducible root systemslé1

An, Bn, Cp, Dn, F4, G2, Es, E7, Eg
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COMPLEX LIE ALGEBRA

Simple complex Lie algebral%1

simple, complex, simply connected grouééle
irreducible root systemsl%1
An: an Cn: Dna F47 GZ) EG: E7: E8

g. product of typeA,, B, ..., Eg, T
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COMPLEX LIE ALGEBRA

Simple complex Lie algebralé1

simple, complex, simply connected grouééle
irreducible root systemsl_—1>

An, Bn, Cn, Dn, F4, Gy, Eg, E7, Eg

g. product of typeA,, B, ..., Eg, T

Gsc(C): (€)M x G1(C) x -+ x Gn(C)
Gi (C) is the unique connected, simply connected complex group of
type A, ..., Eg
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Example: Simple, simply connected complex graups
type A, SL(n+ 1, C)
type Bn: Spin(2n + 1, C)
typeCy: Sp(2n, C)
type D,: Spin(2n, C)
type G,, ..., Eg: labelled by type
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Example: Simple, simply connected complex graups
type An: SL(n+ 1, C)
type B,: Spin(2n+ 1, C)
typeC,: Sp(2n, C)
type Dn: Spin(2n, C)
type G,, ..., Eg: labelled by type

Examples of reductive groups
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Example: Simple, simply connected complex graups
type An: SL(n+ 1, C)
type B,: Spin(2n+ 1, C)
typeC,: Sp(2n, C)
type Dn: Spin(2n, C)
type G,, ..., Eg: labelled by type

Examples of reductive groups

GL(n,C), GSpin(n, C), PSO(n, C)
[GL(n,C) x GL(n, O)]/(il, —il)
SGL(n3, C) x -+ x GL(n,, ©O)])



Atlas of Lie Groups
and Representations

A

mhoups.org



So far we've discussed
1) representation theory of finite groups
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So far we've discussed
1) representation theory of finite groups
2) representation theory of compact groups
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So far we've discussed

1) representation theory of finite groups
2) representation theory of compact groups
3) Complex reductive groups (root data)
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So far we've discussed

1) representation theory of finite groups

2) representation theory of compact groups
3) Complex reductive groups (root data)

Now: real reductive groups and their representations



A real formof G(C) is an anti-holmorphic involutiow



A real formof G(C) is an anti-holmorphic involutiow
G =GR) =G(C)°
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A real formof G(C) is an anti-holmorphic involutiow
G =GR) =G(C)°
Example:G(C) = GL(n,C),0(g) =7, G(R) = GL(n,R)
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ReEAL GROUP. CARTAN INVOLUTION

A real formof G(C) is an anti-holmorphic involution
G =G[R) =G(C)

Example:G(C) = GL(n,C),o(g) =7, G(R) = GL(n, R)
Let K = K(R) maximal compact subgroup &
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ReEAL GROUP. CARTAN INVOLUTION

A real formof G(C) is an anti-holmorphic involution

G =G[R) =G(C)

Example:G(C) = GL(n,C),o(g) =7, G(R) = GL(n, R)
Let K = K(R) maximal compact subgroup &

— 6: holomorphicinvolution of G(C),
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ReEAL GROUP. CARTAN INVOLUTION

A real formof G(C) is an anti-holmorphic involution

G =G[R) =G(C)

Example:G(C) = GL(n,C),o(g) =7, G(R) = GL(n, R)
Let K = K(R) maximal compact subgroup &

— 6: holomorphicinvolution of G(C),

K(C) = G(C)’, K(R) = G(R)’
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ReEAL GROUP. CARTAN INVOLUTION

A real formof G(C) is an anti-holmorphic involution

G =G[R) =G(C)

Example:G(C) = GL(n,C),o(g) =7, G(R) = GL(n, R)
Let K = K(R) maximal compact subgroup &

— 6: holomorphicinvolution of G(C),

K(C) = G(C)’, KR) = G(R)’

Example G(C) = GL(n, C), G(R) = GL(n, R),

K(@R) = O(n)
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ReEAL GROUP. CARTAN INVOLUTION

A real formof G(C) is an anti-holmorphic involution

G =G[R) =G(C)

Example:G(C) = GL(n,C),o(g) =7, G(R) = GL(n, R)
Let K = K(R) maximal compact subgroup &

— 6: holomorphicinvolution of G(C),

K(C) = G(C)’, KR) = G(R)’

Example G(C) = GL(n, C), G(R) = GL(n, R),

K(@R) = O(n)

0(g) ='g™*
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ReEAL GROUP. CARTAN INVOLUTION

A real formof G(C) is an anti-holmorphic involution
G =G[R) =G(C)
Example:G(C) = GL(n,C),o(g) =7, G(R) = GL(n, R)

Let K = K(R) maximal compact subgroup &
— 6: holomorphicinvolution of G(C),

K(C) = G(C)’, KR) = G(R)’

Example G(C) = GL(n, C), G(R) = GL(n, R),
K(@R) = O(n)

6(g)="'g*
K = O(n, C)



Classify real forms byiolomorphicinvolutionsé
rather tharanti-holomorphidnvolutions o



Overview Overview
Three Views of the Admissible Dual Paradigm: Representations of Finite and compact Groups

The Algorithm Real Reductive Groups
KLV Polynomials Representations
The Future Admissible and Unitary Duals

CARTAN INVOLUTION

Classify real forms byiolomorphicinvolutionsé
rather tharanti-holomorphidnvolutionso

Proposition There is a canonical bijection

{o antiholomorphi¢/G(C) &3 {6 holomorphig/G(C)
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CARTAN INVOLUTION

Classify real forms byiolomorphicinvolutionsé
rather tharanti-holomorphidnvolutionso

Proposition There is a canonical bijection
{o antiholomorphi¢/G(C) & {¢ holomorphig/G(C)

Definition: A real formof G(C) is aG(C)-conjugacy class of
holomorphic involutions.



Itisn't hard to find all involutions ofG(C)
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It isn’'t hard to find all involutions ofG(C)

Example:AssumeG(C) is semisimple and the Dynkin diagram has
no automorphisms (typB,, Cn, G2, F4, E7, Eg)
Every involution ofG(C) is inner
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It isn’'t hard to find all involutions ofG(C)

Example:AssumeG(C) is semisimple and the Dynkin diagram has
no automorphisms (typB,, Cn, G2, F4, E7, Eg)
Every involution ofG(C) is inner

H (C) = Cartan subgroup (maximal, semisimple, abelian; unique up
to conjugacy)
AssumeZ(G(C)) =1
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It isn’'t hard to find all involutions ofG(C)

Example:AssumeG(C) is semisimple and the Dynkin diagram has
no automorphisms (typB,, Cn, G2, F4, E7, Eg)

Every involution ofG(C) is inner

H (C) = Cartan subgroup (maximal, semisimple, abelian; unique up
to conjugacy)

AssumeZ(G(C)) =1

H(C) = (C9)"
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It isn’'t hard to find all involutions ofG(C)

Example:AssumeG(C) is semisimple and the Dynkin diagram has
no automorphisms (typB,, Cn, G2, F4, E7, Eg)
Every involution ofG(C) is inner

H (C) = Cartan subgroup (maximal, semisimple, abelian; unique up
to conjugacy)

AssumeZ(G(C)) =1

H(C) = (C*)"

The Weyl group Normg(c)(H (C))/H (C) acts onH (C) (finite

reflection group)
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It isn’'t hard to find all involutions ofG(C)

Example:AssumeG(C) is semisimple and the Dynkin diagram has
no automorphisms (typB,, Cn, G2, F4, E7, Eg)
Every involution ofG(C) is inner

H (C) = Cartan subgroup (maximal, semisimple, abelian; unique up
to conjugacy)
AssumeZ(G(C)) =1

H(C) = (C9)"

The Weyl group Normg(c)(H (C))/H (C) acts onH (C) (finite
reflection group)

H(C),; ={h|h? e Z} ~ (Z/27)"



Lemma Real forms ofG(C) are parametrized by

H(C)2/W
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Lemma Real forms ofG(C) are parametrized by

H(C)2/W

Example SO(2n + 1, C),
H(C) =diagzi, ..., Zn, 55 -5 55 1)
p q p q

i —_— N —— —— ——
h=dagd,...,1,~-1...,-1,1,...,1,-1...,-11)
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Lemma Real forms ofG(C) are parametrized by

H(C)2/W

Example SO(2n + 1, C),
H(C) = diag(z, . . ., Z, Z—ll,...,i,l)
p q p q

i —_— N —— —— ——
h=dagd,...,1,~-1...,-1,1,...,1,-1...,-11)

G(C)’ = §O(2p+1) x O(29)]
G(R) = SO(2p + 1, 2q)



Example G(C) = Eg
R = root lattice (lattice inR®)



Example G(C) = Eg
R = root lattice (lattice inR®)

H(C), ~ R/2R ~ (Z,/22)8
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Example G(C) = Eg
R = root lattice (lattice inR®)

H(C), ~ R/2R ~ (Z,/2Z)8

Real formsé—> W-orbits onR/2R, order 2 = 256
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Example G(C) = Eg
R = root lattice (lattice inR®)

H(C), ~ R/2R ~ (Z,/2Z)8

Real formsé—> W-orbits onR/2R, order 2 = 256

Compute these orbits
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Example G(C) = Eg
R = root lattice (lattice inR®)

H(C), ~ R/2R ~ (Z,/2Z)8

Real formsé—> W-orbits onR/2R, order 2 = 256
Compute these orbits
0
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Example G(C) = Eg
R = root lattice (lattice irR®)

H(C)2 ~ R/2R ~ (Z,/2Z)®

Real forms&=5 W-orbits on R/2R, order 2 = 256
Compute these orbits

0

{rootg/2R (240/2=120)



Overview
Three Views of the Admissible Dual
The Algorithm
KLV Polynomials
The Future

Overview

Paradigm: Representations of Finite and compact Groups
Real Reductive Groups

Representations

Admissible and Unitary Duals

Example G(C) = Eg
R = root lattice (lattice irR®)

H(C), ~ R/2R ~ (Z,/2Z)®

Real forms&=5 W-orbits on R/2R, order 2 = 256

Compute these orbits

0

{rootg/2R (240/2=120)
One other orbit of size 135

Three real forms oEg: compact, split, and “quaternionic”
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EXAMPLES OF INVOLUTIONS

Overview
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G©) compact 6=1 G©) G[R)
G(C) G(R) 0 K(C) K(R)
GL(n,C) | GL(n,R) | #(g) =g~ O(n, C) O(n, R)
L | Up.g |o@=23g32| CEPO* 1y xu@
,C) P.q 9) =Jg GL(q.C) p q
Es Es(split) * Spin(16,C)/Zy | Spin(16)/Z;
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REPRESENTATIONS ONHILBERT SPACES

G =G[R)
V=complex Hilbert space, Hermitian forgn )
B(V)=bounded linear operators ahwith bounded inverses
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REPRESENTATIONS ONHILBERT SPACES

G =G[R)
V=complex Hilbert space, Hermitian forgn )
B(V)=bounded linear operators ahwith bounded inverses

Definition: A representatioriz, V) of Gisamapr : G — B(V)
such thatr : G x V — V is continuous.
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REPRESENTATIONS ONHILBERT SPACES

G =G[R)
V=complex Hilbert space, Hermitian forgn )
B(V)=bounded linear operators ahwith bounded inverses

Definition: A representatioriz, V) of Gisamapr : G — B(V)
such thatr : G x V — V is continuous.
(7,V)= @',V
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REPRESENTATIONS ONHILBERT SPACES

G =G[R)
V=complex Hilbert space, Hermitian forgn )
B(V)=bounded linear operators ahwith bounded inverses

Definition: A representatioriz, V) of Gisamapr : G — B(V)
such thatr : G x V — V is continuous.

(7,V)= @',V

invariant subspace
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REPRESENTATIONS ONHILBERT SPACES

G =G[R)
V=complex Hilbert space, Hermitian forgn )
B(V)=bounded linear operators ahwith bounded inverses

Definition: A representatioriz, V) of Gisamapr : G — B(V)
such thatr : G x V — V is continuous.

(m,V) = (z',\V)

invariant subspace

irreducible (no closed invariant subspace)



Representatiorr on Hilbert spacé/, with inner product,, )



Representatiorr on Hilbert spacé/, with inner product,, )

r is unitaryif (z(g)v, = (9)v’) = (v, v’)
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UNITARY REPRESENTATIONS

Representatiorr on Hilbert space/, with inner product(, )
7 isunitaryif (z (g)v, 7 (g)v") = (v, v")

Unitary equivalence: (via a unitary isomorphism)
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UNITARY REPRESENTATIONS

Representatiorr on Hilbert space/, with inner product(, )
7 isunitaryif (z (g)v, 7 (g)v") = (v, v")
Unitary equivalence: (via a unitary isomorphism)

Definition:
G,={x irreducible unitary/unitary equivalence
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UNITARY REPRESENTATIONS

Representatiorr on Hilbert space/, with inner product(, )
7 isunitaryif (z (g)v, 7 (g)v") = (v, v")
Unitary equivalence: (via a unitary isomorphism)

Definition:
G,={x irreducible unitary/unitary equivalence

Note: G simple non-compact; unitary= dimensionf )=co



Example G = SL(2,R), V = L?(R), v € C:
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Example G = SL(2,R), V = L?(R), v € C:

7,(9) f(x) = | —bx +d|7" f ((@x — ¢)/(—bx + d))

a b
whereg = (c d)
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Example G = SL(2,R), V = L?(R), v € C:

7,(9) f(x) = | —bx +d|7" f ((@x — ¢)/(—bx + d))

a b
whereg = (c d)

Irreduciblefor v # +1, +3, ...
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Example G = SL(2,R), V = L?(R), v € C:

7,(9) f(x) = | —bx +d|7" f ((@x — ¢)/(—bx + d))

a b
whereg = (c d)

Irreduciblefor v # +1, +3, ...

Unitaryforv eiRand—1<v <1
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Example G = SL(2,R), V = L?(R), v € C:

7,(9) f(x) = | —bx +d|7" f ((@x — ¢)/(—bx + d))

a b
whereg = (c d)

Irreduciblefor v # +1, +3, ...
Unitaryforv eiRand—1<v <1

Note (, )isnottheusualoneforl<v <1, v #0
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Example G = SL(2, R), V = L2(R), v € C:

7,(9) f(x) = | —bx +d|7" f ((@x — ¢)/(—bx + d))

ab
whereg:(C d)

Irreduciblefor v # +1, 43, ...
Unitaryforv eiRand—1<v <1
Note (, )isnotthe usualoneforl<v <1 v #0

We’'re not going to try to write down representations like this.



G D K (maximal compact subgroup)



G D K (maximal compact subgroup)
g = Lie(G(C)), g = ¢ @ p (+1 eigenspaces o)



G D K (maximal compact subgroup)
g = Lie(G(C)), g = ¢ @ p (+1 eigenspaces o)

Lemma G = K exp(p)
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ANALYSIS

G D K (maximal compact subgroup)
g = Lie(G(C)), g = t @ p (£1 eigenspaces o)
Lemma G = K exp(p)

Principle everything reduces tgpandK
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ANALYSIS TO ALGEBRA

G D K (maximal compact subgroup)

g = Lie(G(C)), g = t @ p (£1 eigenspaces o)
Lemma G = K exp(p)

Principle everything reduces tgandK

Example G is homotopic toK;
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ANALYSIS TO ALGEBRA

G D K (maximal compact subgroup)

g = Lie(G(C)), g = t @ p (£1 eigenspaces o)
Lemma G = K exp(p)

Principle everything reduces tgandK

Example G is homotopic toK; G connected= K connected
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Idea = representation o6 — (roughly):
1) representation of (dz)
2) representation ok (z restricted toK)
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Idea = representation o — (roughly):
1) representation of (dz)
2) representation ok (z restricted toK)

Go the other way:

Definition: A (g, K) moduleis a vector spac¥, with representations
(=, V) of g and ofK, satisfying
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Idea = representation o — (roughly):
1) representation of (dz)
2) representation ok (z restricted toK)

Go the other way:

Definition: A (g, K) moduleis a vector spac¥, with representations
(=, V) of g and ofK, satisfying

a) locally finite: dim{z (K)v) < oo
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Idea = representation o — (roughly):
1) representation of (dz)
2) representation ok (z restricted toK)

Go the other way:
Definition: A (g, K) moduleis a vector spac¥, with representations
(=, V) of g and ofK, satisfying

a) locally finite: dim{z (K)v) < oo
b) compatibility. dz = 7| (¢ = Lie(K))
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Idea = representation o — (roughly):
1) representation of (dz)
2) representation ok (z restricted toK)

Go the other way:
Definition: A (g, K) moduleis a vector spac¥, with representations
(=, V) of g and ofK, satisfying

a) locally finite: dim{z (K)v) < oo
b) compatibility. dz = 7| (¢ = Lie(K))
¢) (another compatability condition, not needeifs connected)



(z, V) is admissiblef dimHomg (o, 7) < oo for all &
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(z, V) is admissiblef dimHomg (¢, 7) < oo for all &

(7, V)= admissible representation Gf.
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(z, V) is admissiblef dimHomg (¢, 7) < oo for all &
(7, V)= admissible representation Gf.

Let Vk be the set oK -finite vectors.
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(z, V) is admissiblef dimHomg (¢, 7) < oo for all &
(7, V)= admissible representation Gf.
Let Vk be the set oK -finite vectors.

Lemma V is a(g, K)-module.
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(m, V) is admissiblef dimHomg (o, 7) < oo for all &
(7, V)= admissible representation Gf.

Let Vk be the set oK -finite vectors.

Lemma Vk is a(g, K)-module.

Definition: (z, V) is infinitesimally equivalento (z’, V') if the
correspondingg, K)-modulesVi, Vi are isomorphic.



Theorem There is a bijection between:
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Theorem There is a bijection between:

{irreducible admissible representations@jfinfinitesimal equivalence
and

{irreducible (g, K)-module$/equivalence
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Theorem There is a bijection between:

{irreducible admissible representations@jf/infinitesimal equivalence
and
{irreducible (g, K)-module$/equivalence

This replacesnalysis(representations db on Hilbert spaces) with
algebra(representations gf on vectors spaces, no topology) and
representations df.



Overview Overview
Three Views of the Admissible Dual Paradigm: Representations of Finite and compact Groups

The Algorithm Real Reductive Groups
KLV Polynomials Representations
The Future Admissible and Unitary Duals

Theorem There is a bijection between:

{irreducible admissible representations@jf/infinitesimal equivalence
and

{irreducible (g, K)-module$/equivalence

This replacesnalysis(representations db on Hilbert spaces) with
algebra(representations gf on vectors spaces, no topology) and
representations df.

Note K = K(R) (compact) oiK = K(C) (complex) are
interchangeable)



Question:; what isinitaryin the (g, K)-module setting?
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UNITARY REPRESENTATIONS

Question: what isinitaryin the (g, K)-module setting?
Definition: A (g, K)-module(z, V) is Hermitianif there is a
Hermitian form(, ) onV satisfying:
7r(k)1) z(Kw') = @,0") (ke K)
(r (X0, 0"y + (v, (X)) =0 (X eg)
It is unitaryif this form is positive definite
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UNITARY REPRESENTATIONS

Question: what isinitaryin the (g, K)-module setting?
Definition: A (g, K)-module(z, V) is Hermitianif there is a
Hermitian form(, ) onV satisfying:
7r(k)1) z(Kw') = @,0") (ke K)
(r (X0, 0"y + (v, (X)) =0 (X eg)
It is unitaryif this form is positive definite

Lemmdr, V) (admissible) ofG is unitary if and only if(z, Vk) is
unitary.



-~

Gy = irreducible unitary representations/unitary equivaken
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SETS OFREPRESENTATIONS

G, = irreducible unitary representations/unitary equivaken
G

a= irreducible admissible representatiofigys K)-module$/~
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SETS OFREPRESENTATIONS

G, = irreducible unitary representations/unitary equivaken
G

a= irreducible admissible representatiofigys K)-module$/~

écha




Overview

Paradigm: Representations of Finite and compact Groups
Real Reductive Groups

Representations

Admissible and Unitary Duals

G=real Lie group
Source of representations

L2(G) =“ & "m(z)x

=/7l'd7l'
G

dz: Plancherel measure;rz (g) f (x) = f(g71x).
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G=real Lie group
Source of representations

L2(G) =" @& "m(n)x

=/7rd7r
G

dz: Plancherel measure;z (g) f (x) = f(g™1x).

Support ofdz : tempered representatiorfét
Discrete partDiscrete SeriesGq
7 € Gy © 1 <= L%(G) (actual summand)



Gic G cG,cG,cG,
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TEMPEREDUNITARY/HERMITIAN/ADMISSIBLE

Gg, Gi: known (Harish-Chandra)
Ga: known (Langlands/Knapp/Zuckerman/Vogan)
: known (Knapp)



Overview Overview
Three Views of the Admissible Dual Paradigm: Representations of Finite and compact Groups
The Algorithm Real Reductive Groups
KLV Polynomials Representations
The Future Admissible and Unitary Duals

TEMPEREDUNITARY/HERMITIAN/ADMISSIBLE

Gg, Gi: known (Harish-Chandra)
Ga: known (Langlands/Knapp/Zuckerman/Vogan)
: known (Knapp)

To computeG,:
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TEMPEREDUNITARY/HERMITIAN/ADMISSIBLE

Gq, Gi: known (Harish-Chandra)
Ga: known (Langlands/Knapp/Zuckerman/Vogan)
: known (Knapp)

To computeG,:

For each representation in, — @t, test whether the unique invariant
Hermitian form is positive definite.
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TEMPEREDUNITARY/HERMITIAN/ADMISSIBLE

Gq, Gi: known (Harish-Chandra)
Ga: known (Langlands/Knapp/Zuckerman/Vogan)
: known (Knapp)

To computeG,:

For each representation in, — @t, test whether the unique invariant
Hermitian form is positive definite.

Not clear a finite algorithm for this foeven for a singler
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TEMPEREDUNITARY/HERMITIAN/ADMISSIBLE

Gq, Gi: known (Harish-Chandra)
Ga: known (Langlands/Knapp/Zuckerman/Vogan)
: known (Knapp)

To computeG,:

For each representation in, — Gt, test whether the unique invariant
Hermitian form is positive definite.

Not clear a finite algorithm for this foeven for a singler

Uncountably manyt to test (unles$ is compact)



Various duals ofSL (2, R)

Gyc G cG,cG,c G,

. . . . o . . . .

Admissible dual



Various duals ofSL (2, R)




Various duals ofSL (2, R)

o . . . .

Unitary dual




Various duals ofSL (2, R)

Tempered dual




Example G = SL(2,R), V = L?(R), v € C:
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Example G = SL(2,R), V = L?(R), v € C:

7,(9) f(x) = | —bx +d|7" f ((@x — ¢)/(—bx + d))

a b
whereg = (c d)
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Example G = SL(2,R), V = L?(R), v € C:

7,(9) f(x) = | —bx +d|7" f ((@x — ¢)/(—bx + d))

a b
whereg = (c d)

Irreduciblefor v # +1, +3, ...
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Example G = SL(2,R), V = L?(R), v € C:

7,(9) f(x) = | —bx +d|7" f ((@x — ¢)/(—bx + d))

a b
whereg = (c d)

Irreduciblefor v # +1, +3, ...
Unitaryforv eiRand—1<v <1

Note (, )isnottheusualoneforl<v <1, v #0
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Example G = SL(2, R), V = L2(R), v € C:

7,(9) f(x) = | —bx +d|7" f ((@x — ¢)/(—bx + d))

ab
whereg:(C d)

Irreduciblefor v # +1, 43, ...
Unitaryforv eiRand—1<v <1
Note (, )isnotthe usualoneforl<v <1 v #0

We’'re not going to try to write down representations like this.
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ADMISSIBLE DUAL

G, is “known” (Langlands + Knapp/Zuckerman, Vogan)
Hard to compute in non-trivial examples

Example How many irreducible representations does the split real
form of Eg have at infinitesimal character?

Answer. 526,471

Next two lectures: Implemer@, on a computer
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Recap
GivenG(C), 8, K (C) = G(C)’
G. ={irreducible admissiblég, K (C)) module$

Note: No real group anymore
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Recap
GivenG(C), 8, K(C) = G(C)?
G, ={irreducible admissiblég, K (C)) module$
Note: No real group anymore

Change notation:

G = complex group G(C))
G(R)=real form

Gi(R), ..., Gp(R) various real forms
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Infinitesimal Character

The Langlands Classification
‘D-modules
L-homomorphisms

Langlands classificationinduced from discrete series, characters of
Cartan subgroups

D-moduledocal systems oK (C) orbits onG(C)/B(C)

L-homomorphismlocal systems on the space of admissible
homomorphism of the Weil group into the dual group
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Overview
Three Views of the Admissible Dual
The Algorithm
KLV Polynomials
The Future

Infinitesimal Character

The Langlands Classification
‘D-modules
L-homomorphisms

Basic invariant ofr: central character((z) = 1(2)l, ze Z)
7 = (g, K)-module
(g) = universal enveloping algebwt g

= infinite dimensional, associative algebra contairging

7 extends to a representation ¥fg)
Definition: Theinfinitesimal characteof z is the corresponding
character ofZ (4((g))

FixHcCG,hcCgyg
Theorem The characters of (41(g)) are naturally parametrized by
h*/W (h = C", n=rank(G))

Sayz hasinfinitesimal charactek € h*, — éa(i)
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Example G = SL(2, R), infinitesimal character &
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(infinitesimal character of the trivial representation)
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Infinitesimal Character

The Langlands Classification
‘D-modules
L-homomorphisms

Theorem (Harish-Chandraﬁa(i) is finite

Translation PrincipléZuckerman): relat&, (1) andG(4') provided
(A —2',a") e Z (integrality condition)

Vogan reduce to the cas@, a") € Z
Conclusion Reduce to. in a finite setS (of regular integral elements)

Example G is semisimple and simply connecte8= {p}
(infinitesimal character of the trivial representation)
Example G = PSL(2, C) = SO(3, C).

_1
p =3
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Infinitesimal Character

The Langlands Classification
‘D-modules
L-homomorphisms

Theorem (Harish-Chandraﬁa(i) is finite

Translation PrincipléZuckerman): relat&, (1) andG(4') provided

(A —2',a") e Z (integrality condition)

Vogan reduce to the casg., a”) € Z

Conclusion Reduce to. in a finite setS (of regular integral elements)

Example G is semisimple and simply connecte8= {p}
(infinitesimal character of the trivial representation)

Example G = PSL(2, C) = SO(3, C).

_ 1
p =3

S={p=a/2,a}
For these talks: assuni&(C) is semisimple and simply connected,
S={p}
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Infinitesimal Character
The Langlands Classification

The Algorith
R :()lygg;l]ti;; Er;?r?vg%%?phisms
The Future
So the problem is:
ComputeG,(p)

the set of irreducible admissible representation with traes
infinitesimal character as the trivial representation.

Example If G is compacGa(p) = {C}.
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Known Unitary Duals
red: known black: not known
Type A SL(n, R), SL(n, H), SU(n, 1), SU(n, 2), SL(n, C)
SU(p,a) (p.q > 2)
Type B SO(2n, 1), SO(2n + 1, 2), SO(2n + 1, C)
SO(p.q) (P, = 3)
Type C Sp(4, R), Sp(n, 1), Sp(2n, C)
Sp(p,a) (p.q > 2)
Type D SO(2n + 1, 1), SO(2n, 2), SO(2n, C)
SO(p, @) (p,q > 3), SO*(2n) (n > 4)
Type Eg: Eg(F4) = SL(3, Cayley
Eg(Hermitian), Eg(split), Eg(quaternionig, Eg(C)
Type Fg: F4(Ba)
Fa(split), F4(C)
Type G G(split), Go(C)
E7/Eg: nothing known



Recap



Recap
GivenG(C), 8, K(C) = G(C)?
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G. ={irreducible admissiblég, K (C)) module$
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Note: No real group anymore
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Recap

GivenG(C), 8, K(C) = G(C)!
G, ={irreducible admissiblég, K (C)) module$
Note: No real group anymore

Change notation:

G = complex group G(C))
G(R)=real form

Gi(R), ..., Gp(R) various real forms
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Infinitesimal Character

The Langlands Classification
‘D-modules
L-homomorphisms

Example G(R) = SL (2, R), infinitesimal character &
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A Cartan subgroup is a maximal, semisimple, abelian sulpgrou



G = G(R) areal group

A Cartan subgroup is a maximal, semisimple, abelian sulpgrou
H(R) = (R*)? x (SHP x (C*)°
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Roughy speaking: parametrize representations by chasamfte
Cartan subgroups
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Infinitesimal Character

The Langlands Classification
‘D-modules
L-homomorphisms

DISCRETESERIES

G = G(R) areal group
A Cartan subgroup is a maximal, semisimple, abelian sulpgrou
H(R) = (R*)? x (SH° x (C*)°

Roughy speaking: parametrize representations by chasamfte
Cartan subgroups

(like the Ry (8)'s in Deligne-Lusztig’s theory for finite groups)
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Discrete Series
Harish-Chandra classified the discrete seG&®)q.
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Infinitesimal Character

The Langlands Classification
‘D-modules
L-homomorphisms

Discrete Series
Harish-Chandra classified the discrete seG&®)q.

T ~ (SH" a compact Cartan subgroup (mod center)

Theorem

{x e T®) |dy ~ pl/W & GR)a(p)
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Discrete Series
Harish-Chandra classified the discrete seGeR)q.
T ~ (SH" a compact Cartan subgroup (mod center)

Theorem

{x e T®) |dy ~ pl/W & GR)a(p)

x = w(x) € GR)qg



H (R) = Cartan subgroup d&(R)



H (R) = Cartan subgroup d&(R)
H(R) = T(R)A(R) whereT (R) = H(R) N K andA(R) ~ R"
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INDUCED REPRESENTATIONS

H (R) = Cartan subgroup d&(R)
H(R) = T(R)A(R) whereT(R) = H(R) N K andA(R) ~ R"
M(R) = Cen(A(R)), P(R) = M®R)N(R)
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M(R) = Cen(A(R)), P[@R)= M(R)N(R)

H (R) is compact inM (mod center)
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INDUCED REPRESENTATIONS

H (R) = Cartan subgroup d&(R)

H(R) = T(R)A(R) whereT(R) = H(R) " K andA(R) ~ R"
M(R) = Cen(AR)), P(R)= MR)N(R)

H (R) is compact inM (mod center)

x genuine character dfi (R), — 7w (x) (discrete series of)
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INDUCED REPRESENTATIONS

H (R) = Cartan subgroup d&(R)

H(R) = T(R)A(R) whereT(R) = H(R) " K andA(R) ~ R"
M(R) = Cen(AR)), P(R)= MR)N(R)

H (R) is compact inM (mod center)

x genuine character dfi (R), — 7w (x) (discrete series of)

Definition: 1 (H(R), x) = IndS(zm(x) ® 1)
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INDUCED REPRESENTATIONS

H (R) = Cartan subgroup d&(R)

H(R) = T(R)A(R) whereT(R) = H(R) " K andA(R) ~ R"
M(R) = Cen(AR)), P(R)= MR)N(R)

H (R) is compact inM (mod center)

x genuine character dfi (R), — 7w (x) (discrete series of)

Definition: 1 (H(R), x) = IndS(zm(x) ® 1)

7 (H(R), y) = unique irreducible quotient df(H (R), y) (choose
N(R) properly)



Definition:

C(G(R), p) = {(HR), x)}/G(R)

H (R)=Cartan subgroup
x = character oH (R) withdy ~ p
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THE LANGLANDS CLASSIFICATION

Definition:

C(GR), p) = {(HR), 1)}/ G(R)

H (R)=Cartan subgroup
x = character oH (R) withdy ~ p

Theorem The map(H (R), y) — = (H(R), y) induces a canonical
bijection:

GR)a(p) € C(G, p)




This tells us what we need to compute



Infinitesimal Character

The Langlands Classification
‘D-modules
L-homomorphisms

This tells us what we need to compute

1) Conjugacy classes of Cartan subgroup&@R),

2) HR)/HR)o

2)W(G(R), H(R)) = Normg (R)(H(R))/H(R) c W
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Infinitesimal Character

The Langlands Classification
‘D-modules
L-homomorphisms

This tells us what we need to compute

1) Conjugacy classes of Cartan subgroup&@R),
2) H(R)/H(R)o
2)W(G(R), H(R)) = Normg (R)(H(R))/H(R) c W

In particular:

Ga(p)l = D IW/W(G(R), H(R))|[H(R)/H (R)|

whereH (R)4, ..., H(R), are representatives of the conjugacy
classes of Cartan subgroups.
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G[R) =SL(2,R)
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The Langlands Classification
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L-homomorphisms

Example

G(R) = SL(2, R)

AR) = diag(x, ) =~ R, |H(R)/HR)°| = 2,
W(G(R), H(R)) = W = Z/2Z
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The Langlands Classification
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L-homomorphisms
:

Example

G(R) = SL(2, R)

AR) = diag(x, ) =~ R, |H(R)/HR)°| = 2,
W(G(R), H(R)) = W = Z/2Z

_ cogd) sin@)\ _ B B
T= (— sin(6) cosg) ~ S, IHR)/HR) =1, W=1
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Example

G(R) = SL(2,R)

AR) = diag(x, ) = R*, [H([R)/H (R)°| = 2,
W(G[R), HR)) =W =7Z/2Z

_ cogd) sin@)\ _ B B
T= (— sin(9) cosg) ~SLIHR)/HR) =1,W=1
A T

——
2x1+1x2=4
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Example

G(R) = SL(2,R)

AR) = diag(x, ) = R*, [H([R)/H (R)°| = 2,
W(G[R), HR)) =W =7Z/2Z

_ cogd) sin@)\ _ B B
T= (— sin(9) cosg) ~SLIHR)/HR) =1,W=1

A T
——
2x1+1x2=4

SL (2, R) has 4 irreducible representations of infinitesimal chaiget
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Example G = SL(2, R), infinitesimal character &




B = G/B is theflag variety(complex projective variety)



Infinitesimal Character

The Langlands Classification
‘D-modules
L-homomorphisms

B = G/B is theflag variety(complex projective variety)

Lemma K acts onB with finitely many orbits
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B = G/B is theflag variety(complex projective variety)
Lemma K acts onB with finitely many orbits

Roughly(Kazhdan/Lusztig/Beilinson/Bernstein): Parametrize
representations by orbits + local system on the orbit
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B = G/B is theflag variety(complex projective variety)
Lemma K acts onB with finitely many orbits

Roughly(Kazhdan/Lusztig/Beilinson/Bernstein): Parametrize
representations by orbits + local system on the orbit

Definition:

D(G, K, p) ={(x, n}/K

X eB
x =local systenbn O = K - x
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B = G/B is theflag variety(complex projective variety)
Lemma K acts onB with finitely many orbits

Roughly(Kazhdan/Lusztig/Beilinson/Bernstein): Parametrize
representations by orbits + local system on the orbit

Definition:

D(G, K, p) ={(x, n}/K

X eB
x =local systenbn O = K - x

= character of Stafx)/Stal(x)°



Theorem There is a natural bijection

P~ 1-1
Gal(p) &5 D(G, K, p)
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Infinitesimal Character
The Langlands Classification
‘D-modules
L-homomorphisms
:

Example G = SL(2,C), G(R) = SL(2,R)
B is the sphere € U oo

K = SO(2, C) ~ C*



Infinitesimal Character

The Langlands Classification
‘D-modules
L-homomorphisms

Example G = SL(2,C), G(R) = SL(2,R)
B is the sphere € U oo

K = SO(2, C) ~ C*

Ksz:w— Z?w



Infinitesimal Character
The Langlands Classification
‘D-modules
L-homomorphisms
:

Example G = SL(2, C), G(R) = SL(2, R)
B is the sphere € U oo

K =8S0(2,C) =C*
Kaz:w— Zw
Three orbits: north pole (0), south polso], open orbit C*)
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Infinitesimal Character

The Langlands Classification
‘D-modules
L-homomorphisms

Example G = SL(2, C), G(R) = SL(2, R)
B is the sphere € U oo

K =S0(2,C)~C*

Ksz:w— Zw

Three orbits: north pole (0), south poleo], open orbit C*)
Isotropy group: 1,%,/27 — 4 representations



Weil groupWg = (C*, j) jzj 1 =7 j2= -1
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GY: root data(XV, AY, X, A)



Overview

. Infinitesimal Character
Three Views of the Admissible Dual The Langlands Classification
The Algorithm eahilles
(R (RabyramliEls L-homomorphisms
The Future p

Weil groupWg = (C*, j) jzj =7 j2=-1
Duality of Groups

The definition of root dat&X, A, XV, AY) is perfectly symmetric
GY: root data(XV, AY, X, A)

Examples:

G(©) type GY(©C) type

GL(N,C) A GL(n, C) An-1

SL(n,C) A1 PSL(,C) A.:
Sp(2n, C) Ch SO(@2n+1,C) B,
SO(2n, C) Dn SO(2n, C) Dy
Spin(2n,C) Dy PSO(2n, C) D,



Roughly(Langlands): parametrize representations by mayginto
GV
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Roughly(Langlands): parametrize representations by magginto
G\/

Definition:

H(G, p) ={(¢, x)}/G"

¢ Wr — GY, (¢(C*) is semisimple)
x character of Cerii) /Ceni(¢)°
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Infinitesimal Character

The Langlands Classification
‘D-modules
L-homomorphisms

Roughly(Langlands): parametrize representations by magginto
G\/

Definition:

H(G, p) ={(¢, x)}/G"

¢ Wr — GY, (¢(C*) is semisimple)
x character of Cerii) /Ceni(¢)°

L(G, p) =H(G, p)/G”



Infinitesimal Character

The Langlands Classification
‘D-modules
L-homomorphisms

Note: different real forms o6 all have the sam&" (no K here).
This version must take this into account
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Note: different real forms oG all have the sam&" (no K here).
This version must take this into account

Theorem There is a natural bijection

[1Gi®)alp) € L(G. p)

whereG;(R), ..., G,(R) are the real forms o.



Recap
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Recap

(1) Character Data

(G(R), p) <= C(G(R)) = {(H, x)}/G(R)
(2) D-modules(orbits of K on G/B):

M(G(R), p) <= D(G, K, p) = {(O, 7)}/K

(3) L-homomorphismgorbits of G¥ onH (G, p)

[I1GI®). p) ¢ LGY) = ((¢. 2)}/G"

i=1



Infinitesimal Character

The Langlands Classification
‘D-modules
L-homomorphisms

DisclaimerPrevious statements are precisely tru{fC) is adjoint
(Z(G(C)) = 1), simply connected, and Q@ (C)) = 1.
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DisclaimerPrevious statements are precisely tru&({fC) is adjoint
(Z(G(C)) = 1), simply connected, and Q@ (C)) = 1.

With appropriate modifications they hold in general (peghkper).
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‘D-modules
L-homomorphisms

In each case there is some geometric data, and (esserially)
character of a finite group.
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In each case there is some geometric data, and (esserially)
character of a finite group.

We'd rather talk aboubrbitsthancharacters otZ/27)"
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for bothG andGY
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KLV Polynomials 5
The Euture L-homomorphisms

In each case there is some geometric data, and (esserially)
character of a finite group.

We'd rather talk aboubrbitsthancharacters otZ/27)"

Amazing fact The classification amounts to computikgorbits on3
for bothG andGY
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Drop the y’s and getsetsof representations:
Definition: Orbit Q" of G¥ on’H — L-packet

ML (G(R), 27)
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Drop the y’s and getsetsof representations:
Definition: Orbit Q" of G¥ on’H — L-packet

M (G(R), Q)
Definition: Orbit O of K onG/B — “R-packet

ITr(G(R), O)
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Theorem(Mogan): The intersection of an L-packet and an R-packet is
at most one element.
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Theorem(Mogan): The intersection of an L-packet and an R-packet is
at most one element.

Corollary IT(G(R), p) is parametrized by a subset of pairs

(K orbit onB, GY orbit onH)
via

(0,QY) - r(GR), O) NI (G(R), Q")

Which pairs?...



K-orbits on the dual side
Something remarkable happens. ..



Packets
K orbits on G/B
The Parameter Spacg

K-orbits on the dual side
Something remarkable happens. ..

G orbits of L-homomorphisms arxactlythe same thing ak
orbits onG/B on the dual side



Overview
Three Views of the Admissible Dual Packets

The Algorithm K orbits on G/B
KLV Polynomials The Parameter Spacg
The Future

K-orbits on the dual side
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G orbits of L-homomorphisms arxactlythe same thing ak
orbits onG/B on the dual side

..., Ky = complexified maximal compacts of real forms®f .
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K-orbits on the dual side
Something remarkable happens. ..

G orbits of L-homomorphisms arxactlythe same thing ak
orbits onG/B on the dual side

..., Ky = complexified maximal compacts of real forms®f .
Bv — GV/BV
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K-orbits on the dual side
Something remarkable happens. ..

G orbits of L-homomorphisms arxactlythe same thing ak
orbits onG/B on the dual side

..., Ky = complexified maximal compacts of real forms®f .
Bv — GV/BV
Proposition: There is a natural bijection:

n
H/GY <= [ K\B
i=1



This reduces the problem to:



This reduces the problem to:
| Parametrize& orbits on3 = G/B|
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Definition:
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This reduces the problem to:

| Parametrize& orbits on3 = G/B|

Definition:
X = {x e Normg(H) | x? = 1}/H

(Finite set; maps to\V,)



Overview
Three Views of the Admissible Dual Packets
The Algorithm K orbits on G/B
KLV Polynomials The Parameter Spacg
The Future

This reduces the problem to:

| Parametrize& orbits on3 = G/B|

Definition:
X = {x € Normg(H) | x*> = 1}/H

(Finite set; maps to\,)

Proposition There is a natural bijection

x &S KB
i



G =PGL(2,C) =S0(3,C)



G = PGL(2,C) = SO(3,C)
G(R) = SO(2,1): K =C*,B=CUco



G = PGL(2,C) = SO(3,C)
G(R) = SO(2,1): K =C*,B=CUco
G(R) =SO@3): K =G, B =-



G = PGL(2,C) = SO(3,C)
G(R) = SO(2,1): K =C*,B=CUoo
G(R) = SO®B): K =G,B ="

X = {1, diag(—1, —1, 1), w}



G = PGL(2,C) = SO(3,C)
G(R) = SO(2,1): K =C*,B=CUoo
G(R) = SO®B): K =G,B ="

X = {1, diag(—1, —1, 1), w}

diag-1,-1,1) - C* (K =C*)



G = PGL(2,C) = SO(3,C)
G(R) = SO(2,1): K =C*,B=CUoo
G(R) = SO®B): K =G,B ="

X = {1, diag(—1, —1, 1), w}

diag-1,-1,1) - C* (K =C*)
w— 00 (K=0C



G = PGL(2,C) = SO(3,C)
G(R) = SO(2,1): K =C*,B=CUoo
G(R) = SO®B): K =G,B ="

X = {1, diag(—1, —1, 1), w}
diag-1,-1,1) - C* (K =C*)

w— 00 (K=C)
| 5. (K=G0)



P = {(x, B)}/G (x*> = 1, B = Borel)




P = {(x, B)}/G (x*> = 1, B = Borel)

[ Ki\B X

Fix representativesy, . . ., X, of X/G (i.e. real forms)
Fix Bo o H




P = {(x, B)}/G (x*> = 1, B = Borel)

P
1-1 1-1
X B
[ Ki\B X
Fix representativesy, . . ., X, of X/G (i.e. real forms)

Fix Bo o H
(1) Everyx is conjugate to somg:




Overview
Three Views of the Admissible Dual Packets
The Algorithm K orbits on G/B
KLV Polynomials The Parameter Spacg
The Future

SKETCH OF PROOF

P ={(x, B)}/G (x> = 1, B = Borel)

[1; Ki\B X

Fix representatives;, ..., X, of X'/ G (i.e. real forms)
Fix Bo H

(1) Everyx is conjugate to somg:
(X, B) ~¢ (xi, B) {(xi, B)} = Ki\B
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SKETCH OF PROOF

P ={(x, B)}/G (x> = 1, B = Borel)

[1; Ki\B X

Fix representatives;, ..., X, of X'/ G (i.e. real forms)
Fix Bo H

(1) Everyx is conjugate to somg:
(X, B) ~¢ (xi, B) {(xi, B)} = Ki\B
(2) Every B is conjugate tdBy:



Overview
Three Views of the Admissible Dual Packets
The Algorithm K orbits on G/B
KLV Polynomials The Parameter Spacg
The Future

SKETCH OF PROOF

P ={(x, B)}/G (x> = 1, B = Borel)

[1; Ki\B X

Fix representatives;, ..., X, of X'/ G (i.e. real forms)
Fix Bo H

(1) Everyx is conjugate to somg:
(X, B) ~¢ (xi, B) {(xi, B)} = Ki\B
(2) Every B is conjugate tdBy:
(X, B) ~¢ (X', Bp) > X' € X (wlogx’ € Norm(H))



The Parameter Spacg
X ex



The Parameter Spacg
X € X > Oy = int(x)



The Parameter Spacg



The Parameter Spacg

By symmetry define¥V, XV sy —» Oy nv
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The Parameter Spacg

By symmetry define¥V, XV sy —» Oy nv
Definition:

Z={(%Y)] € X x XV |0}y =—0Oynv}
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The Parameter Spacg

X e X —> Oy =int(X) > Oxn = Oyl

By symmetry definet’”, XV sy —» Oy nv

Definition:

Z={(Xy)| € X x XV|0} \ = —Oy v}

Zc[]Kn\Bx[]KN\BY
i i




The Parameter Spacg
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The Parameter Spacg

The Parameter Spacg

Theorem There is a natural bijection:

z & [[nGi®), p)
i=1
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The Parameter Spacg

Theorem There is a natural bijection:
1-1 "
z2 &S [ nGim), p)
i=1
RecallZ = {(x, )}

X € X = {x e Normg(H | x?> = 1}/H
y € XY = same thing on dual side
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The Parameter Spacg

Theorem There is a natural bijection:
1-1 "
z & [[UGi®), p)
i=1
RecallZ = {(x, )}

X € X = {x e Normg(H | x?> = 1}/H
y € XY = same thing on dual side

(Note for the experts: Canonical up to character&gf(R)/Ggs(R)°)
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For simplicity we assumed:

@ G(C) is simply connected
Q G(C) is adjoint



For simplicity we assumed:

@ G(C) is simply connected
Q G(C) is adjoint
© Out(G(C)) =1
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For simplicity we assumed:

© G(C) is simply connected
@ G(C) is adjoint
© Oul(G(C)) =1

In general:

@ Fix aninner clasf real forms

Q Need twistsG! =G xTI', GY x I' (I' = Gal(C/R))
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GENERAL GROUPS

For simplicity we assumed:
© G(C) is simply connected
@ G(C) is adjoint
© Oul(G(C)) =1

In general:

@ Fix aninner clasf real forms
Q Need twistsG! =G xTI', GY x I' (I' = Gal(C/R))
© Requirex? € Z(G) (notx? = 1)
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GENERAL GROUPS

For simplicity we assumed:
© G(C) is simply connected
@ G(C) is adjoint
© Oul(G(C)) =1

In general:

© Fix aninner clasof real forms

Q Need twistsG! =G xTI', GY x I' (I' = Gal(C/R))
© Requirex? € Z(G) (notx? = 1)

© Need several infinitesimal characters
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GENERAL GROUPS

For simplicity we assumed:
© G(C) is simply connected
@ G(C) is adjoint
© Oul(G(C)) =1

In general:

© Fix aninner clasof real forms

Q Need twistsG! =G xTI', GY x I' (I' = Gal(C/R))
© Requirex? € Z(G) (notx? = 1)

© Need several infinitesimal characters

© Needstrong real forms
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GENERAL GROUPS

For simplicity we assumed:
© G(C) is simply connected
@ G(C) is adjoint
© Oul(G(C)) =1

In general:

© Fix aninner clasof real forms

Q Need twistsG! =G xTI', GY x I' (I' = Gal(C/R))
© Requirex? € Z(G) (notx? = 1)

© Need several infinitesimal characters

© Needstrong real forms



X = {x e Normgoyrya(c) (H(C)) | x* € Z(G(C))}/H(O)



X = {x e Normgoyrya(c) (H(C)) | x* € Z(G(C))}/H(O)

XY similarly, Z as before.
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X = {x e Normgoyrya(c) (H(C)) | x* € Z(G(C))}/H(O)

XY similarly, Z as before.

Theorem: There is a natural bijection

z &S [[nGi®R), A)
ieS
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X = {x € Normggyr\a(c) (H(C)) | x* € Z(G(C))}/H(C)

XY similarly, Z as before.

Theorem: There is a natural bijection

z &S [[NG®), A
ieS

(A is a certain set of infinitesimal characte&is the set of Strong
real forms)



Z is symmetric inG(C) andGY (C):



Z is symmetric inG(C) andGY (C):
Vogan Duality
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Z is symmetric inG(C) andGY (C):
Vogan Duality

Bijection:
[TuGi®,») & [[nEy®, ")
i j

with lots of wonderful properties. ..



PGL(2, C):



PGL(2,C):
X = {I,diag-1, -1, 1), w} —



PGL(2,C):
X ={l,diag(—-1, -1, 1), w} —
K orbits onG/B: {C*, oo}, {-}



PGL(2,C):
X ={l,diag(—-1, -1, 1), w} —
K orbits onG/B: {C*, oo}, {-}

SL(2, C):



PGL(2,C):
X ={l,diag(-1, -1,1), w} —
K orbits onG/B: {C*, oo}, {-}

SL(2, C): X = {1, +diag(i, —i), w} —



PGL(2,C):
X ={l,diag(-1, -1,1), w} —
K orbits onG/B: {C*, oo}, {-}

SL(2, C): X = {1, +diag(i, —i), w} —

K orbits onG/B: {C*, 00, 0}, {-}, {}
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SL(2)/PGL(2) VIA ATLAS OUTPUT

main: type

Lie type: Al sc s

mai n: bl ock

(weak) real forms are:

0: su(2)

1. sl(2,R

enter your choice: 1

possi bl e (weak) dual real forms are
0: su(2)

1. sl(2,R

enter your choice: 1

entering block construction ..

2

done

Name an output file (return for stdout, ? to abandon):
0(0,1): 1 (2, *) [i1] O
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EXAMPLE: Sp(4, R)
- 9
nmain: type
Lie type: C2 sc s
mai n: bl ock
(weak) real forms are:
0: sp(2)
1: sp(1,1)
2: sp(4,R
enter your choice: 2
possi bl e (weak) dual real forns are:
0: so(5)
1: so(4,1)
2: so(2,3)
enter your choice: 2
entering block construction ...
10
done
Name an output file (return for stdout, ? to abandon):
0( 0,6): 1 2 (6, %) (4 ) [i1,i1] ©
1( 1,6): 0 3 (6, %) (5 =) [i1,i1] ©
2( 2,6): 2 0 (* %) (4 ) [ic,il] ©
3( 3,6): 3 1 (* *) (5 =) [ic,il] ©
4( 4,4): 8 4 (* %) (*x, %) [C+rl] 1 2
5( 5,4): 9 5 (* %) (*x, %) [C+rl] 1 2
6( 6,5: 6 7 (o, %) (%, %) [ri,c 1 1
7( 7,2): 7 6 (10,11) ( *, *) [i2,c] 2 21,2
8( 83): 4 9 (%, *) (10, *) [C,i1] 2 1,2,1
9( 9,3): 5 8 (%, *) (10, *) [C,i1] 2 1,2,1
10(10,0): 11 10 (x, %) (x, *) [r2,r11 3 1,2,1,2



real: type
Lie type:

E8 sc s

mai n: bl ocksi zes

compact quaternionic split
conpact 0 0 1
gquaternionic O 3,150 73, 410
split 1 73,410 453, 060



Recap
G=G(C),K =G,



Recap
G=G(0),K =G Kjy,..., K,
AssumeG is adjoint, simply connected, and QG) = 1



Recursion Relations
Rough Estimate
Calculating Modulo n

Recap
G=G(0),K =G Kjy,..., K,
AssumeG is adjoint, simply connected, and QG) = 1

@a(p), the irreducible admissible representation infinitesimal
charactep
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Recap

G=G(0),K =G Kjy,..., K,
AssumeG is adjoint, simply connected, and QG) = 1

@a(p), the irreducible admissible representation infinitesimal
charactep

X ={xeH|x*=1}/H

Theorem

n
x &% [[xi\G/8B &L
i=1
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K\G/B for SO(5, 5)
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GY, Ky, xv
H jo EEEE



GY, Ky, xv
H jo EEEE

Z={xyl ...}



GY,KY, XY, ...
Z={X¥1...}
Theorem -
Z & [[IG®), p)
i
y =Xy ez



Recursion Relations
Rough Estimate
Calculating Modulo n

GY,KY, XY
H jo EEEE

Z={x¥1...}

Theorem 1
zZ & [IGim®), p)
i

y=KXy ez

y — | (y) = standard module
(full induced representation, well understood)
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GY,KY,xv
s ] LI
Z={xyl...}

Theorem 1

z2 & [ nGim), p)

i

y=XYy ez

y — | (y) =standard module
(full induced representation, well understood)

y — m(y) =irreducible module
(quotient ofl (y))
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EXAMPLE: SL(2)/PGL(2)

o X | x2 | K Gx@®) | 4 | rep | OV |y | y2 | KV GY®) | 4 | rep
| | G sueo | p | C Cc* w || 0@,C) | so@y | 2p | PSy
A G 02 | p | C C* w || 0,0 | soRy | 2p | PS
{0} t -l C* U@Ly | p | bsy | C* w | | 0(2,C) | so@y | p C
{oo} | -t | -l c* U@Ly | p | bs= | C* wo| | 0,0 | SO0 | p sgn
CX w | -l CX* suwy | p | C {oo} | t | 0(2,C) | SO(2,1) p DS
Cx w| | 020 | suwy | p | Ps . I I GY S0(3) p C
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Calculating Modulo n

Character of a representation
Recall if V is finite dimensionab®, (g) = Tracgx (Q)).
What if V is infinite dimensional?
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Character of a representation
Recall if V is finite dimensional, (g) = Tracgxz (Q)).
What if V is infinite dimensional?

Definition (Harish-Chandra)f € C°(G(R))
(o= [ =@ @vdg
G(R)

O, (f) = Tracdz (f))
6, is a distribution ornG(R)
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Character of a representation
Recall if V is finite dimensional, (g) = Tracgxz (Q)).
What if V is infinite dimensional?

Definition (Harish-Chandra)f € C°(G(R))
(o= [ =@ @vdg
G(R)

O, (f) = Tracdz (f))
6, is a distribution ornG(R)

Theorem(Harish-Chandra) The distributiaf, is represented by a
conjugation invariant functiofi, (locally integrable, analytic on an
open dense subset):

6,.(f) = 0, f d
(f) /G(R) (@)1 (9)dg



Recursion Relations
Rough Estimate
Calculating Modulo n

Character Table
What is the character table Gf(R)?

Infinitely many conjugacy classes and representation. . .
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Character Table
What is the character table Gf(R)?
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Character Table
What is the character table Gf(R)?
Infinitely many conjugacy classes and representation. ..

Theorem (Harish-Chandra,. .., Herb) If = 1 () is astandard
modulethere is a formula fo®, (g).

Example T (R) compact Cartan subgroup,= | (H(R), y) a
discrete series representatians T (R).
Generalization of Weyl character formula:
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Character Table
What is the character table Gf(R)?
Infinitely many conjugacy classes and representation. ..

Theorem (Harish-Chandra,. .., Herb) If = 1 () is astandard
modulethere is a formula fo®, (g).

Example T (R) compact Cartan subgroup,= | (H(R), y) a
discrete series representatians T (R).
Generalization of Weyl character formula:

0, (g) = ZU)(AuEg))(g)

(sumis oveW(G(R), T (R)), A = Weyl denominator)
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| = 1(y) standard module
Every representation can be written as a direct sum of iaidii
representations:

L (y) =D m(,y)x ()

JeZ
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| = 1(y) standard module
Every representation can be written as a direct sum of ikl

representations:

L (y) =D m(,y)m ()

JeZ
(really means:)

Hl () = Z m(éa Y )077: (5)

ez
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Inverting the character formulas
Theorem(. .. Zuckerman)
There are integerd1(d, y ) so that

T(y) =D M@ 7))
J
(really:)
67!’(}’) = z M(é, V)6| )
J

The M (9, y) the Character Tablef G(R)



Computing the Character Table
Recally & (O, x) (KY-orbit onGY/BY, local system)



Recursion Relations
Rough Estimate
Calculating Modulo n

Computing the Character Table
Recally & (O, x) (KY-orbit onGY/BY, local system)

y — wu(y) = constructiblesheaf onG¥/B"
y — P(y) = perversesheaf onG"/BY



Recursion Relations
Rough Estimate
Calculating Modulo n

Computing the Character Table
Recally & (O, x) (KY-orbit onGY/BY, local system)

y — wu(y) = constructiblesheaf onG¥/B"
y — P(y) = perversesheaf onG"/BY



Recursion Relations
Rough Estimate
Calculating Modulo n

Computing the Character Table
Recally & (O, x) (KY-orbit onGY/BY, local system)

y — wu(y) = constructiblesheaf onG¥/B"
y — P(y) = perversesheaf onG"/BY

p(y) = mg(s,7)P()
0
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Computing the Character Table
Recally & (O, ) (KY-orbit onGY/BY, local system)

y — wu(y) = constructiblesheaf onG¥/B"
y — P(y) = perversesheaf onG"/B"

p(y) = mg(s,7)P()
0

(u(y)iseasylike I (y))
(P(y) is hard like 7 (7))
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Computing the Character Table
Recally & (O, ) (KY-orbit onGY/BY, local system)

y — wu(y) = constructiblesheaf onG¥/B"
y — P(y) = perversesheaf onG"/B"

p(y) = mg(s,7)P()
0

(u(y)iseasylike I (y))
(P(y) is hard like 7 (7))

Theorem M (6, y) = £my(y, J)



Kazhdan-Lusztig-Vogan polynomials



Recursion Relations
Rough Estimate
Calculating Modulo n

Kazhdan-Lusztig-Vogan polynomials

The matrixmg(y, 6) is computed by the KLV polynomials
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Kazhdan-Lusztig-Vogan polynomials
The matrixmg(y, 6) is computed by the KLV polynomials

Note Kazhdan-Lusztig polynomials are a special case:
G[R) =G'(C)

K\G/B &5 B\G//B’
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Kazhdan-Lusztig-Vogan polynomials
The matrixmg(y, 6) is computed by the KLV polynomials

Note Kazhdan-Lusztig polynomials are a special case:
G[R) =G'(C)

K\G/B &5 B\G//B’

No local systems, intersection homology. ..
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Kazhdan-Lusztig-Vogan polynomials
The matrixmg(y, 6) is computed by the KLV polynomials

Note Kazhdan-Lusztig polynomials are a special case:
G[R) =G'(C)

K\G/B &5 B\G//B’

No local systems, intersection homology. ..



6,y € Z— Py, =3 aq



0,y € Z— Py, = > aq
Theorem(Mogan):

(M@, 7) =£Ps, (D]




Change notationx, y, x',--- € Z
Partial order< on Z
Length functioné(x)



Change notationx, y, x',--- € Z
Partial order< on Z
Length functionf(x)

The matrix is upper triangular:
PX,X = 1
Piy =0unlessx <y
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Change notationx, y, x’, --- € Z
Partial order< on Z
Length function/(x)

The matrix is upper triangular:

ijx = 1

Pvy =0unlesx <y

Recursion relations: compufg, y by upwardinduction onf(y) and

downwardinduction onf(y).
Long list of complicated recursion formulas.
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The Eg Calculation

Fokko’s software computed KLV polynomials for all excejpiid
groups except the split real form &.
E- takes about 30 seconds.
In order to test the mathematics, the software, and get andtleur
computing needs, we set as our goal:

Compute the KLV polynomials foEg(split)
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enpty: type
Lie type: E8 sc s
mai n: bl ocksi zes
compact quaternionic split

conpact 0 0 1
gquaternionic O 3, 150 73,410
split 1 73,410 453, 060
real: kgb

kgbsi ze: 320206

('ve added the labelling of rows and columns)

There are 320206 orbits ofK onG/B
The computation goes on in the “block” with 43860 parameters.
The KLV matrix has size 45360 x 453 060

Maximal degree: 31



Recursion Relations

PXX:1

s



Recursion Relations

PX,X == 1

The matrix is lower triangularP, y = O unlessx < 'y
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PX,X == 1

The matrix is lower triangularP, y = O unlessx < 'y

Recursion relationscomputePy y like this:
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Recursion Relations
PX,X == 1

The matrix is lower triangularP, y = O unlessx < 'y
Recursion relationscomputePy y like this:

Po,o

Po1 <« Pu1

Poo < P2 < Pop

Pos < Pz < Pz < P33

Poa < Pua <Py < Pig <Py

(P34 is shorthand for all of thé, , with £(x) = 3, £(y) = 5)



Py= >, M, y)+ZM(x”

£(x)=C(x)+1

€)=y t(y)=¢t(y)— 1)
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RECURSIONRELATIONS ||

Poy= D, MX,¥)+ D MX',Y"

L(X)=(x)+1 X"

(L) =Ly ty) =£t(y) -1

Po,o
Poi P11
Po2 P12 Pop

Pos Pz Pz Pss
Poa Pra Paa Psa Pag

Pos Pis Pos Pss Pss

(< 4 terms)



Poy=MX, Y)+ XM, y) = > u@y)xIOT@OD2mK, ).

X'<z<y

(LX) =€) = L L(y) =€(y) - 1)
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RECURSIONRELATIONS

Poy=MX, Y)+xMx,y) = > u(zy)xIO7@-D2MK, 7).

x'<z<y’

(LX) =€) = L L(y) =€(y) - 1)

Po,o
Poi P11
Po2 P12 Pop

Pos Pz Pz Pas
Poa Pia Poa Psa Paas

Pos Pis Pos Pss Pss
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RECURSIONRELATIONS

Poy=MX, Y)+xMx,y) = > u(zy)xIO7@-D2MK, 7).

x'<z<y’

(LX) =€) = L L(y) =€(y) - 1)

Po,o
Poi P11
Po2 P12 Pop

Pos Pz Pz Pas
Poa Pia Poa Psa Paas

Pos Pis  Pas Pas  Pss
Average number of terms for Eg: 150
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Py =D cX,Y)M(X,Y)
X/,y/
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Recursion Relations
Rough Estimate
Calculating Modulo n

Recursion Relations: Conclusion
Py =D cX,Y)M(X,Y)
X/,y/

for some very complicated constamis(’, y)
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In order to computeP, , you need to use marafl Py v with
oy < e(y).



Recursion Relations
Rough Estimate
Calculating Modulo n

Conclusion (the bad news)

In order to computeP, , you need to use marafl Py v with
oy < e(y).

We need to keep afy y in RAM!
All accessible from a&ingleprocessor!



Big Problem we did not have a good idea of the size of the answer
beforehand.



Big Problem we did not have a good idea of the size of the answer
beforehand.

Recall 1 byte= 8 bits can storé 2 256 numbers.
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Big Problem we did not have a good idea of the size of the answer
beforehand.

Recall 1 byte= 8 bits can storé 2 256 numbers.

We don’t know the sizes of the coefficients. Proabably soree ar
> 65, 535= 2% = 2 bytes. We hope each coefficient is less than 4
bytes, i.e. 43 billion.
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ROUGH ESTIMATE

Big Problem we did not have a good idea of the size of the answer
beforehand.

Recall 1 byte= 8 bits can storé 2 256 numbers.

We don't know the sizes of the coefficients. Proabably sorae ar
> 65, 535= 2% = 2 bytes. We hope each coefficient is less than 4
bytes, i.e. 43 billion.

Each polynomial has 32 coefficients.
450,060 x 32 = 6.5 trillion coefficients 26 trillion bytes
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Many of the polynomials are equal for obvious reasons. Nurobe
distinct polynomials< 6 billion.
Store only the distinct polynomials.
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Many of the polynomials are equal for obvious reasons. Nurobe
distinct polynomials< 6 billion.
Store only the distinct polynomials.

6 x 10° x 32 = 200 billion coefficents, or 800 billion bytes
Plus about 100 billion bytes for the pointer®960 billion bytes



Many of the polynomials are 0, and many are equal for nonansi
reasons.



Overview
Three Views of the Admissible Dual Recursion Relations
The Algorithm Rough Estimate
KLV Polynomials Calculating Modulo n
The Future

Many of the polynomials are 0, and many are equal for nonalsi
reasons.

Hope: number of distinct polynomials is about 200 million
300 x 1P x 4 x 32 = 25 billion bytes
Plus 100 billions bytes for index £25 billion bytes
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Many of the polynomials are 0, and many are equal for nonalsi
reasons.

Hope: number of distinct polynomials is about 200 million
300 x 1P x 4 x 32 = 25 billion bytes
Plus 100 billions bytes for index £25 billion bytes

Marc van Leeuwen: much smarter indexing: 35 billion bytes
35+25=60 billion bytes
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Many of the polynomials are 0, and many are equal for nonalsi
reasons.

Hope: number of distinct polynomials is about 200 million
300 x 1P x 4 x 32 = 25 billion bytes
Plus 100 billions bytes for index £25 billion bytes

Marc van Leeuwen: much smarter indexing: 35 billion bytes
35+25=60 billion bytes

Hope: average degree = 20 35+8=3 billion bytes
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Bad news: experiments indicate the number of distinct pmtyials is
more like 800 billion— 65 billion bytes
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Bad news: experiments indicate the number of distinct pmtyials is
more like 800 billion— 65 billion bytes

William Stein at Washington lent us sage, with 64 gigabytesim
(all accessible from one processor)
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Bad news: experiments indicate the number of distinct pmtyials is
more like 800 billion— 65 billion bytes

William Stein at Washington lent us sage, with 64 gigabytasum
(all accessible from one processor)

Marc van Leeuwen and David Vogan spent a lot of time trying to
squeeze down the calculation.
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Bad news: experiments indicate the number of distinct pmtyials is
more like 800 billion— 65 billion bytes

William Stein at Washington lent us sage, with 64 gigabytasum
(all accessible from one processor)

Marc van Leeuwen and David Vogan spent a lot of time trying to
squeeze down the calculation.

Marc reduced the size of the indices to about 15 billion bytgs
using a lot of information about the nature of the data)



Noam Elkies: have to think harder
Idea



Noam Elkies: have to think harder
Idea

216 — 65,536 < Maximum coefficient< 232 = 4.3 billion (?)
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CALCULATING MODULO N

Noam Elkies: have to think harder
Idea

216 — 65,536 < Maximum coefficient< 232 = 4.3 billion (?)

31 < 25, so to do the calculation(mod p) for p < 32 requires 5 bits
for each coefficient instead of 32, reducing storage by afauft
5/32.
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CALCULATING MODULO N

Noam Elkies: have to think harder
Idea

216 — 65,536 < Maximum coefficient< 232 = 4.3 billion (?)

31 < 25, so to do the calculation(mod p) for p < 32 requires 5 bits
for each coefficient instead of 32, reducing storage by afauft
5/32.

232 <3x5x7x11x13x 17 x 19 x 23 x 29 x 31 = 100 billion
You then get the answer mod 100,280,245,065 using the Ghines
Remainder theorem (cost: running the calculation 9 times)



Overview
Three Views of the Admissible Dual Recursion Relations
The Algorithm Rough Estimate
KLV Polynomials Calculating Modulo n
The Future

CALCULATING MODULO N

Noam Elkies: have to think harder
Idea

216 — 65,536 < Maximum coefficient< 232 = 4.3 billion (?)

31 < 25, so to do the calculation(mod p) for p < 32 requires 5 bits
for each coefficient instead of 32, reducing storage by afauft
5/32.

232 <3x5x7x11x13x 17 x 19 x 23 x 29 x 31 = 100 billion
You then get the answer mod 100,280,245,065 using the Ghines
Remainder theorem (cost: running the calculation 9 times)

This gets us down to about 354 = 19 billion bytes



But can we really reduce the calculatiofmod p)?
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But can we really reduce the calculatiotmod p)?

The recursion relations use, —x and extraction of coefficients in
specific degrees. This last step looks bad but it is OK (caoefficO
(mod p), affects the recursion step, but you would have gotten 0

(mod p) anyway).
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But can we really reduce the calculatiotmod p)?

The recursion relations use, —x and extraction of coefficients in
specific degrees. This last step looks bad but it is OK (caoefficO
(mod p), affects the recursion step, but you would have gotten 0
(mod p) anyway).

In fact we can work (mod n) for anyn.



Eventually:
Run the program 4 times moduto= 251, 253 255 and 256
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Run the program 4 times moduto= 251, 253 255 and 256

Least common multiple: 4,145,475,840
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Eventually:
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Least common multiple: 4,145,475,840

Date \mod Status  Result
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Eventually:
Run the program 4 times moduto= 251, 253 255 and 256

Least common multiple: 4,145,475,840

Date mod  Status Result
Dec. 6 | 251
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Eventually:
Run the program 4 times moduto= 251, 253 255 and 256

Least common multiple: 4,145,475,840

Date mod  Status Result
Dec. 6 | 251
Dec. 19| 251 complete 16 hours
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Eventually:
Run the program 4 times moduto= 251, 253 255 and 256

Least common multiple: 4,145,475,840

Date mod  Status Result
Dec. 6 | 251
Dec. 19| 251 complete 16 hours
Dec. 22| 256
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Eventually:
Run the program 4 times moduto= 251, 253 255 and 256

Least common multiple: 4,145,475,840

Date mod  Status Result
Dec. 6 | 251

Dec. 19| 251 complete 16 hours
Dec. 22| 256

Dec. 22| 256 complete 11 hours
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Eventually:
Run the program 4 times moduto= 251, 253 255 and 256

Least common multiple: 4,145,475,840

Date mod  Status Result
Dec. 6 | 251

Dec. 19| 251 complete 16 hours
Dec. 22| 256

Dec. 22| 256 complete 11 hours
Dec. 26| 255 complete 12 hours
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Eventually:
Run the program 4 times moduto= 251, 253 255 and 256

Least common multiple: 4,145,475,840

Date mod  Status Result
Dec. 6 | 251

Dec. 19| 251 complete 16 hours
Dec. 22| 256

Dec. 22| 256 complete 11 hours
Dec. 26| 255 complete 12 hours
Dec. 27| 253
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Eventually:
Run the program 4 times moduto= 251, 253 255 and 256

Least common multiple: 4,145,475,840

Date mod  Status Result
Dec. 6 | 251

Dec. 19| 251 complete 16 hours
Dec. 22| 256

Dec. 22| 256 complete 11 hours
Dec. 26| 255 complete 12 hours
Dec. 27| 253

Jan. 3 | 253 complete 12 hours
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The final result

Combine the answers using the Chinese Remainder Theorem.
Answer is correct if the biggest coefficient is less then 8,445,840
Total time(on sage): 77 hours
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The final result

Combine the answers using the Chinese Remainder Theorem.
Answer is correct if the biggest coefficient is less then 8,445,840
Total time(on sage): 77 hours

Size of output 60 gigabytes



Overview
Three Views of the Admissible Dual Recursion Relations
The Algorithm Rough Estimate
KLV Polynomials Calculating Modulo n
The Future

The final result

Combine the answers using the Chinese Remainder Theorem.
Answer is correct if the biggest coefficient is less then 8,445,840
Total time(on sage): 77 hours

Size of output 60 gigabytes
453,060 inches=7.15 miles
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The final result

Combine the answers using the Chinese Remainder Theorem.
Answer is correct if the biggest coefficient is less then 8,445,840
Total time(on sage): 77 hours

Size of output 60 gigabytes
453,060 inches=7.15 miles
A calculation the size of Manhattan



Some Statistics
Number of distinct polynomialsl, 181,642,979
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Some Statistics
Number of distinct polynomiaisl, 181,642,979

Maximal coefficient 11,808,808

Polynomial with the maximal coefficient:

152922 + 3, 472071 + 38, 7919%° + 293 0219%° + 1, 370, 8928 +
4,067,059 + 7,964 01296 + 11, 159 003*° +

11, 808, 808g** + 9, 859, 91513 + 6, 778 95602 + 3, 964, 36! +
2,015 4419'° 4 906 5679° + 363 611g® + 129 820y’ +
41,23%° + 11, 4260° + 2, 677q* + 49209° + 6102 + 3q
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Some Statistics
Number of distinct polynomiaisl, 181,642,979

Maximal coefficient 11,808,808

Polynomial with the maximal coefficient:

152922 + 3, 472071 + 38, 7919%° + 293 0219%° + 1, 370, 8928 +
4,067,059 + 7,964 01296 + 11, 159 003*° +

11, 808, 808g** + 9, 859, 91513 + 6, 778 95602 + 3, 964, 36! +
2,015 4419'° 4 906 5679° + 363 611g® + 129 820y’ +
41,23%° + 11, 4260° + 2, 677q* + 49209° + 6102 + 3q

Value of this polynomial at q=160,779,787
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Some Statistics
Number of distinct polynomiaisl, 181,642,979

Maximal coefficient 11,808,808

Polynomial with the maximal coefficient:

152922 + 3, 472071 + 38, 7919%° + 293 0219%° + 1, 370, 8928 +
4,067,059 + 7,964 01296 + 11, 159 003*° +

11, 808, 808g** + 9, 859, 91513 + 6, 778 95602 + 3, 964, 36! +
2,015 4419'° 4 906 5679° + 363 611g® + 129 820y’ +
41,23%° + 11, 4260° + 2, 677q* + 49209° + 6102 + 3q

Value of this polynomial at q=160,779,787

Number of coefficients in distinct polynomial$3,721,641,221 (13.9
billion)
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@ Unipotent representations
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@ Unipotent representations
o K-structure of representations
@ Singular and non-integral infinitesimal character
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What next?

@ Unipotent representations

@ K-structure of representations

@ Singular and non-integral infinitesimal character
o Unipotent Representations (Arthur’'s conjecture)
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What next?

Unipotent representations

K -structure of representations

Singular and non-integral infinitesimal character
Unipotent Representations (Arthur's conjecture)
Version 1.0 of the software
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What next?

Unipotent representations

K -structure of representations

Singular and non-integral infinitesimal character
Unipotent Representations (Arthur’s conjecture)
Version 1.0 of the software

Some results on (non)-unitary representations
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What next?

Unipotent representations

K -structure of representations

Singular and non-integral infinitesimal character
Unipotent Representations (Arthur’s conjecture)
Version 1.0 of the software

Some results on (non)-unitary representations
The Unitary Dual
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What next?

Unipotent representatiorisow. . .

K -structure of representations

Singular and non-integral infinitesimal character
Unipotent Representations (Arthur’s conjecture)
Version 1.0 of the software

Some results on (non)-unitary representations
The Unitary Dual
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What next?

Unipotent representatiorisow. . .

K -structure of representatiors®on. . .

Singular and non-integral infinitesimal character
Unipotent Representations (Arthur’s conjecture)
Version 1.0 of the software

Some results on (non)-unitary representations
The Unitary Dual
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