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This paper is expository. It is a mild generalization of the Kac classifi-
cation of real forms of a simple Lie group to strong real forms. The basic
reference for strong real forms in this language is [1]. For the Kac classi-
fication we follow [6]. There is also a treatment in [4], in slightly different
terms.

1 Real forms and strong real forms

Let G be a reductive algebraic group. We will occasionally identify algebraic
groups with their complex points. We have the standard exact sequence

(1.1) 1 → Int(G) → Aut(G) → Out(G) → 1

where Int(G) ' G/Z(G) is the group of inner automorphisms of G, Aut(G)
is the automorphims of G, and Out(G) = Aut(G)/Int(G).

Definition 1.2 1. A real form of G is an equivalence class of involutions
in Aut(G), where equivalence is by conjugation by G, i.e. the action of
Int(G).

2. A traditional real form of G is an equivalence class of involutions, where
equivalence is by the action of Aut(G).

The real form defined by θ has a maximal compact subgroup whose com-
plexification is K = Gθ.

We say two involutions θ, θ′ ∈ Aut(G) are inner to each other, or in the
same inner class, if they have the same image in Out(G). Such a class is
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determined by an involution γ ∈ Out(G), and we refer to the real forms of
(G, γ).

We will work entirely in a fixed inner class, so fix an involution γ ∈
Out(G).

Fix a splitting data for the exact sequence (1.1). This is a set (H, B, {Xα})
consisting of a Cartan subgroup H, a Borel subgroup B containing H, and
a set of simple root vectors. This induces a splitting Out(G) → Aut(G) of
(1.1), and we let θ be the image of γ in Aut(G). Thus θ is an involution of
G, corresponding to the “most compact” real form in the given inner class.
We let K = Gθ.

Remark 1.3 Suppose G is simple and simply connected. It does not nec-
essarily follow that K is simply connected; it is not simply connected if and
only if the real form G = G(R) of G corresponding to K has a non-linear
cover. In fact K is simply connected unless G = SL(2n + 1), in which case
K = SO(2n + 1) and π1(K) = Z/2Z. This exception is due to the fact that
∆θ (cf. Lemma 3.1) is not reduced in this case. See the table in Section 3.

Let
GΓ = G o 〈δ〉

where δ2 = 1 and δgδ−1 = θ(g).

Definition 1.4 A strong real form of (G, γ) is an equivalence class of ele-
ments x ∈ GΓ, satisfying x 6∈ G, and x2 ∈ Z(G), where equivalence is by
conjugation by G.

The map x → θx = int(x) is a surjection from the set of strong real forms
to the set of real forms. Let

HΓ = H o 〈δ〉 ⊂ GΓ.

Let T be the identity component of Hθ, and A be the identity component of
Hθ−1

. Then H = TA. Let
T Γ = T × 〈δ〉

Remark 1.5 We may write

(1.6) H ' C∗a × C∗b × (C∗ × C∗)c

where θ acts trivially on the first a factors, by inverse on the next b ones,
and θ(z, w) = (w, z) on each of the last c terms. Note that if b 6= 0 then T is
a proper subset of Hθ. This happens, for example, in SO(3, 1).
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Lemma 1.7 Suppose x ∈ Gδ is a semi-simple element (i.e. x = gδ with
g ∈ G semisimple). Then x is G-conjugate to an element of Tδ.

Proof. Write x = gδ and choose a Cartan subgroup H ′ containing g. Write
H ′ = T ′A′ as usual and g = ta accordingly. Choose h ∈ A′ so that hθ(h) =
h2 = a. Then hxh−1 = tδ. Since T is a Cartan subgroup of K we may choose
k ∈ K so that ktk−1 ∈ T . Then (kh)x(kh)−1 ∈ Tδ.

Lemma 1.8 The strong real forms of (G, γ) are parametrized by elements x
of Tδ such that x2 ∈ Z, modulo equivalence by conjugation by G.

Remark 1.9 Since h ∈ A acts on Tδ by multiplication by a2, and A2 = A,
we may replace T with H/A ' T/T ∩ A. See the end of this section.

Let W = NormG(H)/H. Then θ acts on W , and we let W θ be its fixed
points. Note that W θ acts naturally on T , A and T ∩ A.

It is not hard to see that if two elements of Tδ are G-conjugate then they
are conjugate by an element normalizing Tδ. It follows that G-conjugacy of
elements of Tδ is controlled by the group Wδ of the next definition.

Definition 1.10

(1.11) Wδ = NormG(Tδ)/CentG(Tδ)

Proposition 1.12

(1.13) Wδ ' W θ n (A ∩ T )

The subgroup W θ acts by its natural action on T (fixing δ), and A ∩ T acts
by multiplication.

Proof.
It is easy to see that

(1.14) NormG(Tδ) = {g ∈ NormG(T ) | gδg−1 ∈ T}

It is well known that
CentG(T ) = H

NormK(H)/T = NormG(H)/H
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From these it follows that

NormG(T ) = NormG(H)

= NormK(T )H

= NormK(T )A.

If we let
A0 = {h ∈ A |h2 ∈ T}

from (1.14) we conclude

NormG(T ) = NormK(T )A0

On the other hand it is immediate that

CentG(Tδ) = CentG(T ) ∩ CentG(δ) = Hθ.

From (1.6) we see
Hθ = TAθ

and Aθ = (A0)
θ which gives

Wδ = NormK(T )A0/T ' NormK(T )/T n A0/A
θ

The first term is W θ. For the second note that the map a → a2 takes A0

onto A ∩ T and there is an exact sequence

(1.15) 1 → Aθ → A0 → A ∩ T → 1

Therefore A0/A
θ ' A ∩ T .

Finally note that if a ∈ A0, t ∈ T then a(tδ)a−1 = a2tδ, so the second
factor acts by multiplication by a2 ∈ A ∩ T . This completes the proof.

Remark 1.16 With respect to the decomposition (1.6) we have

A0 ' (Z/2Z)b × (Z/4Z)c

Aθ ' (Z/2Z)b × (Z/2Z)c

A ∩ T ' 1× (Z/2Z)c

where Z/4Z = {±(1, 1),±(i,−i)} ⊂ C∗ × C∗.

4



Proposition 1.17 The strong real forms of (G, γ) are are parametrized by
elements x of Tδ satisfying x2 ∈ Z, modulo the action of Wδ.

Let

(1.18) T = T/T ∩ A.

As in Remark 1.9 we may use T in place of T . Note that W θ acts on T . Also
every element of T ∩A has order 2, so the condition x2 ∈ Z for x ∈ T is well
defined. This gives:

Proposition 1.19 The strong real forms of (G, γ) are are parametrized by
elements x of Tδ satisfying x2 ∈ Z, modulo the action of W θ.

For several reasons it is more convenient to use W θ acting on Tδ instead
of Wδ on Tδ. For one thing Z acts naturally on T , by multiplication on
H/A ' T . Also the “translations” by T ∩ A acting on Tδ naturally live in
the lattice part of the affine Weyl group; see Remark 3.16.

To compute the orbits of Wδ on Tδ we pass to the tangent space, in which
Wδ becomes an affine Weyl group. We begin with a discussion of the basics
of affine root systems and Weyl groups.

2 Affine root systems and Weyl groups

Let V be a real vector space of dimension n and E an affine space with
translations V . That is V acts simply transitively on E, written v, e → v+e.
A function If E, E ′ are affine spaces a function f : E → E ′ is said to be affine
if there exists a linear function df : V → V ′ such that

(2.1) f(v + e) = df(v) + f(e) for all v ∈ V, e ∈ E.

In particular if E ′ is one dimensional we say f is an affine linear functional.
In this case df : V → R, i.e. df ∈ V ∗. We say df is the differential of f . The
set Aff(E) of all affine linear functionals is a vector space of dimension n+1.
The map f → df is a linear map from Aff(E) to V ∗, and this gives an exact
sequence

(2.2) 0 → R → Aff(E) → V ∗ → 0.
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The first inclusion takes x ∈ R to the constant function fx(e) = x for all
e ∈ E; this satisfies df = 0.

Choose an element e0 ∈ E. This gives an isomorphism V ' E via
v → v + e0. For λ ∈ V ∗ let s(λ)(v + e0) = λ(v). This defines a splitting of
(2.2):

Lemma 2.3 Given e0 we obtain an isomorphism

(2.4)(a) Aff(E) ' V ∗ ⊕ R

According to this decomposition we write f ∈ Aff(E) as

(2.4)(b) f = (λ, c).

We make the isomorphism (2.4)(a) explicit. In one direction f ∈ Aff(E)
goes to λ = df and c = f(e0). For the other direction (λ, c) goes to f ∈ Aff(E)
defined by f(v + e0) = λ(v) + c.

We now assume V is equipped with a positive definite non-degenerate
symmetric form (, ), and identify V and V ∗. In particular we may identify
df with an element of V . Define (, ) on Aff(V ) by

(f, g) = (df, dg)

and for f ∈ Aff(E) not a constant function let

f∨ =
2f

(f, f)
.

The affine reflection sf : V → V is

sf (v) = v − f∨(v)df

= v − f(v)(df)∨

= v − 2f(v)

(f, f)
df

Definition 2.5 (Macdonald [5]) An affine root system on E is a subset
S of Aff(E) satisfying

1. S spans Aff(E), and the elements of S are non-constant functions,
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2. sα(β) ∈ S for all α, β ∈ S,

3. 〈α∨, β〉 ∈ Z for all α, β ∈ S,

4. The Weyl group W = W (S) is the group generated by the reflections
{sα |α ∈ S}. We require that W acts properly on V .

The Weyl group W (S) is an affine Weyl group. The notions of simple
roots Π(S) and Dynkin diagram D(S) are simlar to those for classical root
systems. Also the dual S∨ of S defined in the obvious way is an affine root
system, with Dynkin diagram D(S∨) = D(S)∨. Here the dual of a Dynkin
diagram means the same diagram with arrows reversed, as usual.

Choose a base point e0 in E and write elements of Aff(E) as (λ, c) as in
Lemma 2.3.

Suppose ∆ ⊂ V is a classical (not necessarily reduced) root system. If ∆
is simply laced we say each root is long. Let Π = {α1, . . . , αn} be a set of
simple roots. For each i let α̃i = (αi, 0), and let α̃0 = (−β, 1) where β is the
highest root. Note that β is long. Then {α̃0, . . . , α̃n} is a set of simple roots

of an affine root system denoted ∆̃.
Let D = D(∆) be the Dynkin diagram of ∆. Let D̃ be the extended

Dynkin diagram of D, i.e. obtained by adjoining −β where β is the highest
root. Then the Dynkin diagram of ∆̃ is the extended Dynkin diagram of ∆,
i.e.

D(∆̃) = D̃(∆).

We will use ∆ (resp. S) to denote a typical classical (resp. affine) root
system.

Suppose ∆ is a classical root system with Dykin diagram D = D(∆). Let

and S = ∆̃, so D(S) = D̃. Then S∨ = (∆̃)∨ is also an affine root system,

with Dynkin diagram D(S∨) = (D̃)∨. If ∆ is not simply laced then it is

not necessarily the case that (∆̃)∨ = (̃∆∨) or (D̃)∨ = (̃D∨). Note that D̃ is

obtained from D by adding a long root, so (D̃)∨ has an extra short root. On

the other hand (̃D∨) is obtained from D∨ by adding an extra long root.

Theorem 2.6 (Macdonald [5]) Every reduced, irreducible affine root sys-

tem is equivalent to either ∆̃ or (∆̃)∨ where ∆ is a classical (not necessarily
reduced) root system.
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Remark 2.7 A remarkable fact is that every reduced, irreducible affine root
system is also obtained from a classical root system and involution, as dis-
cussed in the next section.

3 Affine root system and Weyl group associ-

ated to (∆, θ)

Let ∆ be an irreducible root system, and θ an automorphism of ∆ preserving
a set of simple roots. Thus θ corresponds to an automorphism of the Dynkin
diagram D = D(∆) of ∆. Let c ∈ {1, 2, 3} be the order of δ. Associated to
(∆, θ) is an affine root system, which we now describe.

The quotient ∆/θ is naturally a root system [7], which we denote ∆θ. Here
are the possibilities with θ 6= 1. We list the finite root systems ∆, ∆θ, the
names of the affine root system according to [5] and [6], the simply connected
group G with root system ∆, the real form of G corresponding to θ, and Gθ.

∆ ∆θ ∆aff ∆aff G G(R) K

A2n BCn B̃Cn A
(2)
2n SL(2n + 1) SL(2n + 1, R) SO(2n + 1)

A2n−1 Cn B̃∨
n A

(2)
2n−1 SL(2n) SL(n, H) Sp(n)

Dn Bn C̃∨
n D

(2)
n Spin(2n) Spin(2n− 1, 1) Spin(2n− 1)

E6R F4 F̃4

∨
E

(2)
6 E6 E6(F4) F4

D4, θ3 = 1 G2 G̃2

∨
D

(3)
4 Spin(8) G2

3.1 Affine root system

As in section 1 there is an algebraic group G, and splitting data (H, B, {Xα})
so that ∆ = ∆(G, H), and θ may be viewed as an automorphism of G
preserving the splitting data. (For these purposes we may as well take G
simply connected.) Then T = Hθ acts on g, and the set of roots ∆(G, T ) ⊂ t∗

is a (possibly reduced) root system.
The following Lemma is more or less immediate.

Lemma 3.1 Restriction from H to T defines isomorphisms

∆(G, T ) ' ∆θ
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and
W θ ' W (∆θ).

Also ∆(K, T ) is the reduced root system of ∆θ (obtained by taking only the
shorter of two roots α, 2α) and W (K, T ) ' W (∆θ). See Remark 1.3.

Now T Γ acts on the complex Lie algebra g of G. Let ∆(G, T Γ) be the set
of roots, i.e. we have a root space decomposition

g =
∑

α∈∆(G,TΓ)

gα.

Clearly restriction from T Γ to T is a surjection ∆(G, T Γ) → ∆(G, T ).
If c = 1 this is simply ∆(G, T ). For simplicity assume c = 2. Then

∆(G, T Γ) may be thought of as a Z/2Z-graded root system. That is a
character α of T Γ is a pair (α0, ε) with α0 ∈ ∆(G, T ) ' ∆θ and ε = ±1,
where α0 = α|T and ε = α(δ). We can define the reflection associated
to α ∈ ∆(G, T Γ) in the usual way, preserving ∆(G, T Γ). To be precise, if
α = (α0, ε) and β = (β0, δ) then

(3.2) sα(β) = (sα0(β0), εδ(−1)〈β,α∨〉).

Let π : E → Tδ be the universal cover. Then E is an affine space with
translations t = Lie(t).

Suppose λ is a character of T Γ → C∗. Note that λ is determined by its
restriction to Tδ. By the property of covering spaces λ lifts to a family of
functions λ̃ : E → C satisfying

λ(π(X)) = e2πieλ(X)

i.e. dλ̃ = dλ, where the left hand side is in the sense of (2.1) and the right is

the ordinary differential of λ. We say λ̃ lies over λ. Any two such functions
differ by constant.

Definition 3.3 The affine root system ∆aff associated to (∆, θ) is the set of
affine functions in Aff(E) lying over ∆(G, T Γ).

Note that the underlying finite root system, i.e. the differentials of all
affine roots is ∆(G, T ) ' ∆θ, i.e.

d : ∆aff � ∆θ
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The following Lemma is an immediate consequence of the fact that ∆(G, T Γ)
is a root system in the sense of (3.2).

Lemma 3.4 ∆aff is an affine root system.

To be explicit, choose δ̃ ∈ E with π(δ̃) = δ. Suppose α ∈ T̂ Γ. To avoid
excessive notation we write α for the differential of α restricted to T , rather
than dα. Then in the decomposition of Lemma 2.3 we may write the set of
α̃ lying over α as

{(α, c) | e2πic = α(δ)}
In particular note that the set of roots lying over α is

{(α, c) | c ∈ Z} if α(δ) = 1

or

{(α, c) | c ∈ Z +
1

2
} if α(δ) = −1

Similarly if δ has order 3 then c ∈ Z + 1
3

or Z + 2
3
.

For α ∈ ∆θ let cα = 1 if α is long, or 1
c

if α is short, where c = order(θ).

Proposition 3.5 Let ∆aff be the affine root system associated to (∆, θ), and
let c = order(θ) ∈ {1, 2, 3}. Then

∆aff = {(α, x) |x ∈ cαZ}

Proposition 3.6 Fix a set α1, . . . , αn of simple roots of ∆θ. For each i let
α̃i = (αi, 0). Let β be the highest (long) root of ∆ = ∆θ if c = 1 or the
highest short root otherwise. Let

α̃0 = (−β,
1

c
).

Then {α̃0, α̃1, . . . , α̃n} is a set of simple roots of ∆aff.

3.2 Affine Weyl group

We now describe the affine Weyl group of ∆aff.

Definition 3.7 Let

(3.8) L(G) = X∗(T/T ∩ A).
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In particular we have

(3.9) L(G)/X∗(T ) ' T ∩ A

Lemma 3.10

L(G) = 〈1
c

c−1∑
k=0

θk(γ∨) | γ ∈ X∗(H)〉

The most important cases are c = 1, 2:

(3.11) L = {1

2
(α∨ + θα∨) |α ∈ X∗(H} (c = 1, 2).

If G is understood we write L = L(G). Let Lsc = L(Gsc), where Gsc is the
simply connected cover of G, and similarly Lad.

Lemma 3.12 If c = 1 then Lsc = R∨. If c = 2 or 3 then

Lsc = 〈R∨(∆θ) ∪ {
1

c
α∨ |α ∈ ∆θ, α short}〉

Remark 3.13 By [2]
R∨(∆θ) = R∨(∆)θ

and this is the kernal of exp : t → T if G is simply connected.

Proposition 3.14 The lattice Lsc is the set of translations in Waff. There
is an exact sequence

(3.15)(a) 0 → Lsc → Waff → W θ → 1

If we choose an element δ̃ ∈ E lying over δ we obtain a splitting of (3.14),

taking W θ to the the stabilizer in Aff(E) of δ̃, i.e.

(3.15)(b) Waff ' W θ n Lsc

Remark 3.16 As in Remark 1.9, and Propositions 1.17 and 1.19 we may
use Tδ and Wδ in place of T and W θ. Then
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(3.17) 0 → R∨ → Waff → Wδ → 1

This is not necessarily a split exact sequence.
We give a few details of the map p : Waff → Wδ. Suppose α ∈ ∆θ and

x ∈ Z. Then
p(s(α,x)) = sα.

Suppose c = 2, α ∈ ∆θ is a short root and x ∈ Z + 1
2
. Then mα = α∨(−1) ∈

T ∩ A and
p(s(α,x)) = sαmα

and
p(t 1

2
α∨) = mα.

where t 1
2
α∨ ∈ Waff is translation by 1

2
α∨.

Definition 3.18 Suppose B is a subgroup of Aut(Tδ). Let B̃ be the lift of
B to Aff(E, E). That is

B̃ = {φ ∈ Aff(E, E) |φ factors to an element of B}.

With this notation Waff lies over W θ, i.e. Waff ⊂ W̃ θ. In fact W̃ θ has a
structure similar to that of Waff.

Lemma 3.19 Setting L = L(G) we have an exact sequence

(3.20)(a) 1 → L → W̃ θ → W θ → 1

Given a choice of δ̃ satisfying p(δ̃) = δ we obtain a splitting of (3.20)(a), so

(3.20)(b) W̃ θ ' W θ n L.

If G is simply connected then (3.20)(a-b) reduce to (3.15)(a-b).

In general W̃ θ is an “extended” affine Weyl group. It is not necessarily a
Coxeter group, but can be realized as the semi-direct product of the Coxeter
group Waff by a finite group.

We need a choice of fundamental domain D for the action of Waff on E.
There is a standard natural choice for (the closure of) D. Choose a set of
simple roots α̃0, . . . , α̃n of ∆aff, and let

D = {e ∈ E | α̃i(e) ≥ 0, i = 0, . . . , n}.
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If we choose δ̃ as usual then we may identify E with V , and write α̃i = (αi, 0)
(i = 1, . . . , n) and α̃0 = (α0, c). Let β = −α0; recall β is the highest long
(resp. short) root of ∆ if c = 1 (respectively c = 2). Then

D = {v ∈ V |αi(v) ≥ 0 (i = 1, . . . , n), β(v) ≤ c}.

Lemma 3.21 We have an exact sequence

(3.22) 1 → Waff → W̃ θ → L/Lsc → 1

Given δ̃ we obtain a splitting of (3.22), taking L/Lsc to the stabilizer of D.
Thus

(3.23) W̃ θ ' Waff o L/Lsc

and L/Lsc acts as automorphisms of D.

3.3 The group L/Lsc

Because of (3.23) we need to understand L/Lsc. From (3.11) we have

L/Lsc =
〈{1

2
(γ∨ + θγ∨) | γ∨ ∈ X∗(H)}〉

〈{1
2
(α∨ + θα∨) | γ∨ ∈ R∨}〉

Let Gsc be the simply connected cover of G, with center Zsc = Z(Gsc). We
have an exact sequence

1 → π1(G) → Gsc → G → 1

with π1(G) ⊂ Zsc. Write Hsc = TscAsc for the Cartan subgroup in Gsc with
image H.

Lemma 3.24

(3.25)(a) L/Lsc ' π1(G)/π1(G) ∩ Asc

In particular

(3.25)(b) Lad/Lsc ' Zsc/Zsc ∩ Asc
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Proof. A standard fact is that π1(G) ' X∗(T )/R∨. The map γ∨ → 1
2
(γ∨ +

θγ∨) takes X∗(T ) to L and factors to a map from π1(G) to L/Lsc. It is not
hard to see the kernel is Z ∩ A. The main point is that if α is in the root
lattice, then 1

2
(α∨ + θα∨) is equivalent to 1

2
(α∨ − θα∨) modulo R∨, and the

second version shows this element is in A.

Remark 3.26 Note: Z∩A ⊂ Zθ−1
, and the inclusion may be proper. Hence

Z/Z ∩ A surjects onto Z/Zθ−1
, and this is not necessarily an isomorphism.

Definition 3.27 Let

(3.28) π1 = π1(G) = π1(G)/π1(G) ∩ Asc

Remark 3.29 I believe the next Proposition is correct, but it should be
taken with a grain of salt. In any event I do not know how to make the iso-
morphism natural, and consequently I’m not sure if the subsequent definition
is the right one. It seems like the right thing. . .

Write Ksc = Gθ
sc, and let K̃ → Ksc be the simply connected cover of

K. Recall (Remark 1.3) K̃ = Ksc unless Gsc = SL(2n + 1), in which case

K̃ = Spin(2n + 1) → K = SO(2n + 1) is a two-fold cover.

Proposition 3.30

(3.31) Lad/Lsc ' π1(K)/π1(Ksc)

In particular suppose G is adjoint. Then

(3.32) L/Lsc ' Z(Ksc)

and this equals Z(K̃) unless Gsc = SL(2n + 1).

Of course if γ = 1 these equations simplify considerably: L/Lsc ' π1(G),
which equals Z(Gsc) if G is adjoint.

Definition 3.33 Given (G, γ) let

(3.34) π′
1(K) = π1(K)/π1(Ksc)

Thus π′
1(K) = π1(K) unless Gsc = SL(2n + 1, C), and π′

1(K) = π1(G) if
γ = 1. In particular if G is adjoint we have

(3.35) π′
1(K) = Z(Ksc).
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3.4 Action on the extended Dynkin diagram

A key ingredient of the computation of strong real forms is the action of
π1(G) on the extended Dynkin diagram.

Take G to be simply connected, so Z = Zsc. First of all note that Z acts
by left multiplication on Hδ and therefore on Tδ. Explicitly if z ∈ Z write
Z = ta with t ∈ T, a ∈ A. Then for t′ ∈ T ,

z · t′δ = tt′δ.

Note that although t, a are only defined up to T∩A, this action is well defined
on Tδ. Clearly this action factors to Z/Z ∩ A. This lifts to an action on E,
and induces an action of Z/Z ∩ A on D.

Now if z corresponds to γ∨ ∈ P∨ via the isomorphism Z ' P∨/R∨, then
t = 1

2
(γ∨ + θγ∨). It follows that under the isomorphism (3.25)(b) Lad/Lsc

acts by translation on E.
Now drop the assumption that G is simply connected. Then π1(G) ⊂ Zsc

acts on D and DAff by the preceding construction, and this action factors to
an action of π1(G).

Lemma 3.36 The stabilizer of D in the Euclidean group of E is isomorphic
to the automorphism group of DAff.

Definition 3.37 We write τ(m) for the action of π1(G) on DAff.

4 Affine Weyl group and strong real forms

We now return to the setting of Section 1. We relate the construction of
the affine weyl group in Section 3 and the parametrization of real forms in
Proposition 1.17.

Recall we are interested in computing the orbits of Wδ on Tδ (cf. Defini-
tion 3.14 and Proposition 1.17). To do this we pass to the tangent space E
of Tδ at δ (cf. Section 3).

It is immediate that for any subgroup B of Aut(Tδ), π : E → Tδ factors

to a bijection E/B̃ ↔ Tδ/B.

Lemma 4.1 Strong real forms of G are parametrized by elements X of E

satisying π(X)2 ∈ Z modulo the action of W̃ θ.
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Recall a choice of δ̃ gives

(4.2)

W̃ θ ' W θ n L (3.20)(b)

' Waff o L/Lsc (3.23)

' Waff o π1(G) (Proposition 3.30 and Definition 3.27)

Lemma 4.3 We may parametrize D as {(a0, . . . , an)} where ai ≥ 0 and

(4.4)
n∑

i=0

niai =
1

c
.

Here (a0, . . . , an) corresponds to the element X of D satisfying

αi(X) = ai (i = 1, . . . , n)

Lemma 4.5 Suppose (a1, . . . , an) satisfies (4.4), and let X ∈ D be the cor-
responding element. Then x = π(X) ∈ Tδ satisfies xm ∈ Z if and only if
mai ∈ Z for all i = 0, . . . , n.

Example 4.6 Take m = 1. We must take c = 1 and each ai = 0 or 1. We
conclude from (4.4) that Z is in bijection with the nodes of D̃ with label 1.

Theorem 4.7 The strong real forms of (G, γ) are parametrized as follows.
Let c = order(γ) = 1, 2. Choose a set S ⊂ {0, . . . , n} satisfying∑

i∈S

ni =
2

c

Obviously |S| ≤ 2 and ni ≤ 2 for all i ∈ S.
Two such subsets S, S ′ parametrize the same strong real form if and only

if τ(m)S = S ′ for some m ∈ π1(G).

4.1 Real forms and the Kac classification

The Kac classification of real forms of g amounts to taking G to be the adjoint
group. In this case π1(G) is a quotient of Z(Gsc). Recall (3.28) acts by τ on
DAff (Definition 3.37).
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Theorem 4.8 The real forms of (G, γ) are parametrized by subsets S as in
Theorem 4.7, modulo the action of π1(Gsc).

Recall (Definition 1.2) this definition of equivalence uses only Int(G) not
Aut(G). The usual Kac classification is for what we refer to here as tradi-
tional real forms.

Recall we are given a finite root system ∆θ. Let Dθ be its Dynkin diagram.
Also ∆θ is contained in an affine root system ∆aff. Let DAff = D(∆aff) be
the Dynkin diagram of ∆aff, so Dθ ⊂ DAff.

Lemma 4.9 We have a split exact sequence

1 → π1(G) → Aut(D) → Out(G) → 1

or equivalently

1 → π1(G) → Aut(DAff) → Aut(Dθ) → 1

Remark 4.10 If θ = 1 and G is simply connected this becomes

1 → Z → Aut(DAff) → Aut(D)

See [6, Exercise 15, page 217]. For an explicit formula for the map Z →
Aut(DAff) see [3, Chapter VI, §2.3, Proposition 6].

Remark 4.11 Assuming Proposition 3.30 is correct we can replace π1(G)
with Z(Ksc), which is more natural:

1 → Z(Ksc) → Aut(DAff) → Aut(Dθ) → 1

In any event the usual Kac classification is stated as follows.

Theorem 4.12 The traditional real forms of G are parametrized by subsets
S as in Theorem 4.7, modulo the full automorphism group of DAff.
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[6] A. L. Onishchik and È. B. Vinberg. Lie groups and algebraic groups.
Springer Series in Soviet Mathematics. Springer-Verlag, Berlin, 1990.
Translated from the Russian and with a preface by D. A. Leites.

[7] Robert Steinberg. Endomorphisms of linear algebraic groups. Memoirs
of the American Mathematical Society, No. 80. American Mathematical
Society, Providence, R.I., 1968.

18


