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Ĝ={irreducible representations}/equivalence
unitary: V has a positive definite Hermitian form〈 , 〉 such that
〈π(g)v, π(g)v ′〉 = 〈v, v ′〉 for all g, v, v ′

Character ofπ : θπ(g) = T race(π(g))
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CHARACTER TABLE

Character table ofG: one row for each irreducible representation, one
row for each conjugacy class

The representation theory ofG
is completely determined by its character table

Character table ofA5




1 1 1 1 1
3 −1 0 τ τ

3 −1 0 τ τ

4 0 1 −1 −1
5 1 −1 0 0




τ = Golden Ratio1+
√

5
2

τ = 1−
√

5
2
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Problem: Given a row in the character table ofG, constructthe
corresponding representation.

For example, ifG has generatorsg1, . . . , gn and relationsR, give
matricesA1, . . . , An , satisfying relationsR (and giving the row).

No known algorithm(that I know of)
(Probabilistic: decomposing the regular representation using the
meataxe)

Atlas: carried this out for Weyl groups

Example: G = W (E8)

|G| = 696, 729, 600
Number of representations: 112
Largest dimension: 7, 168
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Character table ofW (E8)

-------------------------------------------------------------------------------------------
Class | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Size | 1 1 120 120 3150 3780 3780 37800 37800 113400 2240 4480 89600 268800 15120
Order | 1 2 2 2 2 2 2 2 2 2 3 3 3 3 4
-------------------------------------------------------------------------------------------
X.1 + 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 + 1 1 -1 -1 1 1 1 -1 -1 1 1 1 1 1 1
X.3 + 8 -8 -6 6 0 4 -4 2 -2 0 5 -4 -1 2 0
X.4 + 8 -8 6 -6 0 4 -4 -2 2 0 5 -4 -1 2 0
X.5 + 28 28 14 14 -4 4 4 -2 -2 -4 10 10 1 1 4
X.6 + 28 28 -14 -14 -4 4 4 2 2 -4 10 10 1 1 4
X.7 + 35 35 21 21 3 11 11 5 5 3 14 5 -1 2 -5
X.8 + 35 35 -21 -21 3 11 11 -5 -5 3 14 5 -1 2 -5
X.9 + 50 50 20 20 18 10 10 4 4 2 5 5 -4 5 10
...
X.100 + 4200 4200 0 0 104 40 40 0 0 8 -120 15 -12 6 -40
X.101 + 4200 4200 420 420 -24 40 40 4 4 8 -30 -30 15 -3 40
X.102 + 4480 4480 0 0 -128 0 0 0 0 0 -80 -44 -20 4 64
X.103 + 4536 -4536 -378 378 0 60 -60 30 -30 0 -81 0 0 0 0
X.104 + 4536 -4536 378 -378 0 60 -60 -30 30 0 -81 0 0 0 0
X.105 + 4536 4536 0 0 -72 -72 -72 0 0 24 0 81 0 0 -24
X.106 + 5600 -5600 0 0 0 -80 80 0 0 0 -10 -100 2 -4 0
X.107 + 5600 -5600 -280 280 0 -80 80 8 -8 0 20 20 11 2 0
X.108 + 5600 -5600 280 -280 0 -80 80 -8 8 0 20 20 11 2 0
X.109 + 5670 5670 0 0 -90 -90 -90 0 0 6 0 -81 0 0 6
X.110 + 6075 6075 405 405 27 -45 -45 -27 -27 -21 0 0 0 0 -45
X.111 + 6075 6075 -405 -405 27 -45 -45 27 27 -21 0 0 0 0 -45
X.112 + 7168 -7168 0 0 0 0 0 0 0 0 -128 16 -32 -8 0



Overview
Three Views of the Admissible Dual

The Algorithm
KLV Polynomials

The Future

Overview
Paradigm: Representations of Finite and compact Groups
Real Reductive Groups
Representations
Admissible and Unitary Duals

Example: one matrix from a 27-dimensional representation of W (E7)

1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,-2,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1
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G=connected, compact Lie group
representation:continuousmapπ : G → GL(V ) ≃ GL(n, C)

Theorem:
Every irreducible representation ofG is finite dimensional and unitary
The irreducible representations are parametrized by a lattice inRn

intersected with a cone
A finite dimensional representation is determined by its character
The Weyl character formula computesθπ(g)
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representation:continuousmapπ : G → GL(V ) ≃ GL(n, C)

Theorem:
Every irreducible representation ofG is finite dimensional and unitary
The irreducible representations are parametrized by a lattice inRn

intersected with a cone
A finite dimensional representation is determined by its character
The Weyl character formula computesθπ(g)
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Example:
G = SO(3) = {g ∈ M3×3(R) | gt g = I, det(g) = I }

T = {t (θ)} ≃ S1,

t (θ) =




cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1



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G = SO(3) = {g ∈ M3×3(R) | gt g = I, det(g) = I }

T = {t (θ)} ≃ S1,

t (θ) =




cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1




Ĝ = {1, 3, 5, . . . } = {π1, π3, π5 . . . }
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Example:
G = SO(3) = {g ∈ M3×3(R) | gt g = I, det(g) = I }

T = {t (θ)} ≃ S1,

t (θ) =




cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1




Ĝ = {1, 3, 5, . . . } = {π1, π3, π5 . . . }
Everyg ∈ G is conjugate to somet (θ), and
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Example:
G = SO(3) = {g ∈ M3×3(R) | gt g = I, det(g) = I }

T = {t (θ)} ≃ S1,

t (θ) =




cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1




Ĝ = {1, 3, 5, . . . } = {π1, π3, π5 . . . }
Everyg ∈ G is conjugate to somet (θ), and

2πn(t (θ)) = einθ/2 − e−inθ/2

eiθ/2 − e−iθ/2
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Conclusion: Everything about representations of a compactgroup is
“known”.
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g = Lie(G)⊗ C should be a complex, reductive Lie algebra
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What class of groups should we study?

Two different issues:
1) Gooddata structurefor this class of groups
2) Goodinput/outputmethods

g = Lie(G)⊗ C should be a complex, reductive Lie algebra

Problem: allow arbitrary finite groupG?
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What class of groups should we study?

Two different issues:
1) Gooddata structurefor this class of groups
2) Goodinput/outputmethods

g = Lie(G)⊗ C should be a complex, reductive Lie algebra

Problem: allow arbitrary finite groupG? No



Overview
Three Views of the Admissible Dual

The Algorithm
KLV Polynomials

The Future

Overview
Paradigm: Representations of Finite and compact Groups
Real Reductive Groups
Representations
Admissible and Unitary Duals
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What class of groups should we study?

Two different issues:
1) Gooddata structurefor this class of groups
2) Goodinput/outputmethods

g = Lie(G)⊗ C should be a complex, reductive Lie algebra

Problem: allow arbitrary finite groupG? No
G connected?
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What class of groups should we study?

Two different issues:
1) Gooddata structurefor this class of groups
2) Goodinput/outputmethods

g = Lie(G)⊗ C should be a complex, reductive Lie algebra

Problem: allow arbitrary finite groupG? No
G connected? (too restrictive:GL(n, R))
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REAL REDUCTIVE GROUPS

What class of groups should we study?

Two different issues:
1) Gooddata structurefor this class of groups
2) Goodinput/outputmethods

g = Lie(G)⊗ C should be a complex, reductive Lie algebra

Problem: allow arbitrary finite groupG? No
G connected? (too restrictive:GL(n, R))

Allow S̃p(2n, R), the metaplectic group (not a matrix group)?
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REAL REDUCTIVE GROUPS

What class of groups should we study?

Two different issues:
1) Gooddata structurefor this class of groups
2) Goodinput/outputmethods

g = Lie(G)⊗ C should be a complex, reductive Lie algebra

Problem: allow arbitrary finite groupG? No
G connected? (too restrictive:GL(n, R))

Allow S̃p(2n, R), the metaplectic group (not a matrix group)?

We’d like to. . .
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REAL REDUCTIVE GROUPS

What class of groups should we study?

Two different issues:
1) Gooddata structurefor this class of groups
2) Goodinput/outputmethods

g = Lie(G)⊗ C should be a complex, reductive Lie algebra

Problem: allow arbitrary finite groupG? No
G connected? (too restrictive:GL(n, R))

Allow S̃p(2n, R), the metaplectic group (not a matrix group)?

We’d like to. . .but not for now
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G(C) is a connected, complex, reductive algebraic group
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SL(n, C), Sp(2n, C), SO(n, C), GL(n, C), Spin(n, C), E8(C), . . .
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Our class of groups

G(C) is a connected, complex, reductive algebraic group

Examples:
SL(n, C), Sp(2n, C), SO(n, C), GL(n, C), Spin(n, C), E8(C), . . .

G = G(R) is areal formof G(C).
= G(C)σ ( σ is an anti-holomorphic involution ofG(C))
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Our class of groups

G(C) is a connected, complex, reductive algebraic group

Examples:
SL(n, C), Sp(2n, C), SO(n, C), GL(n, C), Spin(n, C), E8(C), . . .

G = G(R) is areal formof G(C).
= G(C)σ ( σ is an anti-holomorphic involution ofG(C))

Examples:SL(n, R), SU (p, q), Sp(2n, R), Sp(p, q)

SO(p, q), GL(n, R), U (p, q), Spin(p, q), E8(D8), . . .
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D = (X,1, X∨,1∨)

X, X∨: free abelian groups of finite rank
1 ⊂ X,1∨ ⊂ X∨ (finite)
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Definition: (Grothendieck) Aroot datum is a quadruple

D = (X,1, X∨,1∨)

X, X∨: free abelian groups of finite rank
1 ⊂ X,1∨ ⊂ X∨ (finite)
1 ∋ α→ α∨ ∈ 1∨ (bijection)
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Data structure for complex groups

Definition: (Grothendieck) Aroot datum is a quadruple

D = (X,1, X∨,1∨)

X, X∨: free abelian groups of finite rank
1 ⊂ X,1∨ ⊂ X∨ (finite)
1 ∋ α→ α∨ ∈ 1∨ (bijection)

〈α, α∨〉 = 2, sα(1) = 1, sα∨(1
∨) = 1∨.

〈 , 〉 : X × X∨→ Z is a perfect pairing
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In other words:
A group ofrank nandsemisimple rank m(dimension center
= n − m) is given by a pair ofm × n integral matricesA, B such that
At B is aCartan matrix.
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In other words:
A group ofrank nandsemisimple rank m(dimension center
= n − m) is given by a pair ofm × n integral matricesA, B such that
At B is aCartan matrix.

Example:n = 2, m = 1:
v,w ∈ Z2, v · w = 2
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A group ofrank nandsemisimple rank m(dimension center
= n − m) is given by a pair ofm × n integral matricesA, B such that
At B is aCartan matrix.

Example:n = 2, m = 1:
v,w ∈ Z2, v · w = 2
(v,w) ≡ (gv, t g−1w) (g ∈ GL(2, Z))
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In other words:
A group ofrank nandsemisimple rank m(dimension center
= n − m) is given by a pair ofm × n integral matricesA, B such that
At B is aCartan matrix.

Example:n = 2, m = 1:
v,w ∈ Z2, v · w = 2
(v,w) ≡ (gv, t g−1w) (g ∈ GL(2, Z))

((2,0),(1,0))→ SL(2, C)× C×
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In other words:
A group ofrank nandsemisimple rank m(dimension center
= n − m) is given by a pair ofm × n integral matricesA, B such that
At B is aCartan matrix.

Example:n = 2, m = 1:
v,w ∈ Z2, v · w = 2
(v,w) ≡ (gv, t g−1w) (g ∈ GL(2, Z))

((2,0),(1,0))→ SL(2, C)× C×

((1,0),(2,0))→ P SL(2, C)× C×



Overview
Three Views of the Admissible Dual

The Algorithm
KLV Polynomials

The Future

Overview
Paradigm: Representations of Finite and compact Groups
Real Reductive Groups
Representations
Admissible and Unitary Duals

In other words:
A group ofrank nandsemisimple rank m(dimension center
= n − m) is given by a pair ofm × n integral matricesA, B such that
At B is aCartan matrix.

Example:n = 2, m = 1:
v,w ∈ Z2, v · w = 2
(v,w) ≡ (gv, t g−1w) (g ∈ GL(2, Z))

((2,0),(1,0))→ SL(2, C)× C×

((1,0),(2,0))→ P SL(2, C)× C×

((1,1),(1,1))→ GL(2, C) = SL(2, C)× C×/〈(−I,−1)〉
(These areall of them)
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Practical way to describeG:

Defineg (product of abelian and simple complex Lie algebras)
Gsc(C) = (C∗)n × G1(C)× . . . , Gn(C) (G i (C) simple, simply
connected)
Define a finite subgroupA of Z(Gsc(C))

G(C) = Gsc(C)/A
Define real form ofg (one term at a time, list)
G= corresponding real form ofG(C)
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Practical way to describeG:

Defineg (product of abelian and simple complex Lie algebras)
Gsc(C) = (C∗)n × G1(C)× . . . , Gn(C) (G i (C) simple, simply
connected)
Define a finite subgroupA of Z(Gsc(C))

G(C) = Gsc(C)/A
Define real form ofg (one term at a time, list)
G= corresponding real form ofG(C)
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Practical way to describeG:

Defineg (product of abelian and simple complex Lie algebras)
Gsc(C) = (C∗)n × G1(C)× . . . , Gn(C) (G i (C) simple, simply
connected)
Define a finite subgroupA of Z(Gsc(C))

G(C) = Gsc(C)/A
Define real form ofg (one term at a time, list)
G= corresponding real form ofG(C)
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Lemma: G(C) ≃ (C∗)n × G1(C)× · · · × Gn(C)/A
G i (C) simply connected, simple
A = finite central subgroup
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Lemma: G(C) ≃ (C∗)n × G1(C)× · · · × Gn(C)/A
G i (C) simply connected, simple
A = finite central subgroup

Example:
φ : C×SL(2, C)→ GL(2, C) (φ(z, g) = g(z I ))
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Lemma: G(C) ≃ (C∗)n × G1(C)× · · · × Gn(C)/A
G i (C) simply connected, simple
A = finite central subgroup

Example:
φ : C×SL(2, C)→ GL(2, C) (φ(z, g) = g(z I ))

Surjective, kernel =±(1, I )
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Lemma: G(C) ≃ (C∗)n × G1(C)× · · · × Gn(C)/A
G i (C) simply connected, simple
A = finite central subgroup

Example:
φ : C×SL(2, C)→ GL(2, C) (φ(z, g) = g(z I ))

Surjective, kernel =±(1, I )

GL(2, C) = (C× × SL(2, C))/〈(−1,−I 〉
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Lemma: G(C) ≃ (C∗)n × G1(C)× · · · × Gn(C)/A
G i (C) simply connected, simple
A = finite central subgroup

Example:
φ : C×SL(2, C)→ GL(2, C) (φ(z, g) = g(z I ))

Surjective, kernel =±(1, I )

GL(2, C) = (C× × SL(2, C))/〈(−1,−I 〉

In practiceto defineG(C): giveg, A
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COMPLEX L IE ALGEBRA

Simple complex Lie algebra
1−1←→

simple, complex, simply connected groups
1−1←→

irreducible root systems
1−1←→

An, Bn, Cn, Dn, F4, G2, E6, E7, E8
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COMPLEX L IE ALGEBRA

Simple complex Lie algebra
1−1←→

simple, complex, simply connected groups
1−1←→

irreducible root systems
1−1←→

An, Bn, Cn, Dn, F4, G2, E6, E7, E8

g: product of typeAn, Bn, . . . , E8, Tn
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COMPLEX L IE ALGEBRA

Simple complex Lie algebra
1−1←→

simple, complex, simply connected groups
1−1←→

irreducible root systems
1−1←→

An, Bn, Cn, Dn, F4, G2, E6, E7, E8

g: product of typeAn, Bn, . . . , E8, Tn

Gsc(C): (C×)m × G1(C)× · · · × Gn(C)

G i (C) is the unique connected, simply connected complex group of
type An, . . . , E8
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Example: Simple, simply connected complex groups:
type An : SL(n + 1, C)

type Bn: Spin(2n + 1, C)

typeCn: Sp(2n, C)

type Dn: Spin(2n, C)

typeG2, . . . , E8: labelled by type



Overview
Three Views of the Admissible Dual

The Algorithm
KLV Polynomials

The Future

Overview
Paradigm: Representations of Finite and compact Groups
Real Reductive Groups
Representations
Admissible and Unitary Duals

Example: Simple, simply connected complex groups:
type An : SL(n + 1, C)

type Bn: Spin(2n + 1, C)

typeCn: Sp(2n, C)

type Dn: Spin(2n, C)

typeG2, . . . , E8: labelled by type

Examples of reductive groups
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Example: Simple, simply connected complex groups:
type An : SL(n + 1, C)

type Bn: Spin(2n + 1, C)

typeCn: Sp(2n, C)

type Dn: Spin(2n, C)

typeG2, . . . , E8: labelled by type

Examples of reductive groups

GL(n, C), GSpin(n, C), P SO(n, C)

[GL(n, C)× GL(n, C)]/〈i I,−i I 〉
S[GL(n1, C)× · · · × GL(nr , C)])





Overview
Three Views of the Admissible Dual

The Algorithm
KLV Polynomials

The Future

Overview
Paradigm: Representations of Finite and compact Groups
Real Reductive Groups
Representations
Admissible and Unitary Duals

So far we’ve discussed
1) representation theory of finite groups
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So far we’ve discussed
1) representation theory of finite groups
2) representation theory of compact groups
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So far we’ve discussed
1) representation theory of finite groups
2) representation theory of compact groups
3) Complex reductive groups (root data)
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So far we’ve discussed
1) representation theory of finite groups
2) representation theory of compact groups
3) Complex reductive groups (root data)

Now: real reductive groups and their representations
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REAL GROUP: CARTAN INVOLUTION

A real formof G(C) is an anti-holmorphic involutionσ
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REAL GROUP: CARTAN INVOLUTION

A real formof G(C) is an anti-holmorphic involutionσ
G = G(R) = G(C)σ
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REAL GROUP: CARTAN INVOLUTION

A real formof G(C) is an anti-holmorphic involutionσ
G = G(R) = G(C)σ

Example:G(C) = GL(n, C), σ (g) = g, G(R) = GL(n, R)
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REAL GROUP: CARTAN INVOLUTION

A real formof G(C) is an anti-holmorphic involutionσ
G = G(R) = G(C)σ

Example:G(C) = GL(n, C), σ (g) = g, G(R) = GL(n, R)

Let K = K (R) maximal compact subgroup ofG
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REAL GROUP: CARTAN INVOLUTION

A real formof G(C) is an anti-holmorphic involutionσ
G = G(R) = G(C)σ

Example:G(C) = GL(n, C), σ (g) = g, G(R) = GL(n, R)

Let K = K (R) maximal compact subgroup ofG
→ θ : holomorphicinvolution of G(C),
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REAL GROUP: CARTAN INVOLUTION

A real formof G(C) is an anti-holmorphic involutionσ
G = G(R) = G(C)σ

Example:G(C) = GL(n, C), σ (g) = g, G(R) = GL(n, R)

Let K = K (R) maximal compact subgroup ofG
→ θ : holomorphicinvolution of G(C),
K (C) = G(C)θ , K (R) = G(R)θ
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REAL GROUP: CARTAN INVOLUTION

A real formof G(C) is an anti-holmorphic involutionσ
G = G(R) = G(C)σ

Example:G(C) = GL(n, C), σ (g) = g, G(R) = GL(n, R)

Let K = K (R) maximal compact subgroup ofG
→ θ : holomorphicinvolution of G(C),
K (C) = G(C)θ , K (R) = G(R)θ

Example: G(C) = GL(n, C), G(R) = GL(n, R),
K (R) = O(n)
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REAL GROUP: CARTAN INVOLUTION

A real formof G(C) is an anti-holmorphic involutionσ
G = G(R) = G(C)σ

Example:G(C) = GL(n, C), σ (g) = g, G(R) = GL(n, R)

Let K = K (R) maximal compact subgroup ofG
→ θ : holomorphicinvolution of G(C),
K (C) = G(C)θ , K (R) = G(R)θ

Example: G(C) = GL(n, C), G(R) = GL(n, R),
K (R) = O(n)

θ(g) = t g−1
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REAL GROUP: CARTAN INVOLUTION

A real formof G(C) is an anti-holmorphic involutionσ
G = G(R) = G(C)σ

Example:G(C) = GL(n, C), σ (g) = g, G(R) = GL(n, R)

Let K = K (R) maximal compact subgroup ofG
→ θ : holomorphicinvolution of G(C),
K (C) = G(C)θ , K (R) = G(R)θ

Example: G(C) = GL(n, C), G(R) = GL(n, R),
K (R) = O(n)

θ(g) = t g−1

K = O(n, C)



Overview
Three Views of the Admissible Dual

The Algorithm
KLV Polynomials

The Future

Overview
Paradigm: Representations of Finite and compact Groups
Real Reductive Groups
Representations
Admissible and Unitary Duals

CARTAN INVOLUTION

Classify real forms byholomorphicinvolutionsθ

rather thananti-holomorphicinvolutionsσ
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CARTAN INVOLUTION

Classify real forms byholomorphicinvolutionsθ

rather thananti-holomorphicinvolutionsσ

Proposition: There is a canonical bijection

{σ antiholomorphic}/G(C)
1−1←→ {θ holomorphic}/G(C)
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CARTAN INVOLUTION

Classify real forms byholomorphicinvolutionsθ

rather thananti-holomorphicinvolutionsσ

Proposition: There is a canonical bijection

{σ antiholomorphic}/G(C)
1−1←→ {θ holomorphic}/G(C)

Definition: A real formof G(C) is aG(C)-conjugacy class of
holomorphic involutions.
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It isn’t hard to find all involutions ofG(C)
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It isn’t hard to find all involutions ofG(C)

Example:AssumeG(C) is semisimple and the Dynkin diagram has
no automorphisms (typeBn, Cn, G2, F4, E7, E8)
Every involution ofG(C) is inner



Overview
Three Views of the Admissible Dual

The Algorithm
KLV Polynomials

The Future

Overview
Paradigm: Representations of Finite and compact Groups
Real Reductive Groups
Representations
Admissible and Unitary Duals

It isn’t hard to find all involutions ofG(C)

Example:AssumeG(C) is semisimple and the Dynkin diagram has
no automorphisms (typeBn, Cn, G2, F4, E7, E8)
Every involution ofG(C) is inner

H (C) = Cartan subgroup (maximal, semisimple, abelian; unique up
to conjugacy)
AssumeZ(G(C)) = 1
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It isn’t hard to find all involutions ofG(C)

Example:AssumeG(C) is semisimple and the Dynkin diagram has
no automorphisms (typeBn, Cn, G2, F4, E7, E8)
Every involution ofG(C) is inner

H (C) = Cartan subgroup (maximal, semisimple, abelian; unique up
to conjugacy)
AssumeZ(G(C)) = 1

H (C) ≃ (C×)n
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It isn’t hard to find all involutions ofG(C)

Example:AssumeG(C) is semisimple and the Dynkin diagram has
no automorphisms (typeBn, Cn, G2, F4, E7, E8)
Every involution ofG(C) is inner

H (C) = Cartan subgroup (maximal, semisimple, abelian; unique up
to conjugacy)
AssumeZ(G(C)) = 1

H (C) ≃ (C×)n

The Weyl group NormG(C)(H (C))/H (C) acts onH (C) (finite
reflection group)
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It isn’t hard to find all involutions ofG(C)

Example:AssumeG(C) is semisimple and the Dynkin diagram has
no automorphisms (typeBn, Cn, G2, F4, E7, E8)
Every involution ofG(C) is inner

H (C) = Cartan subgroup (maximal, semisimple, abelian; unique up
to conjugacy)
AssumeZ(G(C)) = 1

H (C) ≃ (C×)n

The Weyl group NormG(C)(H (C))/H (C) acts onH (C) (finite
reflection group)

H (C)2 = {h | h2 ∈ Z} ≃ (Z/2Z)n
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Lemma: Real forms ofG(C) are parametrized by

H (C)2/W
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Lemma: Real forms ofG(C) are parametrized by

H (C)2/W

Example: SO(2n + 1, C),
H (C) = diag(z1, . . . , zn,

1
z1

, . . . , 1
zn

, 1)

h = diag(

p︷ ︸︸ ︷
1, . . . , 1,

q︷ ︸︸ ︷
−1, . . . ,−1,

p︷ ︸︸ ︷
1, . . . , 1,

q︷ ︸︸ ︷
−1, . . . ,−1, 1)
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Lemma: Real forms ofG(C) are parametrized by

H (C)2/W

Example: SO(2n + 1, C),
H (C) = diag(z1, . . . , zn,

1
z1

, . . . , 1
zn

, 1)

h = diag(

p︷ ︸︸ ︷
1, . . . , 1,

q︷ ︸︸ ︷
−1, . . . ,−1,

p︷ ︸︸ ︷
1, . . . , 1,

q︷ ︸︸ ︷
−1, . . . ,−1, 1)

G(C)θ = S[O(2p + 1)× O(2q)]
G(R) = SO(2p + 1, 2q)
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Example: G(C) = E8

R = root lattice (lattice inR8)
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Example: G(C) = E8

R = root lattice (lattice inR8)

H (C)2 ≃ R/2R ≃ (Z/2Z)8
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Example: G(C) = E8

R = root lattice (lattice inR8)

H (C)2 ≃ R/2R ≃ (Z/2Z)8

Real forms
1−1←→ W -orbits onR/2R, order 28 = 256
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Example: G(C) = E8

R = root lattice (lattice inR8)

H (C)2 ≃ R/2R ≃ (Z/2Z)8

Real forms
1−1←→ W -orbits onR/2R, order 28 = 256

Compute these orbits
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Example: G(C) = E8

R = root lattice (lattice inR8)

H (C)2 ≃ R/2R ≃ (Z/2Z)8

Real forms
1−1←→ W -orbits onR/2R, order 28 = 256

Compute these orbits

0
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Example: G(C) = E8

R = root lattice (lattice inR8)

H (C)2 ≃ R/2R ≃ (Z/2Z)8

Real forms
1−1←→ W -orbits onR/2R, order 28 = 256

Compute these orbits

0

{roots}/2R (240/2=120)
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Example: G(C) = E8

R = root lattice (lattice inR8)

H (C)2 ≃ R/2R ≃ (Z/2Z)8

Real forms
1−1←→ W -orbits onR/2R, order 28 = 256

Compute these orbits

0

{roots}/2R (240/2=120)

One other orbit of size 135
Three real forms ofE8: compact, split, and “quaternionic”
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EXAMPLES OF INVOLUTIONS

G(C) compact θ = 1 G(C) G(R)

G(C) G(R) θ K (C) K (R)

GL(n, C) GL(n, R) θ(g) = t g−1 O(n, C) O(n, R)

GL(n, C) U(p, q) θ(g) = Jg J−1 GL(p, C)×
GL(q, C)

U(p)×U(q)

E8 E8(spli t) ∗ Spin(16, C)/Z2 Spin(16)/Z2
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REPRESENTATIONS ONHILBERT SPACES

G = G(R)

V=complex Hilbert space, Hermitian form〈 , 〉
B(V)=bounded linear operators onV with bounded inverses
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REPRESENTATIONS ONHILBERT SPACES

G = G(R)

V=complex Hilbert space, Hermitian form〈 , 〉
B(V)=bounded linear operators onV with bounded inverses

Definition: A representation(π, V ) of G is a mapπ : G → B(V )

such thatπ : G × V → V is continuous.
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REPRESENTATIONS ONHILBERT SPACES

G = G(R)

V=complex Hilbert space, Hermitian form〈 , 〉
B(V)=bounded linear operators onV with bounded inverses

Definition: A representation(π, V ) of G is a mapπ : G → B(V )

such thatπ : G × V → V is continuous.
(π, V ) ≃ (π ′, V ′)
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REPRESENTATIONS ONHILBERT SPACES

G = G(R)

V=complex Hilbert space, Hermitian form〈 , 〉
B(V)=bounded linear operators onV with bounded inverses

Definition: A representation(π, V ) of G is a mapπ : G → B(V )

such thatπ : G × V → V is continuous.
(π, V ) ≃ (π ′, V ′)
invariant subspace
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REPRESENTATIONS ONHILBERT SPACES

G = G(R)

V=complex Hilbert space, Hermitian form〈 , 〉
B(V)=bounded linear operators onV with bounded inverses

Definition: A representation(π, V ) of G is a mapπ : G → B(V )

such thatπ : G × V → V is continuous.
(π, V ) ≃ (π ′, V ′)
invariant subspace
irreducible (no closed invariant subspace)
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UNITARY REPRESENTATIONS

Representationπ on Hilbert spaceV , with inner product〈 , 〉



Overview
Three Views of the Admissible Dual

The Algorithm
KLV Polynomials

The Future

Overview
Paradigm: Representations of Finite and compact Groups
Real Reductive Groups
Representations
Admissible and Unitary Duals

UNITARY REPRESENTATIONS

Representationπ on Hilbert spaceV , with inner product〈 , 〉
π is unitary if 〈π(g)v, π(g)v ′〉 = 〈v, v ′〉



Overview
Three Views of the Admissible Dual

The Algorithm
KLV Polynomials

The Future

Overview
Paradigm: Representations of Finite and compact Groups
Real Reductive Groups
Representations
Admissible and Unitary Duals

UNITARY REPRESENTATIONS

Representationπ on Hilbert spaceV , with inner product〈 , 〉
π is unitary if 〈π(g)v, π(g)v ′〉 = 〈v, v ′〉
Unitary equivalence: (via a unitary isomorphism)



Overview
Three Views of the Admissible Dual

The Algorithm
KLV Polynomials

The Future

Overview
Paradigm: Representations of Finite and compact Groups
Real Reductive Groups
Representations
Admissible and Unitary Duals

UNITARY REPRESENTATIONS

Representationπ on Hilbert spaceV , with inner product〈 , 〉
π is unitary if 〈π(g)v, π(g)v ′〉 = 〈v, v ′〉
Unitary equivalence: (via a unitary isomorphism)

Definition:
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UNITARY REPRESENTATIONS

Representationπ on Hilbert spaceV , with inner product〈 , 〉
π is unitary if 〈π(g)v, π(g)v ′〉 = 〈v, v ′〉
Unitary equivalence: (via a unitary isomorphism)

Definition:
Ĝu={π irreducible unitary}/unitary equivalence

Note: G simple non-compact,π unitary⇒ dimension(π )=∞
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(
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c d
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Note: 〈 , 〉 is not the usual one for−1≤ ν ≤ 1, ν 6= 0
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Example: G = SL(2, R), V = L2(R), ν ∈ C:

πν(g) f (x) = | − bx + d|−1−ν f ((ax − c)/(−bx + d))

whereg =
(

a b
c d

)

Irreduciblefor ν 6= ±1,±3, . . .

Unitary for ν ∈ iR and−1≤ ν ≤ 1

Note: 〈 , 〉 is not the usual one for−1≤ ν ≤ 1, ν 6= 0

We’re not going to try to write down representations like this.
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G ⊃ K (maximal compact subgroup)

g = Lie(G(C)), g = k⊕ p (±1 eigenspaces ofθ)

Lemma: G = K exp(p)

Principle: everything reduces tog andK

Example: G is homotopic toK ; G connected⇔ K connected
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Go the other way:

Definition: A (g, K ) moduleis a vector spaceV , with representations
(π, V ) of g and ofK , satisfying

a) locally finite: dim〈π(K )v〉 <∞
b) compatibility: dπ = π |k (k = Lie(K ))
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Idea: π representation ofG→ (roughly):
1) representation ofg (dπ )
2) representation ofK (π restricted toK )

Go the other way:

Definition: A (g, K ) moduleis a vector spaceV , with representations
(π, V ) of g and ofK , satisfying

a) locally finite: dim〈π(K )v〉 <∞
b) compatibility: dπ = π |k (k = Lie(K ))
c) (another compatability condition, not needed ifG is connected)
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(π, V ) is admissibleif dimHomK (σ, π) <∞ for all σ

(π, V )= admissible representation ofG.

Let VK be the set ofK -finite vectors.

Lemma: VK is a(g, K )-module.

Definition: (π, V ) is infinitesimally equivalentto (π ′, V ′) if the
corresponding(g, K )-modulesVK , V ′K are isomorphic.
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Theorem: There is a bijection between:

{irreducible admissible representations ofG}/infinitesimal equivalence
and

{irreducible(g, K )-modules}/equivalence

This replacesanalysis(representations ofG on Hilbert spaces) with
algebra(representations ofg on vectors spaces, no topology) and
representations ofK .
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Theorem: There is a bijection between:

{irreducible admissible representations ofG}/infinitesimal equivalence
and

{irreducible(g, K )-modules}/equivalence

This replacesanalysis(representations ofG on Hilbert spaces) with
algebra(representations ofg on vectors spaces, no topology) and
representations ofK .

Note: K = K (R) (compact) orK = K (C) (complex) are
interchangeable)
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UNITARY REPRESENTATIONS

Question: what isunitary in the(g, K )-module setting?

Definition: A (g, K )-module(π, V ) is Hermitianif there is a
Hermitian form〈 , 〉 on V satisfying:

〈π(k)v, π(k)v ′〉 = 〈v, v ′〉 (k ∈ K )

〈π(X)v, v ′〉 + 〈v, π(X)v ′〉 = 0 (X ∈ g)

It is unitary if this form is positive definite.
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UNITARY REPRESENTATIONS

Question: what isunitary in the(g, K )-module setting?

Definition: A (g, K )-module(π, V ) is Hermitianif there is a
Hermitian form〈 , 〉 on V satisfying:

〈π(k)v, π(k)v ′〉 = 〈v, v ′〉 (k ∈ K )

〈π(X)v, v ′〉 + 〈v, π(X)v ′〉 = 0 (X ∈ g)

It is unitary if this form is positive definite.

Lemma(π, V ) (admissible) ofG is unitary if and only if(π, VK ) is
unitary.
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Ĝu= irreducible unitary representations/unitary equivalence

Ĝa= irreducible admissible representations={(g, K )-modules}/∼

Ĝu ⊂ Ĝa
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G= real Lie group
Source of representations:

L2(G) = “ ⊕ ”m(π)π

=
∫

Ĝu

π dπ

dπ : Plancherel measure;π(g) f (x) = f (g−1x).
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G= real Lie group
Source of representations:

L2(G) = “ ⊕ ”m(π)π

=
∫

Ĝu

π dπ

dπ : Plancherel measure;π(g) f (x) = f (g−1x).

Support ofdπ : tempered representations: Ĝ t

Discrete part:Discrete Series: Ĝd

π ∈ Ĝd ⇔ π →֒ L2(G) (actual summand)
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Ĝh : known (Knapp)
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To computêGu :

For each representation in̂Gh − Ĝ t , test whether the unique invariant
Hermitian form is positive definite.
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Ĝd , Ĝ t : known (Harish-Chandra)
Ĝa: known (Langlands/Knapp/Zuckerman/Vogan)
Ĝh : known (Knapp)

To computêGu :

For each representation in̂Gh − Ĝ t , test whether the unique invariant
Hermitian form is positive definite.

Not clear: a finite algorithm for this foreven for a singleπ
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TEMPERED/UNITARY /HERMITIAN /ADMISSIBLE

Ĝd ⊂ Ĝ t ⊂ Ĝu ⊂ Ĝh ⊂ Ĝa

Ĝd , Ĝ t : known (Harish-Chandra)
Ĝa: known (Langlands/Knapp/Zuckerman/Vogan)
Ĝh : known (Knapp)

To computêGu :

For each representation in̂Gh − Ĝ t , test whether the unique invariant
Hermitian form is positive definite.

Not clear: a finite algorithm for this foreven for a singleπ

Uncountably manyπ to test (unlessG is compact)



Various duals ofSL(2, R)

Ĝd ⊂ Ĝ t ⊂ Ĝu ⊂ Ĝh ⊂ Ĝa
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Various duals ofSL(2, R)

Ĝd ⊂ Ĝ t ⊂ Ĝu ⊂ Ĝh ⊂ Ĝa

OO

��

OO

��

• • • ◦ • • • •

Tempered dual
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c d
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Unitary for ν ∈ iR and−1≤ ν ≤ 1

Note: 〈 , 〉 is not the usual one for−1≤ ν ≤ 1, ν 6= 0
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whereg =
(

a b
c d

)

Irreduciblefor ν 6= ±1,±3, . . .

Unitary for ν ∈ iR and−1≤ ν ≤ 1

Note: 〈 , 〉 is not the usual one for−1≤ ν ≤ 1, ν 6= 0

We’re not going to try to write down representations like this.
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ADMISSIBLE DUAL

Ĝd ⊂ Ĝ t ⊂ Ĝu ⊂ Ĝh ⊂ Ĝa

Ĝa is “known” (Langlands + Knapp/Zuckerman, Vogan)

Hard to compute in non-trivial examples

Example: How many irreducible representations does the split real
form of E8 have at infinitesimal characterρ?
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ADMISSIBLE DUAL

Ĝd ⊂ Ĝ t ⊂ Ĝu ⊂ Ĝh ⊂ Ĝa

Ĝa is “known” (Langlands + Knapp/Zuckerman, Vogan)

Hard to compute in non-trivial examples

Example: How many irreducible representations does the split real
form of E8 have at infinitesimal characterρ?

Answer: 526,471

Next two lectures: Implement̂Ga on a computer
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Recap

GivenG(C), θ, K (C) = G(C)θ

Ĝa ={irreducible admissible(g, K (C)) modules}
Note: No real group anymore

Change notation:
G = complex group (G(C))
G(R)=real form
G1(R), . . . , Gn(R) various real forms
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Langlands classification: induced from discrete series, characters of
Cartan subgroups

D-moduleslocal systems onK (C) orbits onG(C)/B(C)

L-homomorphism: local systems on the space of admissible
homomorphism of the Weil group into the dual group
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= infinite dimensional, associative algebra containingg

π extends to a representation ofU(g)
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Basic invariant ofπ : central character (π(z) = λ(z)I , z ∈ Z )
π = (g, K )-module
U(g) = universal enveloping algebraof g

= infinite dimensional, associative algebra containingg

π extends to a representation ofU(g)

Definition: Theinfinitesimal characterof π is the corresponding
character ofZ(U(g))

Fix H ⊂ G, h ⊂ g

Theorem: The characters ofZ(U(g)) are naturally parametrized by
h∗/W (h = Cn, n=rank(G))

Sayπ hasinfinitesimal characterλ ∈ h∗,→ Ĝa(λ)
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Example: G = SL(2, R), infinitesimal character =ρ
OO

��

oo //•

OO

��

oo //•• •
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Theorem: (Harish-Chandra)̂Ga(λ) is finite

Translation Principle(Zuckerman): relatêGa(λ) andĜ(λ′) provided
〈λ− λ′, α∨〉 ∈ Z (integrality condition)

Vogan: reduce to the case〈λ, α∨〉 ∈ Z

Conclusion: Reduce toλ in a finite setS (of regular integral elements)

Example: G is semisimple and simply connected:S = {ρ}
(infinitesimal character of the trivial representation)

Example: G = P SL(2, C) = SO(3, C).

ρ = 1
2α

S = {ρ = α/2, α}
For these talks: assumeG(C) is semisimple and simply connected,
S = {ρ}



Overview
Three Views of the Admissible Dual

The Algorithm
KLV Polynomials

The Future

Infinitesimal Character
The Langlands Classification
D-modules
L-homomorphisms

So the problem is:

ComputeĜa(ρ)
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infinitesimal character as the trivial representation.



Overview
Three Views of the Admissible Dual

The Algorithm
KLV Polynomials

The Future

Infinitesimal Character
The Langlands Classification
D-modules
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So the problem is:

ComputeĜa(ρ)

the set of irreducible admissible representation with the same
infinitesimal character as the trivial representation.

Example: If G is compact̂Ga(ρ) = {C}.



Atlas Project Members, AIM, July 2007
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Known Unitary Duals
red: known black: not known

Type A: SL(n,R), SL(n, H), SU(n, 1), SU(n, 2), SL(n,C)

SU(p, q) (p, q ≥ 2)

Type B: SO(2n, 1), SO(2n + 1, 2), SO(2n + 1, C)

SO(p, q) (p, q ≥ 3)

Type C: Sp(4, R), Sp(n,1), Sp(2n,C)

Sp(p, q) (p, q ≥ 2)

Type D: SO(2n + 1, 1), SO(2n, 2), SO(2n, C)

SO(p, q) (p, q ≥ 3), SO∗(2n) (n ≥ 4)

Type E6: E6(F4) = SL(3, Cayley)

E6(Hermitian), E6(split), E6(quaternionic), E6(C)

Type F4: F4(B4)

F4(split), F4(C)

Type G: G2(split), G2(C)

E7/E8: nothing known
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GivenG(C), θ, K (C) = G(C)θ

Ĝa ={irreducible admissible(g, K (C)) modules}
Note: No real group anymore

Change notation:
G = complex group (G(C))
G(R)=real form
G1(R), . . . , Gn(R) various real forms
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DISCRETESERIES

G = G(R) a real group

A Cartan subgroup is a maximal, semisimple, abelian subgroup

H (R) ≃ (R×)a × (S1)b × (C×)c

Roughy speaking: parametrize representations by characters of
Cartan subgroups

(like the RT (θ)’s in Deligne-Lusztig’s theory for finite groups)
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Harish-Chandra classified the discrete seriesĜ(R)d .

T ≃ (S1)n a compact Cartan subgroup (mod center)

Theorem:

{χ ∈ T̂ (R) | dχ ∼ ρ}/W
1−1←→ Ĝ(R)d(ρ)
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Discrete Series

Harish-Chandra classified the discrete seriesĜ(R)d .

T ≃ (S1)n a compact Cartan subgroup (mod center)

Theorem:

{χ ∈ T̂ (R) | dχ ∼ ρ}/W
1−1←→ Ĝ(R)d(ρ)

χ → π(χ) ∈ Ĝ(R)d
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H (R) = Cartan subgroup ofG(R)

H (R) = T (R)A(R) whereT (R) = H (R) ∩ K and A(R) ≃ Rn

M(R) = Cent(A(R)), P(R) = M(R)N(R)

H (R) is compact inM (mod center)
χ genuine character ofH (R)ρ → πM(χ) (discrete series ofM)
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INDUCED REPRESENTATIONS

H (R) = Cartan subgroup ofG(R)

H (R) = T (R)A(R) whereT (R) = H (R) ∩ K and A(R) ≃ Rn

M(R) = Cent(A(R)), P(R) = M(R)N(R)

H (R) is compact inM (mod center)
χ genuine character ofH (R)ρ → πM(χ) (discrete series ofM)

Definition: I (H (R), χ) = IndG
P (πM(χ) ⊗ 1)
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INDUCED REPRESENTATIONS

H (R) = Cartan subgroup ofG(R)

H (R) = T (R)A(R) whereT (R) = H (R) ∩ K and A(R) ≃ Rn

M(R) = Cent(A(R)), P(R) = M(R)N(R)

H (R) is compact inM (mod center)
χ genuine character ofH (R)ρ → πM(χ) (discrete series ofM)

Definition: I (H (R), χ) = IndG
P (πM(χ) ⊗ 1)

π(H (R), χ) = unique irreducible quotient ofI (H (R), χ) (choose
N(R) properly)
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THE LANGLANDS CLASSIFICATION

Definition:

C(G(R), ρ) = {(H (R), χ)}/G(R)

H (R)=Cartan subgroup
χ = character ofH (R) with dχ ∼ ρ



Overview
Three Views of the Admissible Dual

The Algorithm
KLV Polynomials

The Future

Infinitesimal Character
The Langlands Classification
D-modules
L-homomorphisms

THE LANGLANDS CLASSIFICATION

Definition:

C(G(R), ρ) = {(H (R), χ)}/G(R)

H (R)=Cartan subgroup
χ = character ofH (R) with dχ ∼ ρ

Theorem: The map(H (R), χ)→ π(H (R), χ) induces a canonical
bijection:

Ĝ(R)a(ρ)
1−1←→ C(G, ρ)
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2) H (R)/H (R)0

2) W (G(R), H (R)) = NormG(R)(H (R))/H (R) ⊂ W
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This tells us what we need to compute:

1) Conjugacy classes of Cartan subgroups ofG(R),
2) H (R)/H (R)0

2) W (G(R), H (R)) = NormG(R)(H (R))/H (R) ⊂ W

In particular:

|Ĝa(ρ)| =
∑

i

|W/W (G(R), H (R)i)||H (R)/H (R)i|

whereH (R)1, . . . , H (R)n are representatives of the conjugacy
classes of Cartan subgroups.
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G(R) = SL(2, R)

A(R) = diag(x, 1
x ) ≃ R×, |H (R)/H (R)0| = 2,

W (G(R), H (R)) = W = Z/2Z
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Example:
G(R) = SL(2, R)

A(R) = diag(x, 1
x ) ≃ R×, |H (R)/H (R)0| = 2,

W (G(R), H (R)) = W = Z/2Z

T =
(

cos(θ) sin(θ)

− sin(θ) cosθ

)
≃ S1, |H (R)/H (R)0| = 1, W = 1
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G(R) = SL(2, R)

A(R) = diag(x, 1
x ) ≃ R×, |H (R)/H (R)0| = 2,

W (G(R), H (R)) = W = Z/2Z

T =
(

cos(θ) sin(θ)

− sin(θ) cosθ

)
≃ S1, |H (R)/H (R)0| = 1, W = 1

A︷ ︸︸ ︷
2× 1+

T︷ ︸︸ ︷
1× 2= 4
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Example:
G(R) = SL(2, R)

A(R) = diag(x, 1
x ) ≃ R×, |H (R)/H (R)0| = 2,

W (G(R), H (R)) = W = Z/2Z

T =
(

cos(θ) sin(θ)

− sin(θ) cosθ

)
≃ S1, |H (R)/H (R)0| = 1, W = 1

A︷ ︸︸ ︷
2× 1+

T︷ ︸︸ ︷
1× 2= 4

SL(2, R) has 4 irreducible representations of infinitesimal character ρ
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B = G/B is theflag variety(complex projective variety)

Lemma: K acts onB with finitely many orbits

Roughly(Kazhdan/Lusztig/Beilinson/Bernstein): Parametrize
representations by orbits + local system on the orbit

Definition:

D(G, K , ρ) = {(x, χ)}/K

x ∈ B

χ = local systemonO = K · x
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B = G/B is theflag variety(complex projective variety)

Lemma: K acts onB with finitely many orbits

Roughly(Kazhdan/Lusztig/Beilinson/Bernstein): Parametrize
representations by orbits + local system on the orbit

Definition:

D(G, K , ρ) = {(x, χ)}/K

x ∈ B

χ = local systemonO = K · x
= character of Stab(x)/Stab(x)0
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Theorem: There is a natural bijection

Ĝa(ρ)
1−1←→ D(G, K , ρ)
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Three orbits: north pole (0), south pole (∞), open orbit (C×)
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Example: G = SL(2, C), G(R) = SL(2, R)

B is the sphere =C ∪∞

K = SO(2, C) ≃ C×

K ∋ z : w→ z2w

Three orbits: north pole (0), south pole (∞), open orbit (C×)

Isotropy group: 1,1,Z/2Z→ 4 representations
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Weil groupWR = 〈C×, j〉 j z j−1 = z, j2 = −1

Duality of Groups

The definition of root data(X,1, X∨,1∨) is perfectly symmetric
G∨: root data(X∨,1∨, X,1)

Examples:

G(C) type G∨(C) type
GL(n, C) An−1 GL(n, C) An−1

SL(n, C) An−1 P SL(n, C) An−1

Sp(2n, C) Cn SO(2n + 1, C) Bn

SO(2n, C) Dn SO(2n, C) Dn

Spin(2n, C) Dn P SO(2n, C) Dn
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χ character of Cent(φ)/Cent(φ)0
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Roughly(Langlands): parametrize representations by map ofWR into
G∨

Definition:

H(G, ρ) = {(φ, χ)}/G∨

φ : WR → G∨, (φ(C×) is semisimple)
χ character of Cent(φ)/Cent(φ)0

L(G, ρ) = H(G, ρ)/G∨
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Note: different real forms ofG all have the sameG∨ (no K here).
This version must take this into account

Theorem: There is a natural bijection

∐

i

Ĝ i(R)a(ρ)
1−1←→ L(G, ρ)

whereG1(R), . . . , Gn(R) are the real forms ofG.
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Recap

(1) Character Data:

5(G(R), ρ)
1−1←→ C(G(R)) = {(H, χ)}/G(R)

(2) D-modules(orbits of K on G/B):

5(G(R), ρ)
1−1←→ D(G, K , ρ) = {(O, τ )}/K

(3) L-homomorphisms(orbits ofG∨ onH(G, ρ)

n∐

i=1

5(G i(R), ρ)
1−1←→ L(G∨) = {(φ, χ)}/G∨
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DisclaimerPrevious statements are precisely true ifG(C) is adjoint
(Z(G(C)) = 1), simply connected, and Out(G(C)) = 1.

With appropriate modifications they hold in general (perhaps later).
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character of a finite group.

We’d rather talk aboutorbits thancharacters of(Z/2Z)n

Amazing fact: The classification amounts to computingK orbits onB
for bothG andG∨
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Drop theχ ’s and getsetsof representations:

Definition: Orbit �∨ of G∨ onH→ L-packet

5L(G(R),�∨)

Definition: Orbit O of K on G/B→ “R-packet”

5R(G(R),O)
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Theorem(Vogan): The intersection of an L-packet and an R-packet is
at most one element.
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Theorem(Vogan): The intersection of an L-packet and an R-packet is
at most one element.

Corollary5(G(R), ρ) is parametrized by a subset of pairs

(K orbit onB, G∨ orbit onH)
via

(O,�∨)→ 5R(G(R),O) ∩5L(G(R),�∨)

Which pairs?. . .
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K-orbits on the dual side
Something remarkable happens. . .

G∨ orbits of L-homomorphisms areexactlythe same thing asK
orbits onG/B on the dual side.

K∨1 , . . . , K∨n = complexified maximal compacts of real forms ofG∨.

B∨ = G∨/B∨



Overview
Three Views of the Admissible Dual

The Algorithm
KLV Polynomials

The Future

Packets
K orbits on G/B
The Parameter SpaceZ

K-orbits on the dual side
Something remarkable happens. . .

G∨ orbits of L-homomorphisms areexactlythe same thing asK
orbits onG/B on the dual side.

K∨1 , . . . , K∨n = complexified maximal compacts of real forms ofG∨.

B∨ = G∨/B∨

Proposition: There is a natural bijection:

H/G∨
1−1←→

n∐

i=1

K∨i \B∨
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This reduces the problem to:

ParametrizeK orbits onB = G/B

Definition:
X = {x ∈ NormG(H ) | x2 = 1}/H

(Finite set; maps toW2)

Proposition: There is a natural bijection

X
1−1←→

∐

i

Ki\B
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G(R) = SO(3): K = G, B = ·
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G = PGL(2, C) = SO(3, C)

G(R) = SO(2, 1): K = C×, B = C ∪∞
G(R) = SO(3): K = G, B = ·

X = {I, diag(−1,−1, 1), w}
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EXAMPLE: PGL(2)

G = PGL(2, C) = SO(3, C)

G(R) = SO(2, 1): K = C×, B = C ∪∞
G(R) = SO(3): K = G, B = ·

X = {I, diag(−1,−1, 1), w}

diag(−1,−1, 1)→ C× (K = C×)
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EXAMPLE: PGL(2)

G = PGL(2, C) = SO(3, C)

G(R) = SO(2, 1): K = C×, B = C ∪∞
G(R) = SO(3): K = G, B = ·

X = {I, diag(−1,−1, 1), w}

diag(−1,−1, 1)→ C× (K = C×)

w→∞ (K = C×)



Overview
Three Views of the Admissible Dual

The Algorithm
KLV Polynomials

The Future

Packets
K orbits on G/B
The Parameter SpaceZ

EXAMPLE: PGL(2)

G = PGL(2, C) = SO(3, C)

G(R) = SO(2, 1): K = C×, B = C ∪∞
G(R) = SO(3): K = G, B = ·

X = {I, diag(−1,−1, 1), w}

diag(−1,−1, 1)→ C× (K = C×)

w→∞ (K = C×)

I → · (K = G)
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SKETCH OF PROOF

P = {(x, B)}/G (x2 = 1, B = Borel)

P __
1−1

B ��?
?
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1−1
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∐
i Ki\B X
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Fix representativesx1, . . . , xn of X /G (i.e. real forms)
Fix B0 ⊃ H
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Fix representativesx1, . . . , xn of X /G (i.e. real forms)
Fix B0 ⊃ H

(1) Everyx is conjugate to somexi :
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SKETCH OF PROOF

P = {(x, B)}/G (x2 = 1, B = Borel)

P __
1−1

B ��?
?

?
?

?
?

?
?;;

1−1
x{{vvvvvvvvv

∐
i Ki\B X

Fix representativesx1, . . . , xn of X /G (i.e. real forms)
Fix B0 ⊃ H

(1) Everyx is conjugate to somexi :

(x, B) ∼G (xi , B ′) {(xi , B)} ≃ Ki\B
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SKETCH OF PROOF

P = {(x, B)}/G (x2 = 1, B = Borel)

P __
1−1

B ��?
?

?
?

?
?

?
?;;

1−1
x{{vvvvvvvvv

∐
i Ki\B X

Fix representativesx1, . . . , xn of X /G (i.e. real forms)
Fix B0 ⊃ H

(1) Everyx is conjugate to somexi :

(x, B) ∼G (xi , B ′) {(xi , B)} ≃ Ki\B
(2) Every B is conjugate toB0:
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SKETCH OF PROOF

P = {(x, B)}/G (x2 = 1, B = Borel)

P __
1−1

B ��?
?

?
?

?
?

?
?;;

1−1
x{{vvvvvvvvv

∐
i Ki\B X

Fix representativesx1, . . . , xn of X /G (i.e. real forms)
Fix B0 ⊃ H

(1) Everyx is conjugate to somexi :

(x, B) ∼G (xi , B ′) {(xi , B)} ≃ Ki\B
(2) Every B is conjugate toB0:

(x, B) ∼G (x ′, B0)→ x ′ ∈ X (wlog x ′ ∈ Norm(H ))
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The Parameter SpaceZ
X ∈ x → 2x = int(x)
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X ∈ x → 2x = int(x)→ 2x,H = 2x |H
By symmetry defineX∨, X∨ ∋ y → 2y,H∨
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The Parameter SpaceZ
X ∈ x → 2x = int(x)→ 2x,H = 2x |H
By symmetry defineX∨, X∨ ∋ y → 2y,H∨

Definition:

Z = {(x, y) | ∈ X × X
∨ |2t

x,H = −2y,H∨}
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The Parameter SpaceZ
X ∈ x → 2x = int(x)→ 2x,H = 2x |H
By symmetry defineX∨, X∨ ∋ y → 2y,H∨

Definition:

Z = {(x, y) | ∈ X × X
∨ |2t

x,H = −2y,H∨}

Z ⊂
∐

i

Ki\B ×
∐

j

K∨j \B∨
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Theorem: There is a natural bijection:

Z
1−1←→

n∐

i=1

5(G i(R), ρ)
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The Parameter SpaceZ

Theorem: There is a natural bijection:

Z
1−1←→

n∐

i=1

5(G i(R), ρ)

RecallZ = {(x, y)}

x ∈ X = {x ∈ NormG(H | x2 = 1}/H

y ∈ X
∨ = same thing on dual side
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The Parameter SpaceZ

Theorem: There is a natural bijection:

Z
1−1←→

n∐

i=1

5(G i(R), ρ)

RecallZ = {(x, y)}

x ∈ X = {x ∈ NormG(H | x2 = 1}/H

y ∈ X
∨ = same thing on dual side

(Note for the experts: Canonical up to characters ofGqs(R)/Gqs(R)0)
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For simplicity we assumed:

1 G(C) is simply connected
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2 G(C) is adjoint



Overview
Three Views of the Admissible Dual

The Algorithm
KLV Polynomials

The Future

Packets
K orbits on G/B
The Parameter SpaceZ

GENERAL GROUPS

For simplicity we assumed:

1 G(C) is simply connected
2 G(C) is adjoint
3 Out(G(C)) = 1
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For simplicity we assumed:

1 G(C) is simply connected
2 G(C) is adjoint
3 Out(G(C)) = 1

In general:

1 Fix aninner classof real forms
2 Need twistsGŴ = G ⋊ Ŵ, G∨ ⋊ Ŵ (Ŵ = Gal(C/R))

3 Requirex2 ∈ Z(G) (not x2 = 1)
4 Need several infinitesimal characters
5 Needstrong real forms
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∐
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X = {x ∈ NormG(C)Ŵ\G(C)(H (C)) | x2 ∈ Z(G(C))}/H (C)

X∨ similarly, Z as before.

Theorem: There is a natural bijection

Z
1−1←→

∐

i∈S

5(G i(R),3)

(3 is a certain set of infinitesimal characters,S is the set of “strong
real forms”)
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Z is symmetric inG(C) andG∨(C):

Vogan Duality

Bijection:

∐

i

5(G i(R),3)
1−1←→

∐

j

5(G∨i (R),3∨)

with lots of wonderful properties. . .
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EXAMPLE: SL(2)/PGL(2)

PGL(2, C):

X = {I, diag(−1,−1, 1), w} →
K orbits onG/B: {C×,∞}, {·}

SL(2, C): X = {±I,±diag(i,−i), w} →
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EXAMPLE: SL(2)/PGL(2)

PGL(2, C):

X = {I, diag(−1,−1, 1), w} →
K orbits onG/B: {C×,∞}, {·}

SL(2, C): X = {±I,±diag(i,−i), w} →

K orbits onG/B: {C×,∞, 0}, {·}, {·}



Overview
Three Views of the Admissible Dual

The Algorithm
KLV Polynomials

The Future

Packets
K orbits on G/B
The Parameter SpaceZ

SL(2)/PGL(2) VIA ATLAS OUTPUT

main: type
Lie type: A1 sc s
main: block
(weak) real forms are:
0: su(2)
1: sl(2,R)
enter your choice: 1
possible (weak) dual real forms are:
0: su(2)
1: sl(2,R)
enter your choice: 1
entering block construction ...
2
done
Name an output file (return for stdout, ? to abandon):
0(0,1): 1 (2,*) [i1] 0
1(1,1): 0 (2,*) [i1] 0
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EXAMPLE: Sp(4, R)

main: type
Lie type: C2 sc s
main: block
(weak) real forms are:
0: sp(2)
1: sp(1,1)
2: sp(4,R)
enter your choice: 2
possible (weak) dual real forms are:
0: so(5)
1: so(4,1)
2: so(2,3)
enter your choice: 2
entering block construction ...
10
done
Name an output file (return for stdout, ? to abandon):
0( 0,6): 1 2 ( 6, *) ( 4, *) [i1,i1] 0
1( 1,6): 0 3 ( 6, *) ( 5, *) [i1,i1] 0
2( 2,6): 2 0 ( *, *) ( 4, *) [ic,i1] 0
3( 3,6): 3 1 ( *, *) ( 5, *) [ic,i1] 0
4( 4,4): 8 4 ( *, *) ( *, *) [C+,r1] 1 2
5( 5,4): 9 5 ( *, *) ( *, *) [C+,r1] 1 2
6( 6,5): 6 7 ( *, *) ( *, *) [r1,C+] 1 1
7( 7,2): 7 6 (10,11) ( *, *) [i2,C-] 2 2,1,2
8( 8,3): 4 9 ( *, *) (10, *) [C-,i1] 2 1,2,1
9( 9,3): 5 8 ( *, *) (10, *) [C-,i1] 2 1,2,1

10(10,0): 11 10 ( *, *) ( *, *) [r2,r1] 3 1,2,1,2
11(10,1): 10 11 ( *, *) ( *, *) [r2,rn] 3 1,2,1,2
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EXAMPLE: E8

real: type
Lie type: E8 sc s
main: blocksizes

compact quaternionic split
compact 0 0 1
quaternionic 0 3,150 73,410
split 1 73,410 453,060
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Recap
G = G(C), K = Gθ ,K1, . . . , Kn

AssumeG is adjoint, simply connected, and Out(G) = 1

Ĝa(ρ), the irreducible admissible representation infinitesimal
characterρ

X = {x ∈ H | x2 = 1}/H
Theorem:

X
1−1←→

n∐

i=1

Ki\G/B
1−1←→
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v0v1v2v3 v4v5

v6 v7v8 v9v10 v11v12 v13v14 v15 v16v17

v18 v19v20 v21 v22v23 v24v25 v26v27 v28v29 v30v31 v32v33v34 v35v36

v37v38v39v40 v41 v42v43 v44v45 v46v47 v48v49 v50v51 v52v53v54 v55v56 v57 v58 v59v60 v61v62v63

v64v65v66 v67v68 v69 v70v71 v72 v73v74 v75v76v77 v78 v79v80 v81v82 v83v84 v85 v86v87 v88v89 v90v91 v92 v93v94 v95v96 v97

v98 v99 v100v101 v102v103 v104v105 v106v107 v108v109 v110v111 v112v113 v114v115 v116 v117v118 v119v120v121 v122 v123v124 v125v126v127 v128v129v130 v131

v132v133 v134 v135 v136v137 v138 v139 v140v141 v142 v143 v144v145 v146 v147v148 v149v150 v151v152v153 v154v155v156v157 v158v159 v160 v161v162 v163 v164

v165v166v167 v168v169 v170v171v172 v173v174v175 v176 v177v178 v179v180 v181v182 v183 v184v185 v186v187 v188 v189 v190v191 v192 v193

v194 v195 v196 v197v198 v199v200 v201 v202v203 v204 v205v206 v207v208v209 v210v211 v212v213v214 v215v216

v217v218 v219 v220 v221v222 v223v224 v225v226 v227 v228 v229 v230v231 v232 v233

v234 v235v236 v237v238 v239v240 v241 v242 v243v244

v245 v246v247v248 v249

v250

K\G/B for SO(5, 5)
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v64v65v66 v67v68 v69 v70v71 v72 v73v78 v85v92v94 v95v97

v98 v99 v100v101 v102v103 v104v105 v106v107 v108v109v116 v117v122 v123

v132v133 v134 v135 v136v137 v138 v139 v140v141 v142 v143 v144v145 v146

v165v166v167 v168v169 v170v171v172 v173v174v175 v176 v177v178 v179v180

v194 v195 v196 v197v198 v199v200 v201 v202v203 v204 v205v206 v207v208v209

Closeup ofSO(5, 5) graph
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Theorem:
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∐
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5(G i(R), ρ)

γ = (x, y) ∈ Z
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γ = (x, y) ∈ Z

γ → I (γ ) = standard module
(full induced representation, well understood)
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G∨, K∨j ,X∨, . . .

Z = {(x, y) |, . . . }

Theorem:
Z

1−1←→
∐

i

5(G i(R), ρ)

γ = (x, y) ∈ Z

γ → I (γ ) = standard module
(full induced representation, well understood)

γ → π(γ ) = irreducible module
(quotient ofI (γ ))
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EXAMPLE: SL(2)/PGL(2)

O x x2 K Gx (R) λ rep O∨ y y2 K∨ G∨y (R) λ rep

· I I G SU(2,0) ρ C C× w I O(2,C) SO(2,1) 2ρ P S+

· -I I G SU(0,2) ρ C C× w I O(2,C) SO(2,1) 2ρ P S−

{0} t -I C× SU(1,1) ρ DS+ C× w I O(2,C) SO(2,1) ρ C

{∞} -t -I C× SU(1,1) ρ DS− C× w I O(2,C) SO(2,1) ρ sgn

C× w -I C× SU(1,1) ρ C {∞} t I O(2,C) SO(2,1) ρ DS

C× w I O(2,C) SU(1,1) ρ P S · I I G∨ SO(3) ρ C
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Recall if V is finite dimensional2π (g) = Trace(π(g)).
What if V is infinite dimensional?
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Character of a representation
Recall if V is finite dimensional2π (g) = Trace(π(g)).
What if V is infinite dimensional?

Definition (Harish-Chandra):f ∈ C∞c (G(R))

π( f )v =
∫

G(R)

π(g) f (g)v dg

2π( f ) = Trace(π( f ))

θπ is a distribution onG(R)
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Character of a representation
Recall if V is finite dimensional2π (g) = Trace(π(g)).
What if V is infinite dimensional?

Definition (Harish-Chandra):f ∈ C∞c (G(R))

π( f )v =
∫

G(R)

π(g) f (g)v dg

2π( f ) = Trace(π( f ))

θπ is a distribution onG(R)

Theorem(Harish-Chandra) The distributionθπ is represented by a
conjugation invariant functionθπ (locally integrable, analytic on an
open dense subset):

θπ( f ) =
∫

G(R)

θπ (g) f (g) dg
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What is the character table ofG(R)?
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Theorem: (Harish-Chandra,. . . , Herb) IfI = I (γ ) is astandard
modulethere is a formula for2I (g).



Overview
Three Views of the Admissible Dual

The Algorithm
KLV Polynomials

The Future

Recursion Relations
Rough Estimate
Calculating Modulo n

Character Table
What is the character table ofG(R)?
Infinitely many conjugacy classes and representation. . .

Theorem: (Harish-Chandra,. . . , Herb) IfI = I (γ ) is astandard
modulethere is a formula for2I (g).

Example: T (R) compact Cartan subgroup,I = I (H (R), χ) a
discrete series representation,t ∈ T (R).
Generalization of Weyl character formula:
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Character Table
What is the character table ofG(R)?
Infinitely many conjugacy classes and representation. . .

Theorem: (Harish-Chandra,. . . , Herb) IfI = I (γ ) is astandard
modulethere is a formula for2I (g).

Example: T (R) compact Cartan subgroup,I = I (H (R), χ) a
discrete series representation,t ∈ T (R).
Generalization of Weyl character formula:

2π(g) =
∑

w(wχ)(g)

1(g)

(sum is overW (G(R), T (R)), 1 = Weyl denominator)
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I = I (γ ) standard module
Every representation can be written as a direct sum of irreducible
representations:

I (γ ) =
∑

δ∈Z
m(δ, γ )π(δ)
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I = I (γ ) standard module
Every representation can be written as a direct sum of irreducible
representations:

I (γ ) =
∑

δ∈Z
m(δ, γ )π(δ)

(really means:)

θI (γ ) =
∑

δ∈Z
m(δ, γ )θπ(δ)
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Inverting the character formulas
Theorem(. . . Zuckerman)
There are integersM(δ, γ ) so that

π(γ ) =
∑

δ

M(δ, γ )I (γ )

(really:)

θπ(γ ) =
∑

δ

M(δ, γ )θI (γ )

The M(δ, γ ) theCharacter Tableof G(R)
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Computing the Character Table

Recallγ
1−1←→ (O, χ) (K∨-orbit onG∨/B∨, local system)
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Computing the Character Table

Recallγ
1−1←→ (O, χ) (K∨-orbit onG∨/B∨, local system)

γ → µ(γ ) = constructiblesheaf onG∨/B∨

γ → P(γ ) = perversesheaf onG∨/B∨
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1−1←→ (O, χ) (K∨-orbit onG∨/B∨, local system)

γ → µ(γ ) = constructiblesheaf onG∨/B∨

γ → P(γ ) = perversesheaf onG∨/B∨
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Computing the Character Table

Recallγ
1−1←→ (O, χ) (K∨-orbit onG∨/B∨, local system)

γ → µ(γ ) = constructiblesheaf onG∨/B∨

γ → P(γ ) = perversesheaf onG∨/B∨

µ(γ ) =
∑

δ

mg(δ, γ )P(δ)
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Computing the Character Table

Recallγ
1−1←→ (O, χ) (K∨-orbit onG∨/B∨, local system)

γ → µ(γ ) = constructiblesheaf onG∨/B∨

γ → P(γ ) = perversesheaf onG∨/B∨

µ(γ ) =
∑

δ

mg(δ, γ )P(δ)

(µ(γ ) is easy, like I (γ ))
(P(γ ) is hard, like π(γ ))
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Computing the Character Table

Recallγ
1−1←→ (O, χ) (K∨-orbit onG∨/B∨, local system)

γ → µ(γ ) = constructiblesheaf onG∨/B∨

γ → P(γ ) = perversesheaf onG∨/B∨

µ(γ ) =
∑

δ

mg(δ, γ )P(δ)

(µ(γ ) is easy, like I (γ ))
(P(γ ) is hard, like π(γ ))

Theorem: M(δ, γ ) = ±mg(γ, δ)
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Kazhdan-Lusztig-Vogan polynomials
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Kazhdan-Lusztig-Vogan polynomials

The matrixmg(γ, δ) is computed by the KLV polynomials
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Kazhdan-Lusztig-Vogan polynomials

The matrixmg(γ, δ) is computed by the KLV polynomials

Note: Kazhdan-Lusztig polynomials are a special case:
G(R) = G ′(C)

K\G/B
1−1←→ B ′\G ′/B ′
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Kazhdan-Lusztig-Vogan polynomials

The matrixmg(γ, δ) is computed by the KLV polynomials

Note: Kazhdan-Lusztig polynomials are a special case:
G(R) = G ′(C)

K\G/B
1−1←→ B ′\G ′/B ′

No local systems, intersection homology. . .
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Kazhdan-Lusztig-Vogan polynomials

The matrixmg(γ, δ) is computed by the KLV polynomials

Note: Kazhdan-Lusztig polynomials are a special case:
G(R) = G ′(C)

K\G/B
1−1←→ B ′\G ′/B ′

No local systems, intersection homology. . .
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δ, γ ∈ Z → Pδ,γ =
∑

ai q i
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δ, γ ∈ Z → Pδ,γ =
∑

ai q i

Theorem(Vogan):

M(δ, γ ) = ±Pδ,γ (1)
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RECURSIONRELATIONS

Change notation:x, y, x ′, · · · ∈ Z

Partial order< onZ

Length functionℓ(x)
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RECURSIONRELATIONS

Change notation:x, y, x ′, · · · ∈ Z

Partial order< onZ

Length functionℓ(x)

The matrix is upper triangular:
Px,x = 1
Px,y = 0 unlessx ≤ y

Recursion relations: computePx,y by upwardinduction onℓ(y) and
downwardinduction onℓ(y).
Long list of complicated recursion formulas.
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The E8 Calculation

Fokko’s software computed KLV polynomials for all exceptional
groups except the split real form ofE8.
E7 takes about 30 seconds.
In order to test the mathematics, the software, and get an idea of our
computing needs, we set as our goal:

Compute the KLV polynomials forE8(spli t)
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empty: type
Lie type: E8 sc s
main: blocksizes

compact quaternionic split
compact 0 0 1
quaternionic 0 3,150 73,410
split 1 73,410 453,060
real: kgb
kgbsize: 320206

(I’ve added the labelling of rows and columns)

There are 320, 206 orbits ofK on G/B
The computation goes on in the “block” with 453, 060 parameters.
The KLV matrix has size 453, 060× 453, 060

Maximal degree: 31
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Recursion Relations
Px,x = 1

The matrix is lower triangular:Px,y = 0 unlessx ≤ y

Recursion relations: computePx,y like this:
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Recursion Relations
Px,x = 1

The matrix is lower triangular:Px,y = 0 unlessx ≤ y

Recursion relations: computePx,y like this:

P0,0

P0,1 ← P1,1

P0,2 ← P1,2 ← P2,2

P0,3 ← P1,3 ← P2,3 ← P3,3

P0,4 ← P1,4 ← P2,4 ← P3,4 ← P4,4

. . .
(P3,4 is shorthand for all of thePx,y with ℓ(x) = 3, ℓ(y) = 5)
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RECURSIONRELATIONS II

Px,y =
∑

ℓ(x ′)=ℓ(x)+1

M(x ′, y′)+
∑

x ′′

M(x ′′, y′′)

(ℓ(y′) = ℓ(y); ℓ(y′′) = ℓ(y)− 1)
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RECURSIONRELATIONS II

Px,y =
∑

ℓ(x ′)=ℓ(x)+1

M(x ′, y′)+
∑

x ′′

M(x ′′, y′′)

(ℓ(y′) = ℓ(y); ℓ(y′′) = ℓ(y)− 1)

P0,0

P0,1 P1,1

P0,2 P1,2 P2,2

P0,3 P1,3 P2,3 P3,3

P0,4 P1,4 P2,4 P3,4 P4,4

P0,5 P1,5 P2,5 P3,5 P4,5 P5,5

(≤ 4 terms)
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RECURSIONRELATIONS

Px,y = M(x ′, y ′)+ x M(x, y ′)−
∑

x ′≤z<y′
µ(z, y ′)x (l(y′)−l(z)−1)/2M(x ′, z).

(ℓ(x ′) = ℓ(x)− 1; ℓ(y′) = ℓ(y)− 1)
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µ(z, y ′)x (l(y′)−l(z)−1)/2M(x ′, z).

(ℓ(x ′) = ℓ(x)− 1; ℓ(y′) = ℓ(y)− 1)

P0,0

P0,1 P1,1

P0,2 P1,2 P2,2
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RECURSIONRELATIONS

Px,y = M(x ′, y ′)+ x M(x, y ′)−
∑

x ′≤z<y′
µ(z, y ′)x (l(y′)−l(z)−1)/2M(x ′, z).

(ℓ(x ′) = ℓ(x)− 1; ℓ(y′) = ℓ(y)− 1)

P0,0

P0,1 P1,1

P0,2 P1,2 P2,2

P0,3 P1,3 P2,3 P3,3

P0,4 P1,4 P2,4 P3,4 P4,4

P0,5 P1,5 P2,5 P3,5 P4,5 P5,5

Average number of terms for E8: 150
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Px,y =
∑

x ′,y′

c(x ′, y′)M(x ′, y′)

for some very complicated constantsc(x ′, y′)



Overview
Three Views of the Admissible Dual

The Algorithm
KLV Polynomials

The Future

Recursion Relations
Rough Estimate
Calculating Modulo n

Recursion Relations: Conclusion

Px,y =
∑

x ′,y′

c(x ′, y′)M(x ′, y′)

for some very complicated constantsc(x ′, y′)

P0,0

P0,1 P1,1

P0,2 P1,2 P2,2

P0,3 P1,3 P2,3 P3,3

P0,4 P1,4 P2,4 P3,4 P4,4

P0,5 P1,5 P2,5 P3,5 P4,5 P5,5
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Conclusion (the bad news)

In order to computePx,y you need to use manyall Px ′,y′ with
ℓ(y′) < ℓ(y).
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Conclusion (the bad news)

In order to computePx,y you need to use manyall Px ′,y′ with
ℓ(y′) < ℓ(y).

We need to keep allPx,y in RAM!
All accessible from asingleprocessor!
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Big Problem: we did not have a good idea of the size of the answer
beforehand.
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Big Problem: we did not have a good idea of the size of the answer
beforehand.

Recall 1 byte= 8 bits can store 28 = 256 numbers.

We don’t know the sizes of the coefficients. Proabably some are
> 65, 535= 216 = 2 bytes. We hope each coefficient is less than 4
bytes, i.e. 4.3 billion.
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ROUGH ESTIMATE

Big Problem: we did not have a good idea of the size of the answer
beforehand.

Recall 1 byte= 8 bits can store 28 = 256 numbers.

We don’t know the sizes of the coefficients. Proabably some are
> 65, 535= 216 = 2 bytes. We hope each coefficient is less than 4
bytes, i.e. 4.3 billion.

Each polynomial has≤ 32 coefficients.

450, 0602 × 32= 6.5 trillion coefficients =26 trillion bytes
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Many of the polynomials are equal for obvious reasons. Number of
distinct polynomials≤ 6 billion.
Store only the distinct polynomials.
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Many of the polynomials are equal for obvious reasons. Number of
distinct polynomials≤ 6 billion.
Store only the distinct polynomials.

6× 109 × 32= 200 billion coefficents, or 800 billion bytes
Plus about 100 billion bytes for the pointers =900 billion bytes
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Plus 100 billions bytes for index =125 billion bytes
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Many of the polynomials are 0, and many are equal for non-obvious
reasons.

Hope: number of distinct polynomials is about 200 million
300× 106 × 4× 32= 25 billion bytes
Plus 100 billions bytes for index =125 billion bytes

Marc van Leeuwen: much smarter indexing: 35 billion bytes→
35+25=60 billion bytes
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Many of the polynomials are 0, and many are equal for non-obvious
reasons.

Hope: number of distinct polynomials is about 200 million
300× 106 × 4× 32= 25 billion bytes
Plus 100 billions bytes for index =125 billion bytes

Marc van Leeuwen: much smarter indexing: 35 billion bytes→
35+25=60 billion bytes

Hope: average degree = 20→ 35+8=43 billion bytes
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(all accessible from one processor)
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Bad news: experiments indicate the number of distinct polynomials is
more like 800 billion→ 65 billion bytes

William Stein at Washington lent us sage, with 64 gigabytes of ram
(all accessible from one processor)

Marc van Leeuwen and David Vogan spent a lot of time trying to
squeeze down the calculation.
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Bad news: experiments indicate the number of distinct polynomials is
more like 800 billion→ 65 billion bytes

William Stein at Washington lent us sage, with 64 gigabytes of ram
(all accessible from one processor)

Marc van Leeuwen and David Vogan spent a lot of time trying to
squeeze down the calculation.

Marc reduced the size of the indices to about 15 billion bytes(by
using a lot of information about the nature of the data)
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Noam Elkies: have to think harder
Idea:
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CALCULATING MODULO N

Noam Elkies: have to think harder
Idea:

216 = 65, 536< Maximum coefficient< 232 = 4.3 billion (?)

31 < 25, so to do the calculation(mod p) for p < 32 requires 5 bits
for each coefficient instead of 32, reducing storage by a factor of
5/32.
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CALCULATING MODULO N

Noam Elkies: have to think harder
Idea:

216 = 65, 536< Maximum coefficient< 232 = 4.3 billion (?)

31 < 25, so to do the calculation(mod p) for p < 32 requires 5 bits
for each coefficient instead of 32, reducing storage by a factor of
5/32.

232 < 3× 5× 7× 11× 13× 17× 19× 23× 29× 31= 100 billion
You then get the answer mod 100,280,245,065 using the Chinese
Remainder theorem (cost: running the calculation 9 times)



Overview
Three Views of the Admissible Dual

The Algorithm
KLV Polynomials

The Future

Recursion Relations
Rough Estimate
Calculating Modulo n

CALCULATING MODULO N

Noam Elkies: have to think harder
Idea:

216 = 65, 536< Maximum coefficient< 232 = 4.3 billion (?)

31 < 25, so to do the calculation(mod p) for p < 32 requires 5 bits
for each coefficient instead of 32, reducing storage by a factor of
5/32.

232 < 3× 5× 7× 11× 13× 17× 19× 23× 29× 31= 100 billion
You then get the answer mod 100,280,245,065 using the Chinese
Remainder theorem (cost: running the calculation 9 times)

This gets us down to about 15+ 4= 19 billion bytes
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But can we really reduce the calculation(mod p)?

The recursion relations use+,−× and extraction of coefficients in
specific degrees. This last step looks bad but it is OK (coefficient=0
(mod p), affects the recursion step, but you would have gotten 0
(mod p) anyway).
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But can we really reduce the calculation(mod p)?

The recursion relations use+,−× and extraction of coefficients in
specific degrees. This last step looks bad but it is OK (coefficient=0
(mod p), affects the recursion step, but you would have gotten 0
(mod p) anyway).

In fact we can work (mod n) for anyn.
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Date mod Status Result
Dec. 6 251 crash
Dec. 19 251 complete 16 hours
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Date mod Status Result
Dec. 6 251 crash
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Eventually:
Run the program 4 times modulon = 251, 253, 255 and 256

Least common multiple: 4,145,475,840

Date mod Status Result
Dec. 6 251 crash
Dec. 19 251 complete 16 hours
Dec. 22 256 crash
Dec. 22 256 complete 11 hours
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Eventually:
Run the program 4 times modulon = 251, 253, 255 and 256

Least common multiple: 4,145,475,840

Date mod Status Result
Dec. 6 251 crash
Dec. 19 251 complete 16 hours
Dec. 22 256 crash
Dec. 22 256 complete 11 hours
Dec. 26 255 complete 12 hours



Overview
Three Views of the Admissible Dual

The Algorithm
KLV Polynomials

The Future

Recursion Relations
Rough Estimate
Calculating Modulo n

Eventually:
Run the program 4 times modulon = 251, 253, 255 and 256

Least common multiple: 4,145,475,840

Date mod Status Result
Dec. 6 251 crash
Dec. 19 251 complete 16 hours
Dec. 22 256 crash
Dec. 22 256 complete 11 hours
Dec. 26 255 complete 12 hours
Dec. 27 253 crash



Overview
Three Views of the Admissible Dual

The Algorithm
KLV Polynomials

The Future

Recursion Relations
Rough Estimate
Calculating Modulo n

Eventually:
Run the program 4 times modulon = 251, 253, 255 and 256

Least common multiple: 4,145,475,840

Date mod Status Result
Dec. 6 251 crash
Dec. 19 251 complete 16 hours
Dec. 22 256 crash
Dec. 22 256 complete 11 hours
Dec. 26 255 complete 12 hours
Dec. 27 253 crash
Jan. 3 253 complete 12 hours
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Combine the answers using the Chinese Remainder Theorem.
Answer is correct if the biggest coefficient is less then 4,145,475,840
Total time(on sage): 77 hours
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Overview
Three Views of the Admissible Dual

The Algorithm
KLV Polynomials

The Future

Recursion Relations
Rough Estimate
Calculating Modulo n

The final result
Combine the answers using the Chinese Remainder Theorem.
Answer is correct if the biggest coefficient is less then 4,145,475,840
Total time(on sage): 77 hours

Size of output: 60 gigabytes

453,060 inches=7.15 miles

A calculation the size of Manhattan
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Some Statistics
Number of distinct polynomials: 1,181,642,979

Maximal coefficient: 11,808,808

Polynomial with the maximal coefficient:
152q22+ 3, 472q21+ 38, 791q20+ 293, 021q19 + 1, 370, 892q18 +
4, 067, 059q17 + 7, 964, 012q16 + 11, 159, 003q15 +
11, 808, 808q14+ 9, 859, 915q13+6, 778, 956q12+ 3, 964, 369q11+
2, 015, 441q10 + 906, 567q9 + 363, 611q8 + 129, 820q7 +
41, 239q6 + 11, 426q5 + 2, 677q4 + 492q3 + 61q2 + 3q
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Some Statistics
Number of distinct polynomials: 1,181,642,979

Maximal coefficient: 11,808,808

Polynomial with the maximal coefficient:
152q22+ 3, 472q21+ 38, 791q20+ 293, 021q19 + 1, 370, 892q18 +
4, 067, 059q17 + 7, 964, 012q16 + 11, 159, 003q15 +
11, 808, 808q14+ 9, 859, 915q13+6, 778, 956q12+ 3, 964, 369q11+
2, 015, 441q10 + 906, 567q9 + 363, 611q8 + 129, 820q7 +
41, 239q6 + 11, 426q5 + 2, 677q4 + 492q3 + 61q2 + 3q

Value of this polynomial at q=1: 60,779,787
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Some Statistics
Number of distinct polynomials: 1,181,642,979

Maximal coefficient: 11,808,808

Polynomial with the maximal coefficient:
152q22+ 3, 472q21+ 38, 791q20+ 293, 021q19 + 1, 370, 892q18 +
4, 067, 059q17 + 7, 964, 012q16 + 11, 159, 003q15 +
11, 808, 808q14+ 9, 859, 915q13+6, 778, 956q12+ 3, 964, 369q11+
2, 015, 441q10 + 906, 567q9 + 363, 611q8 + 129, 820q7 +
41, 239q6 + 11, 426q5 + 2, 677q4 + 492q3 + 61q2 + 3q

Value of this polynomial at q=1: 60,779,787

Number of coefficients in distinct polynomials: 13,721,641,221 (13.9
billion)
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