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Chapter 1

Introduction

Overview

The study of correspondences between representations of Lie groups is an impor-

tant theme in the theory of representations and automorphic forms. Lifting, or

transfer, of the representation theory of one group to another has been the sub-

ject of extensive study. Langlands functoriality, roughly stated, says that given

linear groups G and H, a homomorphism LH → LG of their L–groups gives a

transfer of representations of H to representations of G. On the other hand, the

theta correspondence of Howe [16] provides a way to relate the representation

theories of a reductive dual pair G and G′ embedded in the metaplectic group.

The groups G and G′ are sometimes non–linear.

Shimura [34] defined a correspondence between the space of cusp forms of

half integral weight k/2 and the space of cusp forms of even integral weight

k − 1. This correspondence preserves eigenvalues for the Hecke ring. Shimura’s

correspondence is based on L–functions and suggests a correspondence between

automorphic forms on S̃L2 and PGL2. Subsequently, Shintani [35] and Niwa

[27] discovered this correspondence using the oscillator (or Weil) representation.
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Interpreting the Shimura correspondence in representation theoretic terms then

became an important problem. A systematic study of the dual pair correspon-

dence for the reductive dual pair (S̃L2, PGL2) was made by Rallis and Schiffman

[30] and was later parameterized by Manderscheid [24]. Gelbart initiated the

study of the Shimura correspondence via group theory in [9]; this was continued

with Piatetski–Shapiro in [10] and [11]. Finally, in [39], [40] and [41], Waldspurger

gave a very deep study of the Shimura correspondence and automorphic forms

on S̃L2. An excellent survey of this work was made by Piatetski–Shapiro in [28].

Using character theory, Flicker [6] has defined a correspondence between m–

fold covering groups G̃L2 and GL2. This correspondence has been generalized by

Kazhdan and Patterson in [19] and [20] and by Flicker and Kazhdan in [7] in the

case of G̃Lr and GLr.

Our work is motivated by a correspondence of Adams in [3] using character

theory. Suppose F is a local field of characteristic 0. Let S̃p(2n,F) be the

two-fold cover of Sp(2n,F). Fix an additive character ψ of F and let ω(ψ) =

ωe(ψ) ⊕ ωo(ψ) be the oscillator representation of S̃p(2n,F) attached to ψ. If

π is a representation, let Θπ be its character (see Chapter 2). We consider

the character as a function on the regular semisimple elements, or equivalently,

conjugacy classes. Let Γψ− be the difference of the characters of the two halves of

the oscillator representation, i.e.,

Γψ− = Θωe(ψ) − Θωo(ψ).

Now assume F = R. If g ∈ Sp(2n,R), then we say that h ∈ SOn+1,n(R) and

g correspond via the orbit correspondence if g and h have the same non–trivial

eigenvalues (see Adams [3]). We write t(g) = h for the orbit correspondence. If

g ∈ S̃p(2n,R) then write t(g) = t(pr(g)) (here pr is the projection S̃p(2n,R) →
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Sp(2n,R)). Adams [3] (see also [1]) has given the definition of “stable” genuine

invariant eigendistribution on S̃p(2n,R) and has shown that the map t∗ given by

t∗(Θ)(g) = Γψ−(g)Θ(t(g))

is a bijection between

{stable invariant eigendistributions of SOn+1,n(R)}

and

{stable genuine invariant eigendistributions of S̃p(2n,R)}.

This bijection has good properties. For example, t∗(Θ) is a virtual character if

and only if Θ is, t∗(Θ) is tempered if and only if Θ is, t∗ takes stable discrete series

representations of SOn+1,n(R) to the stable genuine discrete series representations

of S̃p(2n,R), t∗ commutes with parabolic induction, and if Θ is a tempered virtual

character, then t∗(Θ) is the normalized theta–lift of Θ. See Adams in [3] for the

proof.

Essential to the proof of Adams’ lifting are Hirai’s matching conditions. These

are special for the field F = R. Our problem considers the analogue of this

correspondence in the case of n = 1 with F p–adic. We now give a detailed

summary of our methods and results.

Let π be an irreducible representation of GL2(F). If π has trivial central

character, then π factors to a representation of PGL2(F) ' SO1,2(F). Let p be

the map from GL2(F) to SO1,2(F). Then define π′, a representation of SO1,2(F),

by pulling back π via p, i.e., their characters satisfy

Θπ(g) = Θπ′(p(g)).

Assume g ∈ SL2(F). Let V be a vector space equipped with a quadratic form of

signature (1, 2). For g regular semisimple let τ(g) be the unique conjugacy class
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of elements with the same nontrivial eigenvalues as g. Then

p(g) ∈ τ(g2).

(For details, see Section 2.3.) Our character identities relate character values at

g̃ ∈ S̃L2(F) satisfying pr(g̃) = g and character values at τ(g) ⊆ SO1,2(F).

The key idea is then the following. Start with an irreducible representation

π of GL2(F) whose central character χπ satisfies χπ(−I) = 1 (here I is the 2× 2

identity matrix) and lift it via Flicker’s theory [6] to π̃ = LiftF(π) of G̃L2(F). (The

lifting is actually defined for arbitrary covers of GL2(F) but we only use the case

of 2–fold covers. See Section 2.7 for a full discussion of Flicker’s correspondence.)

Then restrict π̃ to G̃L2(F)+ = {g̃ ∈ G̃L2(F) : det pr(g̃) ∈ F×2}. Let σ̃ be an

irreducible summand of this restriction. By Clifford Theory (see Theorem 3.8),

we have

π̃|gGL2(F)+
'

∑

x∈F×/F×2

σ̃x.

In particular, the summands are parameterized by x ∈ F×/F×2. If G is any

group, we let Z(G) be its center. Since

G̃L2(F)+ = S̃L2(F) · Z(G̃L2(F)+),

there is no further reducibility when we restrict to S̃L2(F). We are able to recover

the character of σ̃x by using an “inversion formula”:

Θeσx(g̃) =
1

|F×/F×2|
∑

ξ∈F×/F×2

χeσx(zξ)
−1Θeπ(zξg̃), g̃ ∈ G̃L2(F)+.

This is given in Theorem 3.12. Note that this yields character formulas for all

irreducible representations of S̃L2(F), and that both Theorems 3.8 and 3.12 are

valid for any genuine representation π̃ of G̃L2(F).
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Flicker’s correspondence is defined by a character identity, giving a relation-

ship between the character of π̃ = LiftF(π) on G̃L2(F) and the character of π on

GL2(F). Flicker’s formula is only nonzero on the “relevant elements”, that is,

elements g̃ such that pr(g̃) is a square. In particular, Flicker [6] points out that:

characters of genuine representations of G̃L2(F) vanish off of the set {(g2; ε)}.

Using Flicker’s identity together with the inversion formula, we are able to relate

the character of an individual σ̃x with the character of π which is defined on all

elements. The problem is then to relate the character of an individual σ̃x with

the character of a representation π′ of SO1,2(F). It turns out that this can’t

be done because the resulting character formula has two terms. However, if we

“stabilize” the formulas (see below) we are able to achieve this.

Here and throughout, if ν0 is a character of F×, then the letter ν will always

be reserved for the one–dimensional representation ν = ν0 ◦ det of GL2(F).

Given a representation π on GL2(F) such that χπ(−I) = 1, there exists a

character ν0 of F× such that

χπ(xI) = ν0(x
2).

Let

χν0(xI; ε) = ν0(x)γF(x, ψ)ε.

Note that this depends on the choice of the additive character ψ. The γF(x, ψ) are

the gamma–factors introduced by Weil; see Section 2.5. Each genuine character

of the center of G̃L2(F)+ is of this form. In particular, there exists ν0 such that

χeσx = χν0 .

Definition 1.1. Fix a character ν0 of F× satisfying χπ(xI) = ν0(x
2). Let ρ̃ be
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the constituent of π̃|gGL2(F)+
with central character χν0. We define L(π, ν0) to be

the restriction of ρ̃ to S̃L2(F).

This central character condition is consistent with Flicker’s character condi-

tion in Definition 2.63.

Our first main result is stated in Theorem 5.30. We repeat it here.

Theorem 1.2. Suppose that π is an irreducible representation of GL2(F) satisfy-

ing χπ(−I) = 1. Suppose that ν0 is a character of F× satisfying ν0(x
2) = χπ(xI).

Let g̃ be a regular semisimple element of S̃L2(F) and let g = pr(g̃). Then

ΘL(π,ν0)(g̃) =
1

2

[
Γψ−(g̃)Θ(πν−1)′(τ(g)) + ν0(−1)Γψ+(g̃)Θ(πν−1)′(τ(−g))

]
.

In the above statement, Γψ+ and Γψ− are respectively the sum and difference

of the two halves of the oscillator representation attached to ψ. We remark that

in Chapter 4, we have developed formulas for the characters of the even and odd

halves of the oscillator representation and therefore obtain the character of their

sum and difference. See Theorem 4.40 and Theorem 4.41.

If β0 is a character of F× which satisfies β0(−1) = 1, then

L(π, ν0) = L(πβ, ν0β0).

In fact, we have shown that L(π, ν0) = L(σ, λ0) if and only if there is a character

β0 satisfying σ = πβ, λ0 = ν0β0, and β0(−1) = 1.

Theorem 1.2 suggests that we have a map

L(π, ν0) 7→ (πν−1)′.

However, the map is not one–to–one. Indeed, if β is such that β0(−1) = −1, then

L(π, ν0) and L(πβ, ν0β0) are generally non–zero, are inequivalent because they
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have different central characters, and map to the same representation (πν−1)′.

To remedy this situation, we “stabilize” our formulas as follows.

Definition 1.3. Let β0 satisfy β0(−1) = −1. Let π be an irreducible represen-

tation of GL2(F) satisfying χπ(−I) = 1. Let ν0 be a character of F× such that

χπ(xI) = ν0(x
2). Define

Lst(π, ν0) = L(π, ν0) + L(πβ, ν0β0).

This is independent of the choice of β.

Let Grst(S̃L2(F)) be the linear span of all virtual characters Lst(π, ν0) where

π is an irreducible representation of GL2(F) satisfying χπ(−I) = 1 and ν0 is a

character of F× satisfying χπ(xI) = ν0(x
2). If ρ ∈ Grst(S̃L2(F)), then we say

that ρ is a stable virtual representation of S̃L2(F).

After making this definition, we obtain the following formula.

Theorem 1.4. Continue with the notation in Theorem 1.2. Then

ΘLst(π,ν0)(g̃) = Γψ−(g̃)Θ(πν−1)′(τ(g)).

The formula defines a bijection

Grst(S̃L2(F)) ↔ Gr(SO1,2(F))

Lst(π, ν0) ↔ (πν−1)′.

[Here, Gr(SO1,2(F)) is the space of virtual representations of SO1,2(F).] The bi-

jection satisfies the following properties. A precise statement appears in Theorem

6.27.

• principal series representations of SO1,2(F) are in bijection with genuine

principal series representations of S̃L2(F),
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• the one dimensional representations of SO1,2(F) are in bijection with the

finite set

{Γψ− : ψ ∈ F̂},

• a special representation of SO1,2(F) corresponds with the sum of an odd

oscillator representation and a special representation of S̃L2(F),

• an irreducible supercuspidal representation of SO1,2(F) maps to the sum of

two supercuspidal representations of S̃L2(F).

Connection to Work of Waldspurger

Let σ̃ be a discrete series representation of S̃L2(F) and let ψ be an additive

character of F. In [41], Waldspurger has defined an involution σ̃ 7→ σ̃W as

follows:

σ̃
Θ(ψ)−−−→ π

JL−−−→ π′ Θ′(ψ−1)−−−−→ σ̃W .

In the above diagram, π is an irreducible admissible representation of PGL2(F)

and JL denotes the Jacquet–Langlands correspondence (see [12]). The maps

Θ(ψ), Θ′(ψ) are Waldspurger’s correspondences (see [41]).

We have essentially defined a stable “packet”

Lst(π, ν0) = {L(π, ν0), L(πβ, ν0β0)}.

On the other hand, Waldspurger has proved the following theorem:

Theorem 1.5 ([41],[11]). Let σ̃ be a discrete series representation of S̃L2(F)

and suppose ψ is a nontrivial additive character of F such that σ̃ has a ψ–

Whittaker model (see [10]). Then:

8



1. There is an irreducible admissible representation π of PGL2(F) such that

Θ(ψ)−1(π) = σ̃.

2. The “near equivalence set” NE(σ̃) defined by

NE(σ̃) = {Θ(ψξ)
−1(π ⊗ qξ) : ξ ∈ F×/F×2}

has exactly two elements. (Here qξ is the quadratic character associated to

the extension F(
√
ξ) of F.)

3. Suppose that

NE(σ̃) = {Θ(ψ)−1(π),Θ(ψξ)
−1(π ⊗ qξ)}.

Then

NE(σ̃) = {σ̃, σ̃W}.

Our “packets” are the same as the “near equivalence sets” of Waldspurger. In

particular, we claim that if σ̃ = L(π, ν0) is a discrete series representation, then

{L(π, ν0), L(πβ, ν0β0)} = {σ̃, σ̃W}.

Thus our stable packets are the character–theory analogue of near equivalence.

9



Chapter 2

Preliminaries

In this chapter we will explain various constructions and techniques that we will

assume and use throughout.

In Section 1, we state the definition and properties of the quadratic Hilbert

symbol. In Section 2, we explain how to embed the nonzero elements of a

quadratic extension in GL2(F) and give information about squares in quadratic

extensions. We define the group SO1,2(F) in Section 3. The basic theory of cover-

ing groups is given in Section 4 and the groups S̃L2(F), G̃L2(F) and G̃L2(F)+ are

defined. Section 5 is concerned with the definitions and properties of the gamma

factors γF(x, ψ) introduced by Weil. We summarize the basic representation the-

ory we will need, including a statement of the existence of global characters, in

Section 6. Finally, in Section 7, we elucidate Flicker’s correspondence in the

special case n = 2. This is used heavily in the derivation of our character for-

mulas. Flicker’s character formula is given as it appears in Flicker–Kazhdan [7].

We have also included Flicker’s character formulas in the cases of principal series

representations and the oscillator representation.
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2.1 The Hilbert Symbol

Let F be a local field. We recall briefly the definition and properties of the Hilbert

symbol attached to F. An elegant account of this material is found in Serre [32]

and [33].

Definition 2.1. Let a, b be elements of F. We define

(a, b)F =





1 if ax2 + by2 = z2 has a nonzero solution (x, y, z) ∈ F3

−1 otherwise.

The number (a, b)F is called the Hilbert symbol of a and b relative to F.

Proposition 2.2. The following properties of the Hilbert symbol are true for all

a and b in F×.

1. (a, b)F = (b, a)F,

2. (a, b2)F = 1,

3. (a,−a)F = 1,

4. (a, a)F = (−1, a)F,

5. (a, 1 − a)F = 1,

6. (a, b)F = (a+ b,−ab)F.

Proposition 2.3. The Hilbert symbol is a nondegenerate, symmetric bilinear

form on the F2–vector space F×/F×2 × F×/F×2. (Here F2 = {0, 1}.) In partic-

ular, the following properties hold.

1. If (a, b)F = 1 for all a ∈ F×/F×2, then b is a square.

11



2. We have that (aa′, b)F = (a, b)F(a′, b)F for all a, a′, b ∈ F×/F×2.

Proof. See Serre [32].

2.2 Quadratic Extensions of F

Let E be the quadratic extension F(δ) of F with δ2 = ∆ ∈ F. We fix the

ordered basis {1, δ} for E as a vector space over F. If z = x + yδ ∈ E, the

norm of z relative to this extension, written NE/F(z) = N(z), is defined to be

N(z) = x2 − y2∆. The norm is a multiplicative map, i.e., N(zw) = N(z)N(w).

If z = x + yδ ∈ E, we write z = x − yδ for the conjugate of z in E. Note that

N(z) = zz. We have that (a, b)F = 1 if and only if a is a norm in F(
√
b) and

that N(E×) has index two in F×. Let E1 denote the group of elements of norm

one in E. Let ϕ(z) = z/z. Hilbert’s Theorem 90 (see Jacobson, [17]) states that

z ∈ E1 if and only if there exists w ∈ E× such that z = ϕ(w) = w/w.

Let z = x + yδ ∈ E and a ∈ F×. The matrix of left multiplication of z on E

in the ordered basis {1, aδ} is



x y∆a

y/a x


 .

This gives an embedding ιa : E× ↪→ GL2(F). We write ιa(E
×) = Ta,∆, ι = ι1

and T1,∆ = T∆. Any embedding of E× in GL2(F) is conjugate to ι. Via ι, the

determinant corresponds to the norm, so that N = det ◦ι. In other words,

N(x+ y
√

∆) = det



x y∆

y x


 .

In a similar way, we obtain an embedding

ιa(E
1) ↪→ SL2(F)

12



and abuse notation by writing ιa(E
1) = Ta,∆ when the context is clear. Any such

embedding extends to an embedding ι of E× in GL2(F).

We use the following proposition repeatedly when we apply the inversion

formula (see Theorem 3.12 below).

Proposition 2.4. Suppose z ∈ E1. Then there are exactly two values of ξ in

F×/F×2 such that ξz ∈ E×2.

Proof. We claim that if ξ ∈ E×2 ∩ F×, then ξ ∈ F×2 ∪ ∆F×2. Indeed, write

ξ = (a+ bδ)2, so that ξ = (a2 + b2∆) + 2abδ. Now ξ ∈ F× implies that 2ab = 0,

i.e., a = 0 or b = 0, so that ξ = b2∆ or a2, respectively.

First assume that z ∈ E1 ∩E×2. If ξz ∈ E×2 it follows that ξ ∈ E×2. Modulo

squares in F×, there are exactly two values of ξ, namely 1 and ∆.

Now assume that z /∈ E×2. By Hilbert’s Theorem 90 there exists w ∈ E×

such that z = w/w. Multiplying by w/w gives

z =
1

Nw
w2.

Putting ξ0 = Nw we have that ξ0z = w2 ∈ E×2. But ξz = ξξ−1
0 w2 ∈ E×2 implies

that ξξ−1
0 is a square in E×. Modulo squares in F×, we have that ξξ−1

0 = 1 or ∆

and there are exactly two values of ξ, namely ξ0 and ξ0∆.

2.3 SO1,2(F)

Let F be a nonarchimedean local field, let M2(F) be the vector space of all

two–by–two matrices with entries in F, and let V be the subspace of M2(F) of

trace–zero matrices. So

V =







a b

c −a


 : a, b, c ∈ F




.
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Let

A =




0 1

−1 0


 , (2.5)

and define σ : M2(F) →M2(F) by

σ(x) = AxA−1. (2.6)

Note that if x ∈ GL2(F),

(σ(x))t = (detx)x−1.

This implies that for g invertible,

gtσ(g) = det(g)I.

In addition σ has the property

σ(xy) = σ(x)σ(y) for all x, y ∈M2(F).

Now define a form B(·, ·) on V by

B(x, y) = trace(σ(x)yt). (2.7)

We have a map p : GL2(F) → GL(V ) defined by

p(g)x = gxg−1.

This satisfies

B(p(g)x, p(g)y) = trace(σ(gxg−1)(gyg−1)t)

= trace(σ(g)σ(x)σ(g−1)(g−1)tytgt)

= trace(gtσ(g)σ(x)σ(g−1)(g−1)tyt)

= trace(det(g)σ(x) det(g−1)yt)

= trace(σ(x)yt)

= B(x, y).
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So p(g) ∈ O(V ).

A basis of V consists of the elements

X =




0 1

0 0


 , Y =




0 0

1 0


 , and H =




1 0

0 −1


 .

We compute

B(X,X) = 0

B(X,Y ) = −1

B(X,H) = 0

B(Y, Y ) = 0

B(Y,H) = 0

B(H,H) = −2.

Therefore the matrix of B(·, ·) with respect to the ordered basis {X,Y,H} is

[B] =




−1

−1

−2



.

If g =



a b

c d


 then

p(g)X =
1

det g
[(a2)X + (−ac)H + (−c2)Y ]

p(g)Y =
1

det g
[(−b2)X + (bd)H + (d2)Y ]

p(g)H =
1

det g
[(−2ab)X + (ad+ bc)H + (2cd)Y ].

Conseqently, with respect to the ordered basis {X,Y,H}, the map p is



a b

c d


 7→ 1

ad− bc




a2 −b2 −2ab

−c2 d2 2cd

−ac bd ad+ bc



.
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In particular, the map p satisfies

diag(x, y) 7→ diag(x/y, y/x, 1). (2.8)

Also note that

[diag(x, 1/x, 1)]t[B][diag(x, 1/x, 1)] = [B]

so that diag(x, 1/x, 1) ∈ SO(V ).

Now let E be the quadratic extension F(δ) of F with δ2 = ∆ ∈ F. Let ι be

the corresponding embedding of E× in GL2(F). Another basis of V consists of

the elements

H =




1 0

0 −1


 , X ′ =




0 −∆

1 0


 , and Y ′ =




0 ∆

1 0


 .

We compute

B(X ′, X ′) = 2∆

B(X ′, Y ′) = 0

B(X ′, H) = 0

B(Y ′, Y ′) = −2∆

B(Y ′, H) = 0

B(H,H) = −2.

Therefore the matrix of B(·, ·) with respect to the ordered basis {H,X ′, Y ′} is

[B′] = diag(−2, 2∆,−2∆). (2.9)
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Letting g =



a b∆

b a


 we have

p(g)H =
1

det g
[(a2 + b2∆)H + (2ab)X ′]

p(g)X ′ =
1

det g
[(2ab∆)H + (a2 + b2∆)X ′]

p(g)Y ′ = Y ′.

(2.10)

We have shown that with respect to the ordered basis {H,X ′, Y ′}, if g ∈ ι(E×)

then

g 7→



g2/(det g)

1


 .

Also note that

[diag(g, 1)]t[B′][diag(g, 1)] = [B ′].

In particular diag(g, 1) is conjugate to an element of O(V ). So if det g = 1,

diag(g, 1) is conjugate to a matrix in SO(V ).

Definition 2.11. Let g ∈ GL2(F). We let τ(g) ⊆ SO1,2(F) be the unique con-

jugacy class of elements having the same nontrivial eigenvalues as those of g.

Proposition 2.12. If g ∈ SL2(F) then p(g) ∈ τ(g2).

Remark. Fix a Cartan subgroup T of SL2(F). Then with respect to an appro-

priate basis of V ,

τ(g) =



g

1


 , g ∈ T.

This follows from the preceding computations.

In what follows, we do not distinguish between the conjugacy class τ(g) and

elements of the conjugacy class. Thus if π is a representation with character Θπ,
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we write Θπ(τ(g)) for Θπ(h) where h is any element of τ(g). Our main formulas,

given in Chapter 5, relate characters of S̃L2(F) on an element (g; ε) in S̃L2(F)

to a character of SO1,2(F) on any element of τ(g).

Proposition 2.13. Let E = F(
√

∆). Let ι be an embedding of E× in GL2(F)

and ϕ(z) = z/z. The map defined by ι′(z) = τ(ι(z)), z ∈ E1, has image in

SO(V ). Moreover, the diagram

E× ϕ−−−→ E1

ι

y
yι′

GL(2)
p−−−→ SO(V )

commutes.

Proof. The first part follows from Proposition 2.12. By (2.10), if z = x+yδ ∈ E×

then

pι(z) =



ι(z2)/Nz

1




and

ι′ϕ(z) = ι′(z/z) = ι′(z2/Nz) =



ι(z2)/Nz

1




as desired.

2.4 Covering Groups

Let G be a locally compact topological group. We first explain how to define

n–fold covers of G. See Moore, [25] and [26] for more details. Let µn denote the

group of n–th roots of unity in F. The group G acts trivially on µn.

Definition 2.14. A Borel 2–cocycle c is a Borel measurable map

c : G×G→ µn
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which satisfies

c(g1g2, g3)c(g1, g2) = c(g1, g2g3)c(g2, g3)

and

c(1, g) = c(g, 1) = 1

for all g, gi in G. The cocycle c is said to be trivial if there is a map s : G→ µn

which satisfies c(g, g′)s(gg′) = s(g)s(g′). Otherwise the cocycle is said to be

nontrivial.

Definition 2.15. Let c be a Borel 2–cocycle. The n–fold covering group G̃ of G

with associated cocycle c is defined to be

G̃ = {(g; ε) : g ∈ G, ε ∈ µn}

with group law

(g; ε)(g′; ε′) = (gg′; εε′c(g, g′)).

The projection map pr : G̃→ G is pr(g; ε) = g. The group G̃ is a group extension

of G in the sense that the sequence

1 −−−→ µn −−−→ G̃
pr−−−→ G −−−→ 1

is exact. This extension is central because µn is contained in the center of G via

the map ε→ (1; ε).

Definition 2.16. Suppose that G is abelian. Let g, h be elements of G and

g̃ ∈ pr−1(g), h̃ ∈ pr−1(h). We define the commutator of g and h, written {g, h},

to be

{g, h} = g̃h̃g̃−1h̃−1. (2.17)

It is clear that {g, h} is independent of the choices of g̃ and h̃.
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We now define the covering groups that we will use. We will construct two–

fold covers of SL2(F) and GL2(F) by explicitly specifying the cocycle. We use

the construction given in Gelbart [9], chapter 2.

If g =



a b

c d


 is any 2 × 2 matrix with entries in F, define a map x by

x(g) =





c if c 6= 0

d otherwise.

(2.18)

Assume that g1, g2 ∈ SL2(F). Define a map cα by

cα(g1, g2) = (x(g1), x(g2))F(−x(g1)x(g2), x(g1g2))F. (2.19)

The following proposition is proved by Kubota [22].

Proposition 2.20. The map cα given in (2.19) is a nontrivial Borel 2–cocycle

on SL2(F).

Thus we have defined a two–fold covering group S̃L2(F) of SL2(F) associated

to the cocycle cα. All nontrivial two–fold covers of SL2(F) are isomorphic to

S̃L2(F) (see Gelbart [9], pp. 14–15 for the proof).

We extend cα to GL2(F), and, following Gelbart [9] define similarly a covering

group G̃L2(F) of GL2(F). This will describe a two–fold cover of GL2(F) which

is a semidirect product of S̃L2(F) and F×.

Let g =



a b

c d


 ∈ GL2(F). Put

q(g) =




a b

c/ det g d/ det g


 . (2.21)
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We have that q(g) ∈ SL2(F). In addition, if y ∈ F×, define

gy = [diag(1, y)]−1g[diag(1, y)] (2.22)

and

v(y, g) =





1 if c 6= 0

(y, d)F otherwise.

(2.23)

A Borel cocycle cβ on GL2(F) is

cβ(g1, g2) = cα(q(g1)
det g2 , q(g2))v(det(g2), q(g1)). (2.24)

Note that cβ restricted to SL2(F) is equal to cα.

Kazhdan and Patterson [19] have a convenient simplification of these formulas.

In the same notation as above, the cocycle cβ on GL2(F) may be written

cβ(g1, g2) =

(
x(g1g2)

x(g1)
,
x(g1g2)

x(g2)

)

F

(
det(g1),

x(g1g2)

x(g1)

)

F

. (2.25)

Restricting this to SL2(F) we get the simple formula

cα(g1, g2) =

(
x(g1g2)

x(g1)
,
x(g1g2)

x(g2)

)

F

. (2.26)

The following proposition is mentioned in Gelbart [9] and is proved in Kubota

[23].

Proposition 2.27. Let y ∈ F×. The map

(g; ε) 7→ (gy; εv(y, g))

is an automorphism of S̃L2(F). It therefore determines a semidirect product of

S̃L2(F) and F×. This semidirect product is isomorphic to the covering group

G̃L2(F) defined by (2.24).
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Instead of cβ, it will be necessary to use a more convenient, but equivalent,

cocycle c in defining G̃L2(F). Define s : GL2(F) → {±1} by

s(g) =





(c, d/ det g)F if cd 6= 0 and ord(c) is odd,

1 otherwise.

(2.28)

Then define c by

c(g1, g2) = cβ(g1, g2)s(g1)s(g2)s(g1g2)
−1.

This is the cocycle we will use to do all of our calculations. (Recall that if x ∈ F

and $ is a uniformizer then x = $ord(x)u for some unit u.)

Definition 2.29. If g ∈ GL2(F) then gy is always given by (2.22). If (g; ε) ∈

G̃L2(F), then (g; ε)y always denotes the element

(g; ε)y = (diag(1, y); 1)−1 (g; ε) (diag(1, y); 1) . (2.30)

Definition 2.31. Let G̃L2(F)+ be the subgroup of G̃L2(F) defined by

G̃L2(F)+ = {(g; ε) : det g ∈ F×2}. (2.32)

If G is any group, we write Z(G) for the center of G. The following proposition

computes the centers of the various covering groups we have mentioned thus far.

Let I denote the 2 × 2 identity matrix.

Proposition 2.33.

Z(S̃L2(F)) = {(±I;±1)}

Z(G̃L2(F)) = {(y2I;±1) : y ∈ F×}

Z(G̃L2(F)+) = {(yI;±1) : y ∈ F×}.
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Proof. Write G̃ for any of the three groups S̃L2(F), G̃L2(F), G̃L2(F)+ and G for

pr(G̃). Clearly, if z̃ = (z; ε) ∈ Z(G̃), then z ∈ Z(G). So we may assume that

z = yI.

If g ∈ G, then

c(z, g) = (y, x(g))Fs(z)s(g)s(zg)
−1,

while

c(g, z) = (y, x(g))F · (y, det g)Fs(g)s(z)s(gz)
−1.

By definition, s(z) = s(yI) = 1 so that

s(z)s(g)s(zg)−1 = s(g)s(z)s(zg)−1 = s(g)s(z)s(gz)−1.

Therefore, the commutator {z, g} equals

z̃g̃z̃−1g̃−1 = (y, det g)F. (2.34)

Hence z̃ ∈ Z(G̃) if and only if (y, det g)F = 1 for all g ∈ G.

If G̃ = G̃L2(F), then (y, det g)F = 1 for all g ∈ G implies that y is a square,

by the nondegeneracy of the Hilbert symbol. Therefore,

Z(G̃L2(F)) = {(y2I;±1) : y ∈ F×}.

If G̃ = G̃L2(F)+ then det g is a square for all g ∈ G. The commutator is 1

for any y. Therefore,

Z(G̃L2(F)+) = {(yI;±1) : y ∈ F×}.

Finally, if G̃ = S̃L2(F), then det g = 1 for all g ∈ G. Thus the commutator

{z, g} = 1 for all g. The element z̃ = (z, ε) will be in the center only if det z =

y2 = 1, i.e. y = ±1. This shows that Z(S̃L2(F)) = {(±I;±1)}.

We end this section by doing some calculations which will simplify the formu-

las in Chapter 4.
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Lemma 2.35. If a, b, c, and d are in F×, then

c(diag(a, b), diag(c, d)) = (a, d)F. (2.36)

Proof. By (2.25), we have

cβ(diag(a, b), diag(c, d)) = (d, b)F(ab, d)F

= (ab2, d)F

= (a, d)F.

Since s is trivial on diagonal matrices, the result follows.

Lemma 2.37. For ξ ∈ F×, g ∈ GL2(F),

(−1, ξ)Fs(ξg)c(ξI, g) = s(g)cβ(ξI,−g). (2.38)

Proof. We have that

(−1, ξ)Fs(ξg)c(ξI, g) = (−1, ξ)Fs(ξg)cβ(ξI, g)s(ξI)s(g)s(ξg)
−1

= s(g)(−1, ξ)Fcβ(ξI, g)

since s is trivial on the diagonal matrix ξI. But

(−1, ξ)Fcβ(ξI, g) = (−1, ξ)F(x(g), ξ)F

= (ξ,−x(g))F

= cβ(ξI,−g)

so the result follows.

2.5 Weil’s Gamma Factors

Let ψ be a nontrivial additive character of F. If a ∈ F×, the character ψa of F is

given by

ψa(x) = ψ(ax). (2.39)
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Definition 2.40. Let γF(ψ) be the Weil index of the map x 7→ ψ(x2) (see [42]).

Define γF(x, ψ) by

γF(x, ψ) =
γF(ψx)

γF(ψ)
. (2.41)

From this definition, it immediately follows that γF(1, ψ) = 1.

The next proposition gives the basic properties of the gamma–factors just

defined. This is stated in Rao, [31].

Proposition 2.42. The following formulas are valid for all x and y in F×.

1. γF(xy, ψ) = γF(x, ψ)γF(y, ψ)(x, y)F.

2. γF(x2y, ψ) = γF(y, ψ). Hence γF(x2, ψ) = 1 and γF(x−1, ψ) = γF(x, ψ).

3. γF(x, ψξ) = (x, ξ)FγF(x, ψ). Hence γF(x, ψξ2) = γF(x, ψ).

4. {γF(x, ψ)}2 = (−1, x)F = (x, x)F. Hence γF(x, ψ)−1 = γF(x, ψ)(−1, x)F

and {γF(x, ψ)}4 = 1.

Proof. The formulas (1) and (2) are proved in Weil [42]. The other formulas

follow from this. To prove (3), note that γF(x, ψξ) = γF(ψxξ)/γF(ψξ). Thus

γF(x, ψξ)γF(ξ, ψ) = (γF(ψxξ)/γF(ψξ)) (γF(ψξ)/γF(ψ))

= γF(xξ, ψ)

= γF(x, ψ)γF(ξ, ψ)(x, ξ)F.

Cancelling γF(ξ, ψ) gives (3). To prove (4), we use (1) and (2) to write

γF(x, ψ)2 = γF(x2, ψ)(x, x)F = (x, x)F.
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2.6 Representation Theory

We state some basic definitions and theorems in the theory of representations of

p–adic groups which we will need later. The basic references for this section are

Silberger [36] and Gelbart [8]. Throughout this section, G is a locally compact

p–adic group.

Definition 2.43. Let Z be the center of G. If there is a character χ such that

π(z)v = χ(z)v for all z ∈ Z then we call π a χ–representation and say that χ is

the central character of π.

We remark that by Schur’s Lemma, if π is irreducible then π has a central

character. In general, if π has a central character then we denote it by χπ.

Definition 2.44. Let n be a positive integer. Let F be a field which contains

µn, the n–th roots of unity. Then a character χ of F× is said to be n–even if

χ(µn) = {1}. If n = 2 then we drop n from the notation and say that χ is even.

If n = 2 and χ is not even then we say that χ is odd.

Definition 2.45. A χ–representation of G is called n–even if χ is an n–even

character. If n = 2, we drop n from the notation and say simply that the repre-

sentation is even.

Definition 2.46. Let H be a subgroup of G and let π be a representation of G on

a complex vector space V . We write π|H for the restriction of the homomorphism

π of G to H.

Definition 2.47. Let G be a group and H be a closed subgroup. Let δH denote

the modular function for H. Let σ be a representation of H on a complex vector

space V . Consider the space F (G, V ) of all locally constant functions f : G→ V
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satsifying f(hg) = δH(h)1/2σ(h)f(g) for all h ∈ H, g ∈ G. The representation π

of G on the space F (G, V ) is called the representation induced by σ on G if

π(g)(f)(x) = f(xg)

for all x, g ∈ G. We write

π = IndGH(σ).

Definition 2.48. Let G be a group and G̃ be a two–fold cover of G. Let π̃ be

an irreducible representation of G̃ on a complex vector space V . Then π̃ is called

genuine if π̃ does not factor to G.

Definition 2.49. Let G be a group and H a closed subgroup of G. Let π be a rep-

resentation of H on a complex vector space V . For any x ∈ G, the representation

πx is the representation of x−1Hx on V given by

πx(x−1hx) = π(h), h ∈ H.

Definition 2.50. Let V be a complex vector space. A representation π : G →

Aut(V ) is said to be admissible if

1. The stabilizer in G of each v in V is an open subgroup of G, and

2. For every compact open subgroup K of G,

V K = {v ∈ V : π(k)v = v for all k ∈ K}

is finite–dimensional.

Definition 2.51 (Principal series, GL2(F)). Let G = GL2(F). Let B be the

subgroup

B =







x z

0 y


 : x, y ∈ F×, z ∈ F




.
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Let η1 and η2 be two characters of F×. Let σ be the character of B defined by

σ



x z

0 y


 = η1(x)η2(y).

Define the principal series representation π(η1, η2) of GL2(F) to be

π(η1, η2) = IndGBσ.

Proposition 2.52. A principal series π(η1, η2) is irreducible except when η(x) =

η1η
−1
2 (x) = |x| or |x|−1. If η(x) = |x|−1 then π(η1, η2) contains a one–dimensional

invariant subspace and the representation induced on the resulting factor space is

irreducible. If η(x) = |x|, then π(η1, η2) contains an irreducible invariant subspace

of codimension one. Moreover, π(η1, η2) and π(λ1, λ2) are equivalent if and only

if (η1, η2) = (λ1, λ2) or (λ2, λ1).

Proof. See Gelbart [8].

Definition 2.53 (Special representation). If π(η1, η2) is reducible, the result-

ing infinite dimensional subquotients of π(η1, η2) are called special representations

and are denoted σ(η1, η2).

Definition 2.54. We call a principal series strongly even if both µ1 and µ2 are

even characters.

Definition 2.55 (Supercuspidal representation). Suppose that π is an ad-

missible representation of G = GL2(F) on V . Let N be the subgroup

N =








1 z

0 1


 : z ∈ F





of G. Then π is supercuspidal if for all v ∈ V ,

∫

U

π(n)v dn = 0
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for some compact open subgroup U of N .

Proposition 2.56. Suppose that π is an irreducible admissible representation of

GL2(F). If π is not supercuspidal, then it is a subrepresentation of a princi-

pal series representation. In particular, if it is infinite dimensional then it is

an irreducible principal series or a special representation. Conversely, if π is

supercuspidal, then it is not equivalent to a subquotient of any principal series

representation.

Proof. See Gelbart [8].

We now give a brief explanation of principal series representations of G̃L2(F).

Let A = {diag(x, 1/x) : x ∈ F×}. Hence Ã ' B̃/N . Let B0 denote the subgroup

of B whose diagonal entries have even v–adic order. (Recall that if x ∈ F and $ is

a uniformizer then x = $ordv(x)u for some unit u.) Then Ã0 = B̃0/N ' A0×Z/2Z

is a maximal abelian subgroup of finite index in Ã. Moreover, Ã2 ⊆ Ã0. Let

η̃ = (η1, η2) be a genuine one–dimensional representation of Ã2 and extend this

to Ã0 arbitrarily. Then extend η̃ to B̃0 by requiring that η̃ be trivial on N . Any

genuine representation of G̃L2(F) which is not supercuspidal is a subquotient of

an induced representation Ind
gGL2(F)
eB0

(τ̃) where τ̃ = Ind
eA
eA0

η̃. (For the proof, see

Gelbart [9].) We write π̃(η1, η2) = Ind
gGL2(F)
eB0

(τ̃). Flicker [6] points out that this

depends only on the restriction of the pair (η1, η2) to Ã2.

We end this section by recalling the theorem on the existence of a global

character of an irreducible representation of a group G.

Definition 2.57. Let G be a locally compact group and Z be the center of G.

Let π be an irreducible admissible representation of G with central character χ.

Let f be any function satisfying the property f(zg) = χ−1(z)f(g) for all z ∈ Z,
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g ∈ G. Then define

π(f) =

∫

G/Z

π(g)f(g) dg.

Here dg is a Haar measure on G/Z.

Recall that the regular set (see Harish–Chandra [13]) is open and dense in G

and its complement in G has measure zero.

The following theorem states that every admissible representation of a group

G has a character defined on the regular set. The theorem holds for all of the

groups that we will consider. It holds in particular for G any reductive algebraic

group; it also holds for both of the covering groups S̃L2(F) and G̃L2(F). The

proof is due to Harish–Chandra [14]. See also Flicker [6], p. 140 and Flicker–

Kazhdan [7], p. 68.

Theorem 2.58. The operator π(f) is of finite rank. Let trace(π(f)) denote the

trace of this operator. Then there is conjugation–invariant function Θπ, defined

on the regular set of G, which satisfies

trace(π(f)) =

∫

G/Z

f(g)Θπ(g) dg.

The function Θπ is called the character of π. Equivalent irreducible representa-

tions have the same character and conversely. If χ is the central character of π,

then Θπ transforms by χ on Z.

Note that if π̃ is genuine, then Θeπ(g; ε) = εΘeπ(g; 1).

2.7 Flicker’s Correspondence

In this section, let G = GL2(F) and let G̃ be an n–fold cover of G. In [6], Flicker

has defined a correspondence between genuine irreducible admissible representa-
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tions π̃ of G̃ and admissible representations π of G. We use Flicker’s character

formula extensively when we derive our character formulas.

Let g be regular with λ1 and λ2 the distinct eigenvalues of g. The map D is

defined on regular g by

D(g) =

∣∣∣∣
(λ1 − λ2)

2

λ1λ2

∣∣∣∣
1/2

(2.59)

and satisfies

D(ζg) = D(g), ζ ∈ F×. (2.60)

Flicker and Kazhdan [7], p. 93, have defined a constant b and showed that

b = n/(d|nr/d|1/2). In their notation, we have taken r = 2 and c = 0, so that

d = gcd(n, r − 1 + 2rc) = 1. Thus

b = n/|n|p.

Kazhdan and Patterson have shown that

|F×/F×n| = n2/|n|p

(see Kazhdan and Patterson [19], Lemma 0.3.2 or Flicker and Kazhdan [7],

Lemma 3.24.2). The constant b becomes

b =
|F×/F×n|

n
.

Flicker’s correspondence for n–fold covers appears in Definition 5.0.1 of [6]

and is repeated here. In our statement, we have corrected the character formula

defining this correspondence to conform with the correspondence of Flicker and

Kazhdan in [7].
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Definition 2.61. Suppose π̃ is a genuine irreducible admissible representation of

an n–fold cover of GL2(F) with central character χ̃ and that π is an admissible

representation of GL2(F) with central character χ. Assume that χ and χ̃ satisfy

the relationship

χ̃(xnI; 1) = χ(xI)

for all x ∈ F×. Then π̃ and π correspond via Flicker’s correspondence if whenever

gn is regular the following relationship holds:

D(gn)Θeπ(g
n; s(gn)−1) =





bD(g)Θπ(g), if g is elliptic

b
∑

ζ∈µn

D(gζ)Θπ(gζ), otherwise.

In the above formula, gζ = diag(ζx, y) if g is conjugate to diag(x, y).

Remark. For g hyperbolic, s(gn)−1 = 1.

We are primarily interested in the case n = 2, so Flicker’s correspondence is

stated in this special case. When we quote Flicker’s corresondence, we always

mean the correspondence in this specific case. The constant b is

b =
|F×/F×2|

2
= 2/|2|p. (2.62)

This is 2 if p 6= 2, and a power of 2 if p = 2.

Definition 2.63 (Flicker’s Correspondence). Let π̃ be a genuine irreducible

admissible representation of G̃L2(F) with central character χ̃ and let π be an

admissible representation of GL2(F) with central character χ. Suppose that χ

and χ̃ satisfy the relationship

χ̃(x2I; 1) = χ(xI) (2.64)
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for all x ∈ F×. Then we say that π̃ and π correspond via Flicker’s correspondence

if whenever g2 is regular the following relationship holds:

D(g2)Θeπ(g
2; s(g2)−1) =





bD(g)Θπ(g), if g is elliptic,

b (D(g)Θπ(g) +D(g′)Θπ(g
′)) if g is hyperbolic.

In the above formula, if g is conjugate to the hyperbolic element diag(x, y) then

g′ = diag(−x, y). (2.65)

Suppose π and π̃ correspond via Flicker’s correspondence. Then we say that

π̃ is Flicker’s lift of π and we write

π̃ = LiftF(π). (2.66)

Flicker has shown the following theorem about this correspondence (see The-

orem 5.2 and Corollary 5.2.1 of Flicker [6]). Flicker’s theorem is stated in the

case of n = 2.

Theorem 2.67. The correspondence π̃ = LiftF(π) is a bijection between irre-

ducible admissible representations π of GL2(F) satisfying χπ(−I) = 1 and gen-

uine irreducible admissible representations π̃ of G̃L2(F). If π is a supercuspidal

representation of GL2(F) with even central character, then there is a supercuspi-

dal representation π̃ of G̃L2(F) such that π̃ = LiftF(π). If π is a special represen-

tation σ(µ1, µ2) of GL2(F) with both µi odd, then LiftF(π) is equivalent to an odd

oscillator representation of G̃L2(F). If π is an even one–dimensional represen-

tation of GL2(F) then LiftF(π) is an even oscillator representation of G̃L2(F).

(See Proposition 2.70 below.)

Remark. An odd oscillator representation of G̃L2(F) is supercuspidal. This is

an example of a supercuspidal representation occuring in Flicker’s lifting which
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does not come from a supercuspidal representation of GL2(F). This phenomenon

is further illustrated by the following. Let π = π(µ1, µ2) be a reducible princi-

pal series of GL2(F) such that µ1 and µ2 are both odd, i.e., π is even but not

strongly even. Then Flicker’s lifting of π is zero by Flicker’s formula for principal

series (see Proposition 2.68 below). On the other hand, π is the sum of a special

representation and an odd one–dimensional representation. The special represen-

tation lifts to an odd oscillator representation and the odd one–dimensional lifts

to minus that odd oscillator representation (Proposition 2.70 below). This gives

a different way of seeing why the principal series π lifts to 0.

Flicker gives examples of special cases of this correspondence. He computes

the correspondence for principal series and for the oscillator representations. We

state these in the case n = 2. Flicker uses the full power of the trace formula to

get the correspondence on supercuspidal representations.

Proposition 2.68. Let η1 and η2 be even characters of F×. Let µ1 and µ2 be

two characters of F×2 which satisfy µi(x
2) = ηi(x) for all x and extend these to

characters of F× arbitrarily. We have the character relation

Θeπ(µ1,µ2)(g
2; 1) =





b
D(g)

D(g2)
Θπ(η1,η2)(g) if g ∼ diag(x, y)

0 otherwise.

(2.69)

(In the above statement g ∼ h means that g is conjugate via GL2(F) to h.)

Proposition 2.70. Let µ0 be a character of F×. Let ω(µ) be the oscillator rep-

resentation attached to µ on G̃L2(F). Then

Θω(µ)(g
2; s(g2)−1) = b µ0(−1)µ(g)

D(g)

D(g2)

for g elliptic and

Θω(µ)

(
g2; 1

)
= b [µ0(− det g)D(g) + µ0(det g′)D(g′)]/D(g2)
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if g = diag(x, y) is hyperbolic [with g′ defined by (2.65)].

Corollary 2.71. If µ is even, then

D(g2)Θω(µ)(g
2; s(g2)−1) =





bD(g)µ(g) if g is elliptic

b (D(g)µ(g) +D(g′)µ(g′)) otherwise

while if µ is odd,

D(g2)Θω(µ)(g
2; s(g2)−1) =





−bD(g)µ(g) if g is elliptic

−b (D(g)µ(g) +D(g′)µ(g′)) otherwise.

=





bD(g)Θσ(g) if g is elliptic

b (D(g)Θσ(g) +D(g′)Θσ(g
′)) otherwise.

Here g′ is defined in (2.65) and σ is a special representation σ(µ| · |−1/2, µ| · |1/2)

as in Definition 2.53.

The next proposition shows that characters of genuine admissible represen-

tations vanish off of elements of the form (g2; ε). This property, combined with

Proposition 2.4 shows that when we apply the inversion formula (see Theorem

3.12 below) to Flicker’s lifting, there will be exactly two nonzero terms which

appear in the sum.

Proposition 2.72. Let π̃ be a genuine admissible representation of G̃L2(F).

Suppose that y ∈ G̃L2(F) is regular and is not of the form (g2; ε). Then Θeπ(y) =

0.

Proof. By Flicker [6], pp. 127–128, such y have the following property:

there exists h ∈ G̃L2(F) such that h−1yh = y · (1;−1).
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Since π̃ is genuine, we have

Θeπ(y) = Θeπ(h
−1yh) = Θeπ(y(1;−1)) = −Θeπ(y).

The commutator can be computed explicitly on an elliptic Cartan T∆.

Proposition 2.73. Choose an embedding ι : E× = F(
√

∆) → T∆. Let g = ι(z)

and h = ι(w). Then

{g, h} = (z, w)E.

Proof. See Flicker [6], pp. 127–128 and Blondel [4], p. 14.

Remark. In the above proposition, (·, ·)E is the Hilbert symbol of the quadratic

extension E = F(
√

∆) of F. See Serre [33]. It satisfies the property

(α, β)E = (Nα, β)F, α ∈ E×, β ∈ F×.
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Chapter 3

Representations of G̃L2(F)+

We would like to derive a formula relating characters of S̃L2(F) and characters

of SO1,2(F). The first step is to restrict representations of G̃L2(F) to G̃L2(F)+;

this is done in Theorem 3.8. The unexpected result says that the restriction is

a sum of representations parameterized by F×/F×2. We then derive an “inver-

sion formula” which computes the character of an individual summand of this

restriction if the character of the original representation is known. Finally, we

explicitly parameterize summands appearing in the restriction of a representation

to G̃L2(F)+.

3.1 Restricting to G̃L2(F)+

We address the problem of what happens when we restrict a genuine irreducible

representation π̃ of G̃L2(F) to the subgroup G̃L2(F)+.

Recall that G̃L2(F)+ = {(h; ε) : deth ∈ F×2}. Write

V = F×/F×2 = Z2 × · · · × Z2 = 〈α1〉 × · · · × 〈αn〉.
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The Hilbert symbol (·, ·)F is a nondegenerate bilinear form on this F2 vector space

(see Proposition 2.3). If W is a subspace of V , the orthogonal complement of W

is

W⊥ = {v ∈ V : (w, v)F = 1 for all w ∈W }. (3.1)

Write

H̃k = G̃L2(F)α1,... ,αk = 〈
{

(h; ε) : deth ∈ F×2 ∪
k⋃

i=1

αiF
×2

}
〉 (3.2)

for k = 0, . . . , n. Note that H̃0 = G̃L2(F)+ and H̃n = G̃L2(F). We have the

chain of inclusions

H̃0 ⊆ H̃1 ⊆ · · · ⊆ H̃k ⊆ · · · ⊆ H̃n

with H̃k/H̃k−1 of order 2 for all k = 1, . . . , n.

Proposition 3.3. Let H̃ be a subgroup of G̃L2(F). Then Z(H̃), the center of

H̃, equals

Z(H̃) = {(h; ε) : h ∈ Z(H) and (h, det g)F = 1 for all g ∈ H}. (3.4)

In particular, we have

Z(H̃k) = {(diag(y, y);±1) : (αi, y)F = 1 for all i = 1, . . . , k}

= {(diag(y, y);±1) : y ∈ 〈α1, . . . , αk〉⊥}

for all k = 0, . . . , n.

Proof. The proof of this proposition is very similar to that of Proposition 2.33.

It is clear that if (h; ε) ∈ Z(H̃k) then h = diag(y, y) for some y ∈ F×. The

condition (y, det g)F = 1 [see (2.34)] for all g ∈ Hk means that (y, αi)F = 1 for

all i = 1, . . . , k. This is true if and only if y ∈ 〈αi〉⊥ for all i = 1, . . . , k.
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Proposition 3.5. For some β ∈ 〈α1, . . . , αk−1〉⊥, we have that (αk, β)F = −1.

Proof. Assume not. This implies that if β ∈ 〈α1, . . . , αk−1〉⊥, then (β, αk)F = 1,

that is, β ∈ 〈αk〉⊥. So 〈α1, . . . , αk−1〉⊥ ⊆ 〈αk〉⊥. Taking ⊥ of both sides, we

get that 〈αk〉 ⊆ 〈α1, . . . , αk−1〉. This contradicts the fact that {α1, . . . , αk} is a

linearly independent set.

Let I be the 2 × 2 identity matrix.

Proposition 3.6. Let H̃ be a subgroup of G̃L2(F) such that S̃L2(F) ⊆ H̃ and

Z(H̃) ⊆ {(xI; ε)}. Let σ̃ be a genuine irreducible representation of H̃ with central

character χeσ. Then

χeσy(zI; ε) = (y, z)F · χeσ(zI; ε).

Proof. This follows from the computation

(zI; ε)y = (y, z)F(zI; ε)

(see Definition 2.29) and the fact that χeσ is genuine.

Remark. Recall that Z(H̃k−1) = {(diag(y, y),±1) : y ∈ 〈α1, . . . , αk−1〉⊥}.

Proposition 3.6 says that (diag(1, αk), 1) acts nontrivially on Z(H̃k−1).

Proposition 3.7 (Restriction principle). Let H ⊆ G be a subgroup of G hav-

ing index two. Let y be a representative for the nontrivial coset of G/H. Let ω

be the nontrivial character of G/H (so ω(h) = 1, ω(yh) = −1 for h ∈ H). Let π

be an irreducible representation of G.

1. Suppose π⊗ω 6= π. Then σ = π|H is irreducible. Furthermore σy = σ and

IndGH(σ) = π ⊕ (π ⊗ ω).

2. Suppose π ⊗ ω = π. Then π|H = σ1 ⊕ σ2 is reducible. Here each σi is

irreducible. Furthermore σ1 6= σy1 ' σ2 and IndGH(σ1) = IndGH(σ2) are irreducible.
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Proof. See Bröcker and tom Dieck, [5].

The following theorem achieves the goal of this section. It states that the

restriction of a genuine irreducible representation of G̃L2(F) is a sum of repre-

sentations parameterized by F×/F×2.

Theorem 3.8. Let π̃ be a genuine irreducible representation of G̃L2(F). Let σ̃

be an irreducible constituent of π̃|gGL2(F)+
. Then

π̃|gGL2(F)+
=

∑

α∈F×/F×2

σ̃α.

Hence the irreducible constituents of π̃|gGL2(F)+
are parameterized by α ∈ F×/F×2.

Proof. Fix k ≥ 1. Let ρ̃ be an irreducible representation of H̃k. Let σ̃ be an

irreducible constituent of ρ̃ eHk−1
. We may assume by Proposition 3.5 (and the

remark after Proposition 3.6) that there exists β having the properties (αk, β)F =

−1 and (diag(β, β); ε) ∈ Z(H̃k−1). By Proposition 3.6, the central characters χeσαk

and χeσ are of opposite sign on (diag(β, β); ε) in Z(H̃k−1). Therefore σ̃αk 6= σ̃.

Since (diag(1, αk); ε) is in H̃k but not in H̃k−1, the restriction principle gives that

ρ̃| eHk−1
= σ̃1 ⊕ σ̃2

with each σ̃i irreducible. The proof now follows by restriction in stages.

Remark. A statement of this result appears in Gelbart and Piatetski–Shapiro

[11] on p. 101.

3.2 Inversion via the Center

In light of Theorem 3.8, we now consider the problem of finding a formula for

the character of the individual constituents σ̃α appearing in the restriction of an
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irreducible genuine representation π̃ of G̃L2(F) to G̃L2(F)+. We will show that

Θeσα can be written in terms of χeσα and Θeπ.

To begin, we let π̃ be a genuine irreducible representation of G̃L2(F). By

Theorem 3.8 we may write π̃|gGL2(F)+
=

∑
α σ̃

α, where each σ̃α is a genuine irre-

ducible representation of G̃L2(F)+. The group F×/F×2 acts transitively on the

set {σ̃α}.

Fix a set of coset representatives {α} for F×/F×2. For each α we have that

χeπ(x
2I; ε) = χeσα(x

2I; ε). (3.9)

By Proposition 3.6 we also have

χ(eσα)a(xI; ε) = (a, x)Fχeσα(xI; 1) (3.10)

for every α.

Let zα be any element satisfying

pr(zα) = αI. (3.11)

Each zα is in the center of G̃L2(F)+.

Theorem 3.12 (Inversion Formula). Let π̃ be a genuine, irreducible repre-

sentation of G̃L2(F) and write

π̃|gGL2(F)+
=

∑

α∈F×/F×2

σ̃α.

Then for any α ∈ F×/F×2,

Θeσα(g̃) =
1

|F×/F×2|
∑

ξ∈F×/F×2

χeσα(zξ)
−1Θeπ(zξg̃). (3.13)

Here we abuse notation and write ξ for the coset ξF×2 as well as an element of

that coset.
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Proof. First we show that the inversion formula is well defined. In particular, we

claim that the formula is independent of the choice of coset representatives for

F×/F×2. Fix ξ and let ξ′ = y2ξ, so that ξF×2 = ξ′F×2. By (2.35), (y2ξI; 1) =

(y2I; 1)(ξI; 1). It follows that

χeσα(zξ′)
−1Θeπ(zξ′ g̃) = χeσα(y

2I; 1)−1χeσα(zξ)
−1Θeπ((y

2I; 1)zξg̃)

= χeσα(y
2I; 1)−1χeσα(zξ)

−1χeπ(y
2I; 1)Θeπ(zξg̃).

From (3.9), we see

χeσα(zξ′)
−1Θeπ(zξ′ g̃) = χeσα(y

2I; 1)−1χeσα(zξ)
−1χeσα(y

2I; 1)Θeπ(zξg̃)

= χeσα(zξ)
−1Θeπ(zξg̃).

This proves the claim.

Now we derive the inversion formula. Let z be in the center of G̃L2(F)+.

Then

Θeπ(zg̃) =
∑

α

χeσα(z)Θeσα(g̃).

For any constants cξ, we have

∑

ξ

cξΘeπ(zξg̃) =
∑

ξ

cξ
∑

α

χeσα(zξ)Θeσα(g̃)

=
∑

α

Θeσα(g̃)
∑

ξ

cξχeσα(zξ).

Fix α0 and let cξ = χeσα0 (zξ)
−1. Substitute in to get

∑

ξ

χeσα0 (zξ)
−1Θeπ(zξg̃) =

∑

α

Θeσα(g̃)
∑

ξ

χeσα0 (zξ)
−1χeσα(zξ).

By transitivity of the action of F×/F×2 on the σ̃α’s, we may pick a so that

(σ̃α0)a = σ̃α. (This a depends on α.) By (3.6),

∑

ξ

χeσα0 (zξ)
−1Θeπ(zξg̃) =

∑

α

Θeσα(g̃)
∑

ξ

(a, ξ)F.
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But

∑

ξ

(a, ξ)F =





|F×/F×2| if a is a square

0 otherwise.

Hence

Θeσα0 (g̃) =
1

|F×/F×2|
∑

ξ

χeσα0 (zξ)
−1Θeπ(zξg̃).

This completes the proof, since α0 was arbitrary.

3.3 Parameterization

Our goal in this section is to parameterize the representations which appear in the

restriction to G̃L2(F)+ of a Flicker lifting. In order to do this, some preparation

and notation is required.

Fix, once and for all, a nontrivial character ψ of F.

A two–fold cover of F× is given by the cocycle c(x, y) = (x, y)F.

Proposition 3.14. Let γF(x, ψ) be Weil’s gamma factor as defined in Definition

2.40. The map

λ̃(x; ε) = γF(x, ψ)ε

is a genuine character of the two–fold cover of F×.

Proof. We have

λ̃((x; ε)(x′; ε′)) = λ̃(xx′; εε′(x, x′)F)

= γF(xx′, ψ)εε′(x, x′)F

= γF(x, ψ)γF(x′, ψ)(x, x′)Fεε
′(x, x′)F

= γF(x, ψ)εγF(x′, ψ)ε′

= λ̃(x; ε)λ̃(x′; ε′);
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this establishes the proposition.

Definition 3.15. Suppose that ν0 is any character of F×. Define a character of

Z(G̃L2(F)+) by the formula

χν0(xI; ε) = ν0(x)γF(x, ψ)ε. (3.16)

It is clear that χν0 is a genuine character of Z(G̃L2(F)+). Since the quotient

of two genuine characters is not genuine, i.e., a character of F×, it is also obvious

that each genuine character of Z(G̃L2(F)+) is of the form χν0 for some character

ν0 of F×.

Now let π be an irreducible admissible representation of GL2(F) and let π̃ =

LiftF(π). Recall that the central characters of π̃ and π are related by (2.64):

χeπ(x
2I; 1) = χπ(xI).

In particular, χπ(−I) = 1. The central character of any representation appearing

in the restriction of π̃ to G̃L2(F)+ also satisfies (2.64), see (3.9).

Definition 3.17. Let π̃ = LiftF(π). Let ν0 be a character of F× which satisfies

χπ(xI) = ν0(x
2). (3.18)

If π and ν0 satisfy (3.18), we define L(π, ν0) to be the constituent of π̃|gGL2(F)+

with central character χν0.

Remark. Since L(π, ν0) has central character χν0 , by (3.9) it follows that

χeπ(x
2; 1) = ν0(x

2)γF(x2, ψ) = ν0(x
2).

By (2.64) this is χπ(xI). This explains condition (3.18).
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Proposition 3.19. Fix ν0. Let x ∈ F×. Put qx = (x, ·)F. Then

L(π, ν0)
x = L(π, ν0qx).

(See Definition 2.49.) Hence

π̃|gGL2(F)+
=

∑

x∈F×/F×2

L(π, ν0qx).

Proof. This follows from the way we are parameterizing summands in the restric-

tion and the “central character trick” [see (3.10)]:

χxν0(yI; ε) = (x, y)Fχν0(yI; ε)

= qx(y)ν0(y)γF(y, ψ)ε

= ν0(y)γF(y, ψx)ε

= χν0qx(yI; ε).

Remark. We have that G̃L2(F)+ ' S̃L2(F) · Z(G̃L2(F)+). Hence there is

no further reducibility of the restriction of π̃ to S̃L2(F), and the irreducible

constituents of π̃|fSL2(F) are parameterized by F×/F×2. This result is surprising

and its analogue for the linear group GL2(F) is false (see Gelbart and Knapp, [21]

and Tadic, [37]). In general, understanding the representation theory of SL2(F)

by restricting representations of GL2(F) is quite difficult; see Labesse–Langlands

[18].

We will restrict L(π, ν0) to S̃L2(F) in Chapter 5. The condition on (π, ν0) and

(σ, λ0) needeed to guarantee L(π, ν0) = L(σ, λ0) as representations of S̃L2(F) is

nontrivial and is given in Lemma 5.34.
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Chapter 4

The Character of the Oscillator Representation

Let ω(ψ) = ωe(ψ) ⊕ ωo(ψ) be the oscillator representation of S̃L2(F) attached

to ψ. (See Gelbart and Piatetski–Shapiro in [10], p. 150, for a clear exposition

of the definition of ω(ψ).) In this chapter, we explicitly compute the charac-

ters of ωe(ψ) and ω0(ψ) and get formulas for the sums and differences of these.

The derivation uses the inversion formula and Flicker’s formula for the character

of the oscillator representation (see Proposition 2.70). The idea motivates the

derivation of the general character identities in the next chapter. In fact, we

could have proved these general identities first and obtained the formulas in this

chapter as a consequence. In the end, we felt it would be useful to have both

computations and have included the explicit derivation of the character of the

oscillator representation as a firm starting point. The fact that these identities

are a special case of the general identities is given in Corollary 5.19.

For a general reference for the character of the oscillator representation, see

Howe [15]. Additional information in the real case is given in Torasso [38] and

Adams [2]. For the p–adic case see Prasad [29]. We remark that Prasad’s formula

is given in terms of the norm one element z = w/w corresponding to an element

of SL2(F).
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We require some notation. Let m = |F×/F×2|. Let DSO and DSL be the Weyl

denominators for SO1,2(F) and SL2(F) respectively. So if x, y ∈ F×,

DSO(diag(x, 1/x, 1)) = |(1 − x)(1 − 1/x)|1/2,

and

DSL(diag(x, 1/x)) = |(1 − x2)(1 − 1/x2)|1/2.

We have the following lemmas.

Lemma 4.1. Suppose that g ∈ SL2(F). Then

DSO(τ(±g))
DSL(g)

= | det(1 ± g)|−1/2.

Proof. Let x ∈ F× and put g = diag(x, 1/x). We have

DSO(τ(±g))
DSL(g)

=
|(1 ∓ x)(1 ∓ 1/x)|1/2
|(1 − x2)(1 − 1/x2)|1/2 = |(1±x)(1±1/x)|−1/2 = | det(1±g)|−1/2.

Let E be a the quadratic extension F(
√

∆). Let ι be an embedding of E× in

GL2(F) and write ι(E1) = S∆ ⊂ SL2(F).

Now suppose that g ∈ S∆. Write g = ι(z) with z ∈ E1. Then

DSO(τ(±g))
DSL(g)

=
|(1 ∓ z/z)(1 ∓ z/z)|1/2

|(1 − z2/z2)(1 − z2/z2)|1/2

= |(1 ± z/z)(1 ± z/z)|−1/2

= | det(1 ± g)|−1/2.

Since any element of SL2(F) is conjugate to an element of one of the above

two forms, the result follows.

Definition 4.2. For a ∈ F×, define

Φa(g) = | det(1 + g/a)|−1/2 (4.3)

We abuse notation and write Φ±(g) in the case that a = ±1.
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Notation 4.4. If ν0 is a character of F×, we always reserve the letter ν to signify

the one–dimensional representation of GL2(F) given by ν = ν0 ◦ det.

Let µ0 be a character of F× and suppose that ω(µ) is an oscillator represen-

tation of G̃L2(F). (See Gelbart and Piatetski–Shapiro in [10], p. 151.) Let ν0 be

another character of F× and let ω(µ)(ν0) be the summand of ω(µ)|gGL2(F)+
which

has central character

χν0(xI; ε) = ν0(x)γF(x, ψ)ε.

4.1 Hyperbolic Set

We begin this section with some identities involving the map D defined by (2.59).

We have that

D(diag(x, y))

D(diag(x2, y2))
= |(1 + y/x)(1 + x/y)|−1/2

and

D(diag(−x, y))
D(diag(x2, y2))

= |(1 − y/x)(1 − x/y)|−1/2.

Taking y = 1 and g = diag(x, 1/x) we obtain

D(diag(x, 1))

D(diag(x2, 1))
= |(1 + x)(1 + 1/x)|−1/2 = | det(1 + g)|−1/2 = Φ+(g) (4.5)

and

D(diag(−x, 1))
D(diag(x2, y2))

= |(1 − x)(1 − 1/x)|−1/2 = | det(1 − g)|−1/2 = Φ−(g). (4.6)

Let g = diag(x, 1/x) and let g̃ = (g; ε). By the inversion formula, we have

that

Θω(µ)(ν0)(g̃) =
1

m

∑

α∈F×/F×2

χν0(zα)
−1Θω(µ) (zαg̃) .
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By Proposition 2.72, all but one of the terms in the sum is zero, i.e.,

Θω(µ)(ν0)(g̃) =
ε

m
(ξ, x)Fχν0(ξI; 1)

−1Θω(µ)(diag(ξx, ξ/x); 1) (4.7)

for ξ such that ξ ≡ x mod squares. This is a ξ which makes diag(ξx, ξ/x) a

square; without loss of generality we take ξ = x.

We now make the following observations. By definition of χν0 and properties

of gamma factors (see Proposition 2.42) we have that (recall ξ = x)

(ξ, x)Fχν0(ξI; 1)
−1 = (−1, x)Fχν0(x

−1I; (x, x)F)

= γF(x−1, ψ)ν0(x
−1)

= γF(x, ψ)ν0(x)
−1.

By Flicker’s formula for the character of the oscillator representation (see Propo-

sition 2.70), we have that

Θω(µ) (diag(ξx, ξ/x); 1) = Θω(µ)

(
diag(x2, 1); 1

)

= b

[
µ0(−x)

D(diag(x, 1))

D(diag(x2, 1))
+ µ0(x)

D(diag(−x, 1))
D(diag(x2, 1))

]
.

By (4.5) and (4.6), this becomes

Θω(µ) (diag(ξx, ξ/x); 1) = bµ0(x)

[
µ0(−1)

| det(1 + g)|1/2 +
1

| det(1 − g)|1/2
]
.

Incorporating these observations in (4.7) we obtain the following proposition.

Proposition 4.8. Let g = diag(x, 1/x) and g̃ = (g; ε). Suppose that µ0 and ν0

are characters of F×. Then

Θω(µ)(ν0)(g̃) =
bεµ0(x)ν0(x)

−1γF(x, ψ)

m

[
µ0(−1)

| det(1 + g)|1/2 +
1

| det(1 − g)|1/2
]
.

(4.9)
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Taking µ0 = ν0 in (4.9), and hence µ = ν, we get

Θω(ν)(ν0)(g̃) =
bεγF(x, ψ)

m

[
ν0(−1)

| det(1 + g)|1/2 +
1

| det(1 − g)|1/2
]
. (4.10)

We apply (4.10) twice, once to a character ν satisfying ν0(−1) = 1 and once to

a character ν ′ satisfying ν ′0(−1) = −1. Adding and subtracting the results we

obtain

Θω(ν)(ν0)+ω(ν′)(ν′
0
)(g̃) =

2bεγF(x, ψ)

m| det(1 − g)|1/2

and

Θω(ν)(ν0)−ω(ν′)(ν′
0
)(g̃) =

2bεγF(x, ψ)

m| det(1 + g)|1/2 .

But by (2.62), b = |F×/F×2|/2, so that 2b/m = 1. We have shown the following

proposition.

Proposition 4.11. Let g = diag(x, 1/x) and g̃ = (g; ε). Suppose that ν0 and ν ′0

are characters of F× that satisfy ν0(−1) = 1 and ν ′0(−1) = −1. Then

Θω(ν)(ν0)±ω(ν′)(ν′
0
)(g̃) =

γF(x, ψ)ε

| det(1 ∓ g)|1/2 .

This is consistent with the calculation of the character of the oscillator rep-

resentation given by Howe [15].

4.2 Elliptic Set

Let E = F(δ) be a quadratic extension of F, δ2 = ∆ ∈ F. Fix an embedding ι of

E× in GL2(F) and write S∆ = ι(E1) (see Section 2.2). Set δ′ = ι(δ).

Suppose g is an elliptic element of SL2(F). Without loss of generality, g ∈ S∆

for some ∆. By the inversion formula, we have that

Θω(µ)(ν0)(g̃) =
1

m

∑

α∈F×/F×2

χν0(zα)
−1Θω(µ) (zαg̃) .

The analysis is divided into two cases, the case of g a square and g not a square.
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4.2.1 Elliptic Set, Case I: g = h2

Suppose that g is the square of an element h in GL2(F). Write ι(z) = g, ι(w) = h

and g̃ = (g; ε). Since det g = 1, it follows that deth = Nw = ±1.

We will need the following calculations involving the function D from (2.59).

Lemma 4.12. Suppose that g = h2. Then

D(h)

D(g)
= | det(1 + g/ deth)|−1/2 = Φdeth(g). (4.13)

Proof. Note that

D(h)

D(g)
=

∣∣∣∣
(w − w)2/ww

(z − z)2/zz

∣∣∣∣
1/2

=

∣∣∣∣
(1 − w/w)(1 − w/w)

(1 − z/z)(1 − z/z)

∣∣∣∣
1/2

= |(1 + w/w)(1 + w/w)|−1/2

= | det(1 + ι(w2/Nw))|−1/2 = | det(1 + g/ deth)|−1/2

= Φdeth(g).

Lemma 4.14. Suppose that g = h2. Then

D(δ′h)

D(g)
= | det(1 − g/ deth)|−1/2 = Φ− deth(g). (4.15)

Proof. We have

D(δ′h)

D(g)
=

∣∣∣∣
(δw − δw)2/δwδw

(z − z)2/zz

∣∣∣∣
1/2

=

∣∣∣∣
(1 − δw/δw)(1 − δw/δw)

(1 − z/z)(1 − z/z)

∣∣∣∣
1/2

=

∣∣∣∣
(1 + w/w)(1 + w/w)

(1 − z/z)(1 − z/z)

∣∣∣∣
1/2

= |(1 − w/w)(1 − w/w)|−1/2

= | det(1 − ι(w2/Nw))|−1/2
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so that

D(δ′h)

D(g)
= | det(1 − g/ deth)|−1/2 = Φ− deth(g).

By Proposition 2.4, ξg is a square if and only if ξ = 1 or ∆. [In particular,

∆g = (δ′h)2.]

The inversion formula becomes

Θω(µ)(ν0)(g̃) =
1

m

[
Θω(µ)(g̃) + χν0(∆I; 1)

−1Θω(µ)((∆I; 1)g̃)
]

(4.16)

by Proposition 2.72. By Flicker’s formula for the character of the oscillator

representation, we have that

Θω(µ)(g̃) = εs(g)Θω(µ)(g; s(g)
−1)

= bεs(g)µ0(−1)µ(h)
D(h)

D(g)

= bεs(g)µ0(− deth)
D(h)

D(g)
.

By (4.13) this becomes

Θω(µ)(g̃) =
bεs(g)µ0(− deth)

| det(1 + g/ deth)|1/2 . (4.17)

We now consider the term χν0(∆I; 1)
−1Θω(µ)((∆I; 1)g̃). By definition, we

have

χν0(∆I; 1)
−1 = ν0(∆)−1γF(∆, ψ)(−1,∆)F. (4.18)

Flicker’s formula for the character of the oscillator representation yields

Θω(µ)((∆I; 1)g̃) = εs(∆g)c(∆I, g)Θω(µ)(∆g; s(∆g)
−1)

= bεs(∆g)c(∆I, g)µ0(−1)µ(δ′h)
D(δ′h)

D(∆g)

= bεs(∆g)c(∆I, g)µ0(∆ deth)
D(δ′h)

D(∆g)
.
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Equation (2.60) implies that the right–hand side equals

bεs(∆g)c(∆I, g)µ0(∆ deth)
D(δ′h)

D(g)
.

Hence, by (4.15),

Θω(µ)((∆I; 1)g̃) =
bεs(∆g)c(∆I, g)µ0(∆ deth)

| det(1 − g/ deth)|1/2 . (4.19)

Putting (4.18) and (4.19) together we obtain

χν0(∆I; 1)
−1Θω(µ)((∆I; 1)g̃) =

bε(−1,∆)Fs(∆g)c(∆I, g)µ0(∆ deth)ν0(∆)−1γF(∆, ψ)

| det(1 − g/ deth)|1/2 .

We condense the result using (2.38) and obtain

χν0(∆I; 1)
−1Θω(µ)((∆I; 1)g̃) =

bεs(g)cβ(∆I,−g)µ0(∆ deth)ν0(∆)−1γF(∆, ψ)

| det(1 − g/ deth)|1/2 .
(4.20)

Plugging (4.17) and (4.20) into (4.16), the following proposition follows.

Proposition 4.21. Suppose g = h2 ∈ S∆ is regular elliptic and g̃ = (g; ε).

Suppose that µ0 and ν0 are characters of F×. Then

Θω(µ)(ν0)(g̃) =
bεs(g)

m

[
µ0(− deth)

| det(1 + g/ deth)|1/2

+
cβ(∆I,−g)γF(∆, ψ)µ0(∆ deth)ν0(∆)−1

| det(1 − g/ deth)|1/2
]
.

(4.22)

Taking µ0 = ν0 in (4.22), and hence µ = ν, we get

Θω(ν)(ν0)(g̃) =
bεs(g)

m

[
ν0(− deth)

| det(1 + g/ deth)|1/2

+
cβ(∆I,−g)γF(∆, ψ)ν0(deth)

| det(1 − g/ deth)|1/2
]
.
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Hence we have that

Θω(ν)(ν0)(g̃) =





bεs(g)

m

[
ν0(−1)

| det(1 + g)|1/2 +
cβ(∆I,−g)γF(∆, ψ)

| det(1 − g)|1/2
]

bεs(g)

m

[
1

| det(1 − g)|1/2 +
ν0(−1)cβ(∆I,−g)γF(∆, ψ)

| det(1 + g)|1/2
]

(4.23)

according as deth = ±1.

We apply this twice, once to a character ν satisfying ν0(−1) = 1 and once to

a character ν ′ satisfying ν ′0(−1) = −1. Adding and subtracting the results and

noticing that 2b/m = 1, the following proposition follows.

Proposition 4.24. Suppose that g = h2 ∈ S∆ is regular elliptic and g̃ = (g; ε).

Suppose that ν0 and ν ′0 are characters of F× that satisfy ν0(−1) = 1 and ν ′0(−1) =

−1. Then

Θω(ν)(ν0)+ω(ν′)(ν′
0
)(g̃) =





εs(g)γF(∆, ψ)cβ(∆I,−g)
| det(1 − g)|1/2 , deth = 1

εs(g)

| det(1 − g)|1/2 , deth = −1.

and

Θω(ν)(ν0)−ω(ν′)(ν′
0
)(g̃) =





εs(g)

| det(1 + g)|1/2 , deth = 1

εs(g)γF(∆, ψ)cβ(∆I,−g)
| det(1 + g)|1/2 , deth = −1.

4.2.2 Elliptic Set, Case II: g 6= h2

Assume now that g is not the square of an element in GL2(F).

Put ι(z) = g. By Proposition 2.4, we may write ξ0z = w2 with ξ0 = Nw.

Let h = ι(w) and g̃ = (g; ε). Note that ξ0∆z = (δw)2 and if ξz is a square, then

ξ = ξ0 or ξ0∆.
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We begin again with some computations involving D.

Lemma 4.25. Suppose that ξ0g = h2 with ξ0 = deth. Then

D(h)

D(ξ0g)
= | det(1 + g)|−1/2 = Φ+(g). (4.26)

Proof. Note that

D(h)

D(ξ0g)
=
D(h)

D(g)

=

∣∣∣∣
(w − w)2/ww

(z − z)2/zz

∣∣∣∣
1/2

=

∣∣∣∣
(1 − w/w)(1 − w/w)

(1 − z/z)(1 − z/z)

∣∣∣∣
1/2

=

∣∣∣∣
(1 − w/w)(1 − w/w)

(1 − ξ0z/ξ0z)(1 − ξ0z/ξ0z)

∣∣∣∣
1/2

= |(1 + w/w)(1 + w/w)|−1/2

= | det(1 + ι(w2/Nw))|−1/2.

Since ι(w2/Nw) = h2/ deth = g, we get

D(h)

D(ξ0g)
= | det(1 + g)|−1/2 = Φ+(g).

Lemma 4.27. Suppose that ξ0g = h2 with ξ0 = deth. Then

D(δ′h)

D(ξ0∆g)
= | det(1 − g)|−1/2 = Φ−(g). (4.28)

Proof. We have

D(δ′h)

D(ξ0∆g)
=
D(δ′h)

D(g)
.
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Hence,

D(δ′h)

D(ξ0∆g)
=

∣∣∣∣
(δw − δw)2/δwδw

(z − z)2/zz

∣∣∣∣
1/2

=

∣∣∣∣
(1 − δw/δw)(1 − δw/δw)

(1 − z/z)(1 − z/z)

∣∣∣∣
1/2

=

∣∣∣∣
(1 + w/w)(1 + w/w)

(1 − z/z)(1 − z/z)

∣∣∣∣
1/2

=

∣∣∣∣
(1 + w/w)(1 + w/w)

(1 − ξ0z/ξ0z)(1 − ξ0z/ξ0z)

∣∣∣∣
1/2

= |(1 − w/w)(1 − w/w)|−1/2

= | det(1 − ι(w2/Nw))|−1/2.

Since ι(w2/Nw) = h2/ deth = g, we get

D(δ′h)

D(ξ0∆g)
= | det(1 − g)|−1/2 = Φ−(g).

By Proposition 2.72, the inversion formula becomes

Θω(µ)(ν0)(g̃) =
1

m

[
χν0(ξ0I; 1)

−1Θω(µ)((ξ0I; 1)g̃)

+ χν0(ξ0∆I; 1)
−1Θω(µ)((ξ0∆I; 1)g̃)

] (4.29)

First we calculate

χν0(ξ0I; 1)
−1Θω(µ)((ξ0I; 1)g̃).

By definition, we have that

χν0(ξ0I; 1)
−1 = ν0(ξ0)

−1γF(ξ0, ψ)(−1, ξ0)F. (4.30)

By Flicker’s formula for the character of the oscillator representation, we have

that

Θω(µ)((ξ0I; 1)g̃) = εs(ξ0g)c(ξ0I, g)Θω(µ)(ξ0g; s(ξ0g)
−1)

= bεs(ξ0g)c(ξ0I, g)µ0(−1)µ(h)
D(h)

D(ξ0g)

= bεs(ξ0g)c(ξ0I, g)µ0(−ξ0)
D(h)

D(ξ0g)
.
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By (4.26) this becomes

Θω(µ)((ξ0I; 1)g̃) =
bεs(ξ0g)c(ξ0I, g)µ0(−ξ0)

| det(1 + g)|1/2 . (4.31)

Patching (4.30) and (4.31) together, we get

χν0(ξ0I; 1)
−1Θω(µ)((ξ0I; 1)g̃) =

bεγF(ξ0, ψ)(−1, ξ0)Fs(ξ0g)c(ξ0I, g)µ0(−ξ0)ν0(ξ0)
−1

| det(1 + g)|1/2 .

We condense this using (2.38) and obtain

χν0(ξ0I; 1)
−1Θω(µ)((ξ0I; 1)g̃) =

bεγF(ξ0, ψ)s(g)cβ(ξ0I,−g)µ0(−ξ0)ν0(ξ0)
−1

| det(1 + g)|1/2 .
(4.32)

Next we calculate

χν0(ξ0∆I; 1)
−1Θω(µ)((ξ0∆I; 1)g̃).

By definition, we have that

χν0(ξ0∆I; 1)
−1 = ν0(ξ0∆)−1γF(ξ0∆, ψ)(−1, ξ0∆)F. (4.33)

By Flicker’s formula for the character of the oscillator representation, we have

that

Θω(µ)((ξ0∆I; 1)g̃) = εs(ξ0∆g)c(ξ0∆I, g)Θω(µ)(ξ0∆g; s(ξ0∆g)
−1)

= bεs(ξ0∆g)c(ξ0∆I, g)µ0(−1)µ(ξ0δ
′h)

D(δ′h)

D(ξ0∆g)

= bεs(ξ0∆g)c(ξ0∆I, g)µ0(ξ0∆)
D(δ′h)

D(ξ0∆g)
.

By (4.28) this becomes

Θω(µ)((ξ0∆I; 1)g̃) =
bεs(ξ0∆g)c(ξ0∆I, g)µ0(ξ0∆)

| det(1 − g)|1/2 . (4.34)
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Patching (4.33) and (4.34) together, we get

χν0(ξ0∆I; 1)
−1Θω(µ)((ξ0∆I; 1)g̃) =

bεγF(ξ0∆, ψ)(−1, ξ0∆)Fs(ξ0∆g)c(ξ0∆I, g)µ0(ξ0∆)ν0(ξ0∆)−1

| det(1 − g)|1/2 .

We condense this using (2.38) and obtain

χν0(ξ0∆I; 1)
−1Θω(µ)((ξ0∆I; 1)g̃) =

bεγF(ξ0∆, ψ)s(g)cβ(ξ0∆I,−g)µ0(ξ0∆)ν0(ξ0∆)−1

| det(1 − g)|1/2 .
(4.35)

Rewriting (4.29) using (4.32) and (4.35) results in the following proposition.

Proposition 4.36. Suppose that g ∈ S∆ is regular elliptic and is not a square.

Let g̃ = (g; ε). Write ξ0g = h2 with ξ0 = deth. Suppose that µ0 and ν0 are

characters of F×. Then

Θω(µ)(ν0)(g̃) =
bεs(g)

m

[
γF(ξ0, ψ)cβ(ξ0I,−g)µ0(−ξ0)ν0(ξ0)

−1

| det(1 + g)|1/2

+
γF(ξ0∆, ψ)cβ(ξ0∆I,−g)µ0(ξ0∆)ν0(ξ0∆)−1

| det(1 − g)|1/2
]
.

(4.37)

Taking µ0 = ν0 in (4.37), and hence µ = ν, we get

Θω(ν)(ν0)(g̃) =
bεs(g)

m

[
γF(ξ0, ψ)cβ(ξ0I,−g)ν0(−1)

| det(1 + g)|1/2 +
γF(ξ0∆, ψ)cβ(ξ0∆I,−g)

| det(1 − g)|1/2
]
.

(4.38)

We apply this twice, once to a character ν satisfying ν0(−1) = 1 and once to

a character ν ′ satisfying ν ′0(−1) = −1. Adding and subtracting the results and

noticing that 2b/m = 1, the following proposition follows.

Proposition 4.39. Suppose that g ∈ S∆ is regular elliptic and is not a square.

Write ξ0g = h2 with ξ0 = deth. Suppose that ν0 and ν ′0 are characters of F× that

satisfy ν0(−1) = 1 and ν ′0(−1) = −1. Then

Θω(ν)(ν0)+ω(ν′)(ν′
0
)(g̃) =

εs(g)cβ(ξ0∆I,−g)γF(ξ0∆, ψ)

| det(1 − g)|1/2
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and

Θω(ν)(ν0)−ω(ν′)(ν′
0
)(g̃) =

εs(g)cβ(ξ0I,−g)γF(ξ0, ψ)

| det(1 + g)|1/2 .

4.3 Recapitulation

We collect the results of this chapter in two theorems.

Theorem 4.40. Let ω(µ)(ν0) be the oscillator representation of G̃L2(F)+ with

central character χν0 where

χν0(xI; ε) = ν0(x)γF(x, ψ)ε.

1. Let g = diag(x, 1/x) and g̃ = (g; ε). Then

Θω(µ)(ν0)(g̃) =
bεµ0(x)ν0(x)

−1γF(x, ψ)

m

[
µ0(−1)

| det(1 + g)|1/2 +
1

| det(1 − g)|1/2
]
.

2. Suppose g = h2 ∈ S∆ is regular elliptic and g̃ = (g; ε). Then

Θω(µ)(ν0)(g̃) =
bεs(g)

m

[
µ0(− deth)

| det(1 + g/ deth)|1/2

+
cβ(∆I,−g)γF(∆, ψ)µ0(∆ deth)ν0(∆)−1

| det(1 − g/ deth)|1/2
]
.

3. Suppose that g ∈ S∆ is regular elliptic and is not a square. Let g̃ = (g; ε).

Write ξ0g = h2 with ξ0 = deth. Then

Θω(µ)(ν0)(g̃) =
bεs(g)

m

[
γF(ξ0, ψ)cβ(ξ0I,−g)µ0(−ξ0)ν0(ξ0)

−1

| det(1 + g)|1/2

+
γF(ξ0∆, ψ)cβ(ξ0∆I,−g)µ0(ξ0∆)ν0(ξ0∆)−1

| det(1 − g)|1/2
]
.

Suppose that ν0 and ν ′0 are characters of F× that satisfy ν0(−1) = 1 and

ν ′0(−1) = −1. Put g̃ = (g; ε). Define

Γ±(g̃) = Θω(ν)(ν0)±ω(ν′)(ν′
0
)(g̃).
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Theorem 4.41.

Γ+(g̃) =





γF(x, ψ)ε

| det(1 − g)|1/2 , if g = diag(x, 1/x)

εs(g)γF(∆, ψ)cβ(∆I,−g)
| det(1 − g)|1/2 , if g = h2 ∈ S∆ and deth = 1

εs(g)

| det(1 − g)|1/2 , if g = h2 ∈ S∆ and deth = −1

εs(g)γF(ξ0∆, ψ)cβ(ξ0∆I,−g)
| det(1 − g)|1/2 , if g ∈ S∆, ξ0g = h2 and deth = ξ0

and

Γ−(g̃) =





γF(x, ψ)ε

| det(1 + g)|1/2 , if g = diag(x, 1/x)

εs(g)

| det(1 + g)|1/2 , if g = h2 ∈ S∆ and deth = +1

εs(g)γF(∆, ψ)cβ(∆I,−g)
| det(1 + g)|1/2 , if g = h2 ∈ S∆ and deth = −1

εs(g)γF(ξ0, ψ)cβ(ξ0I,−g)
| det(1 + g)|1/2 , if g ∈ S∆, ξ0g = h2 and deth = ξ0.

Remark. We have proved in Lemma 4.1 that for all g ∈ SL2(F),

| det(1 ± g)|1/2 =
DSO(τ(±g))
DSL(g)

.
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Chapter 5

The Character Formula

Let π be an irreducible representation of GL2(F) satisfying χπ(−I) = 1 and

π̃ = LiftF(π) be Flicker’s lifting of π to G̃L2(F). In Chapter 3 we let L(π, ν0) be

the constituent of π̃|gGL2(F)+
having central character χν0(xI; ε) = ν0(x)γF(x, ψ)ε.

We restrict L(π, ν0) to S̃L2(F) and also write L(π, ν0) for this restriction.

Throughout the rest of this chapter and beyond, whenever we write L(π, ν0) we

intend the representation of S̃L2(F). The representation π and the character ν0

are related by the equation χπ(xI) = ν0(x
2), see (3.18). The representation πν−1

has trivial central character and factors to a representation (πν−1)′ of SO1,2(F).

This chapter contains the main results of this thesis. We derive a character

formula relating the representations L(π, ν0) of S̃L2(F) and (πν−1)′ of SO1,2(F).

This character formula suggests a map L(π, ν0) 7→ (πν−1)′ from irreducible rep-

resentations of S̃L2(F) to irreducible representations of SO1,2(F). The map is

surjective but not injective.

In order to obtain a bijection, we “stabilize” the formulas; we get a character

formula relating “stable” representations Lst(π, ν0) of S̃L2(F) and representations
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(πν−1)′ of SO1,2(F) through the following remarkably simple formula:

ΘLst(π,ν0)(g̃) = Γ−(g̃)Θ(πν−1)′(τ(g)).

The derivation of these formulas requires the inversion formula and Flicker’s

character identity. The first step is to get a character formula between representa-

tions L(π, ν0) and πν−1. This is the bulk of the work and is contained in Sections

1–3. After this, we push over to SO1,2(F) and then stabilize the correspondence.

5.1 Hyperbolic Set

Let g = diag(x, 1/x) and let g̃ = (g; ε). By the inversion formula, we have that

ΘL(π,ν0)(g̃) =
1

m

∑

α∈F×/F×2

χν0(zα)
−1Θeπ (zαg̃) .

By Proposition 2.72, all but one of the terms in the sum is zero, i.e.,

ΘL(µ,ν0)(g̃) =
ε

m
(ξ, x)Fχν0(ξI; 1)

−1Θeπ(diag(ξx, ξ/x); 1) (5.1)

for ξ such that ξ ≡ x mod squares. This is a ξ which makes diag(ξx, ξ/x) a

square; without loss of generality we take ξ = x.

By definition of χν0 and properties of gamma factors (see Proposition 2.42)

we have that (recall ξ = x)

(ξ, x)Fχν0(ξI; 1)
−1 = (−1, x)Fχν0(x

−1I; (x, x)F)

= γF(x−1, ψ)ν0(x
−1)

= γF(x, ψ)ν0(x)
−1.

We put

h = diag(x, 1) and h′ = diag(−x, 1).
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By Flicker’s formula on the hyperbolic set (see Definiton 2.63), we have that

Θeπ (diag(ξx, ξ/x); 1) = Θeπ

(
h2; 1

)

= b

[
D(h)

D(h2)
Θπ(h) +

D(h′)

D(h2)
Θπ(h

′)

]
.

[We remark here that if g is hyperbolic, then s(g2)−1 = 1.] By (4.5) and (4.6),

this becomes

Θeπ (diag(ξx, ξ/x); 1) = b [Φ+(g)Θπ(h) + Φ−(g)Θπ(h
′)] .

Incorporating these observations in (5.1) we obtain

ΘL(π,ν0)(g̃) =
bεν0(x)

−1γF(x, ψ)

m
[Φ+(g)Θπ(h) + Φ−(g)Θπ(h

′)] . (5.2)

By Theorem 4.41, we have that Γ−(g; ε) = γF(x, ψ)εΦ+(g) and Γ+(g; ε) =

γF(x, ψ)εΦ−(g). Then (5.2) becomes

ΘL(π,ν0)(g̃) =
b

m

[
Γ−(g̃)ν0(x)

−1Θπ(h) + Γ+(g̃)ν0(−1)ν0(−x)−1Θπ(h
′)
]
.

Recall that 2b/m = 1, so that b/m = 1/2. Recall that deth = x and deth′ =

−x. We have proved the following proposition.

Proposition 5.3. Let ν0 be a character of F× which satisfies χπ(xI) = ν0(x
2).

If g = diag(x, 1/x), h = diag(x, 1) and h′ = diag(−x, 1) then

ΘL(π,ν0)(g̃) =
1

2
[Γ−(g̃)Θπν−1(h) + ν0(−1)Γ+(g̃)Θπν−1(h′)] .

5.2 Elliptic Set

Let E = F(δ) be a quadratic extension of F, δ2 = ∆ ∈ F. Fix an embedding ι of

E× in GL2(F) and write S∆ = ι(E1) (see Section 2.2). Set δ′ = ι(δ).
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Suppose g is an elliptic element of SL2(F). Without loss of generality, g ∈ S∆

for some ∆. By the inversion formula, we have that

ΘL(π,ν0)(g̃) =
1

m

∑

α∈F×/F×2

χν0(zα)
−1Θeπ (zαg̃) .

The analysis is divided into two cases, the case of g a square and g not a

square.

5.2.1 Elliptic Set, Case I: g = h2

Suppose that g is the square of an element h in GL2(F). By Proposition 2.4, ξg

is a square if and only if ξ = 1 or ∆. In light of Proposition 2.72, the inversion

formula becomes

ΘL(π,ν0)(g̃) =
1

m

[
Θeπ(g̃) + χν0(∆I; 1)

−1Θeπ((∆I; 1)g̃)
]

(5.4)

By Flicker’s formula on the elliptic set, we have that

Θeπ(g̃) = εs(g)Θeπ(g; s(g)
−1)

= bεs(g)
D(h)

D(g)
Θπ(h).

By (4.13) this becomes

Θeπ(g̃) = bεs(g)Φdeth(g)Θπ(h). (5.5)

We now consider the term χν0(∆I; 1)
−1Θeπ((∆I; 1)g̃). By definition, we have

χν0(∆I; 1)
−1 = ν0(∆)−1γF(∆, ψ)(−1,∆)F. (5.6)

Flicker’s formula for the character on the elliptic set yields

Θeπ((∆I; 1)g̃) = εs(∆g)c(∆I, g)Θeπ(∆g; s(∆g)
−1)

= bεs(∆g)c(∆I, g)
D(δ′h)

D(∆g)
Θπ(δ

′h).
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Equation (2.60) implies that the right–hand side equals

bεs(∆g)c(∆I, g)
D(δ′h)

D(g)
Θπ(δ

′h).

Hence, by (4.15),

Θeπ((∆I; 1)g̃) = bεs(∆g)c(∆I, g)Φ−deth(g)Θπ(δ
′h). (5.7)

Putting (5.6) and (5.7) together we obtain

χν0(∆I; 1)
−1Θeπ((∆I; 1)g̃) =

bε(−1,∆)Fs(∆g)c(∆I, g)ν0(∆)−1γF(∆, ψ)Φ− deth(g)Θπ(δ
′h).

We condense the result using (2.38) and obtain

χν0(∆I; 1)
−1Θeπ((∆I; 1)g̃) =

bεs(g)cβ(∆I,−g)ν0(∆)−1γF(∆, ψ)Φ−deth(g)Θπ(δ
′h).

(5.8)

Plugging (5.5) and (5.8) into (5.4), we see

ΘL(π,ν0)(g̃) =
b

m
[εs(g)Φdeth(g)Θπ(h)

+ εs(g)γF(∆, ψ)cβ(∆I,−g)Φ− deth(g)ν0(∆)−1Θπ(δ
′h)].

Recall that 2b/m = 1, so that b/m = 1/2. Then

ΘL(π,ν0)(g̃) =
1

2
[εs(g)Φdeth(g)ν0(deth)Θπν−1(h)

+ εs(g)γF(∆, ψ)cβ(∆I,−g)Φ− deth(g)ν0(− deth)Θπν−1(δ′h)].

By Theorem 4.41, we have that Γ− deth(g̃) = εs(g)Φdeth(g) and Γdeth(g̃) =

εs(g)γF(∆, ψ)cβ(∆I,−g)Φ− deth(g). This implies the next proposition.

Proposition 5.9. Suppose that g = h2 ∈ S∆ is elliptic. Let ν0 be a character of

F× which satisfies χπ(xI) = ν0(x
2). Put λ = deth. Then

ΘL(π,ν0)(g̃) =
1

2
[Γ−λ(g̃)ν0(λ)Θπν−1(h) + Γλ(g̃)ν0(−λ)Θπν−1(δ′h)] .
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5.2.2 Elliptic Set, Case II: g 6= h2

Assume now that g is not the square of an element in GL2(F). Put ι(z) = g.

By Proposition 2.4, we may write ξ0z = w2 with ξ0 = Nw. Let h = ι(w) and

g̃ = (g; ε). Note that ξ0∆z = (δw)2 and if ξz is a square, then ξ = ξ0 or ξ0∆. By

Proposition 2.72, the inversion formula becomes

ΘL(π,ν0)(g̃) =
1

m

[
χν0(ξ0I; 1)

−1Θeπ((ξ0I; 1)g̃)

+ χν0(ξ0∆I; 1)
−1Θeπ((ξ0∆I; 1)g̃)

] (5.10)

First we calculate

χν0(ξ0I; 1)
−1Θeπ((ξ0I; 1)g̃).

By definition, we have that

χν0(ξ0I; 1)
−1 = ν0(ξ0)

−1γF(ξ0, ψ)(−1, ξ0)F. (5.11)

By Flicker’s formula on the elliptic set, we have that

Θeπ((ξ0I; 1)g̃) = εs(ξ0g)c(ξ0I, g)Θeπ(ξ0g; s(ξ0g)
−1)

= bεs(ξ0g)c(ξ0I, g)
D(h)

D(ξ0g)
Θπ(h).

By (4.26) this becomes

Θeπ((ξ0I; 1)g̃) = bεs(ξ0g)c(ξ0I, g)Φ+(g)Θπ(h). (5.12)

Patching (5.11) and (5.12) together, we get

χν0(ξ0I; 1)
−1Θeπ((ξ0I; 1)g̃) =

bεγF(ξ0, ψ)(−1, ξ0)Fs(ξ0g)c(ξ0I, g)ν0(ξ0)
−1Φ+(g)Θπ(h).

We condense this using (2.38) and obtain

χν0(ξ0I; 1)
−1Θeπ((ξ0I; 1)g̃) =

bεγF(ξ0, ψ)s(g)cβ(ξ0I,−g)ν0(ξ)
−1Φ+(g)Θπ(h).

(5.13)
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Next we calculate

χν0(ξ0∆I; 1)
−1Θeπ((ξ0∆I; 1)g̃).

By definition, we have that

χν0(ξ0∆I; 1)
−1 = ν0(ξ0∆)−1γF(ξ0∆, ψ)(−1, ξ0∆)F. (5.14)

By Flicker’s formula on the elliptic set, we have that

Θeπ((ξ0∆I; 1)g̃) = εs(ξ0∆g)c(ξ0∆I, g)Θeπ(ξ0∆g; s(ξ0∆g)
−1)

= bεs(ξ0∆g)c(ξ0∆I, g)
D(δ′h)

D(ξ0∆g)
Θπ(δ

′h).

By (4.28) this becomes

Θeπ((ξ0∆I; 1)g̃) = bεs(ξ0∆g)c(ξ0∆I, g)Φ−(g)Θπ(δ
′h). (5.15)

Patching (5.14) and (5.15) together, we get

χν0(ξ0∆I; 1)
−1Θeπ((ξ0∆I; 1)g̃) =

bεγF(ξ0∆, ψ)(−1, ξ0∆)Fs(ξ0∆g)c(ξ0∆I, g)ν0(ξ0∆)−1Φ−(g)Θπ(δ
′h).

We condense this using (2.38) and obtain

χν0(ξ0∆I; 1)
−1Θeπ((ξ0∆I; 1)g̃) =

bεγF(ξ0∆, ψ)s(g)cβ(ξ0∆I,−g)ν0(ξ0∆)−1Φ−(g)Θπ(δ
′h).

(5.16)

By (5.13) and (5.16), (5.10) becomes

ΘL(π,ν0)(g̃) =
b

m
[εs(g)cβ(ξ0I,−g)γF(ξ0, ψ)Φ+(g)ν0(ξ0)

−1Θπ(h)

+ εs(g)cβ(ξ0∆I,−g)γF(ξ0∆, ψ)Φ−(g)ν0(ξ0∆)−1Θπ(δ
′h)].

Recall that 2b/m = 1, so that b/m = 1/2. Then

ΘL(π,ν0)(g̃) =
1

2
[εs(g)cβ(ξ0I,−g)γF(ξ0, ψ)Φ+(g)Θπν−1(h)

+ εs(g)cβ(ξ0∆I,−g)γF(ξ0∆, ψ)Φ−(g)ν0(−1)Θπν−1(δ′h)].
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By Theorem 4.41,

Γ−(g̃) = εs(g)cβ(ξ0I,−g)γF(ξ0, ψ)Φ+(g)

and

Γ+(g̃) = εs(g)cβ(ξ0∆I,−g)γF(ξ0∆, ψ)Φ−(g).

This implies the following proposition.

Proposition 5.17. Suppose that g ∈ S∆ is regular elliptic and is not a square.

Write ξ0g = h2 with ξ0 = deth. Let ν0 be a character of F× which satisfies

χπ(xI) = ν0(x
2). Then

ΘL(π,ν0)(g̃) =
1

2
[Γ−(g̃)Θπν−1(h) + ν0(−1)Γ+(g̃)Θπν−1(δ′h)].

5.3 Recapitulation

The following theorem summarizes our work thus far.

Theorem 5.18. Suppose that π is an irreducible representation of GL2(F) such

that χπ(−I) = 1. Let ν0 be a character of F× which satisfies χπ(xI) = ν0(x
2).

Assume that g ∈ SL2(F) and let g̃ = (g; ε).

1. Assume that g = diag(x, 1/x) is hyperbolic. Let h = diag(x, 1) and h′ =

diag(−x, 1). Then

ΘL(π,ν0)(g̃) =
1

2
[Γ−(g̃)Θπν−1(h) + ν0(−1)Γ+(g̃)Θπν−1(h′)] .

2. Assume that g = h2 ∈ S∆ is elliptic and that deth = 1. Then

ΘL(π,ν0)(g̃) =
1

2
[Γ−(g̃)Θπν−1(h) + ν0(−1)Γ+(g̃)Θπν−1(δ′h)] .
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3. Assume that g = h2 ∈ S∆ is elliptic and that deth = −1. Then

ΘL(π,ν0)(g̃) =
1

2
[ν0(−1)Γ+(g̃)Θπν−1(h) + Γ−(g̃)Θπν−1(δ′h)] .

4. Assume that g ∈ S∆ is elliptic and is not a square. Write ξ0g = h2 with

ξ0 = deth. Then

ΘL(π,ν0)(g̃) =
1

2
[Γ−(g̃)Θπν−1(h) + ν0(−1)Γ+(g̃)Θπν−1(δ′h)].

Notice that the character of L(π, ν0) always contains two terms. On the hy-

perbolic set, this is because the inversion formula contributes a single term while

Flicker’s character identity contributes two. On the elliptic set, the inversion

formula contributes two terms. But on the elliptic elements Flicker’s identity

consists of only one term, so the total number of terms for the elliptic set is also

two.

In Chapter 4, we derived character identities for the oscillator representation

restricted to G̃L2(F)+. These are related to the above identities through the

following corollary.

Corollary 5.19. Let ω(µ) denote the oscillator representation of G̃L2(F). Then

ΘL(µ,µ0)(g̃) = µ0(−1)Θω(µ)(µ0)(g̃).

Proof. This follows from (4.10), (4.23), (4.38) and Theorem 5.18.

5.4 Pushing Down to SO1,2(F): The Character

Formula

We would like to write our formulas in Theorem 5.18 in terms of characters of

representations on SO1,2(F). We will do this by “pushing” the representation
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πν−1 to a representation of SO1,2(F) via the map p from Section 2.3.

Definition 5.20. Suppose π is a representation of GL2(F) with trivial central

character. Define a representation π′ of SO1,2(F) by pushing π down to SO1,2(F)

via p, i.e.,

Θπ(g) = Θπ′(p(g)).

From (2.8), we get

Θπ(diag(a, b)) = Θπ′(diag(a/b, b/a, 1)). (5.21)

Suppose h ∈ S∆. Then h = ι(w) for some w ∈ F(
√

∆). By Proposition 2.13 it

follows that

Θπ(h) = Θπ(ιw) = Θπ′(pιw) = Θπ′(ι′ϕw). (5.22)

Proposition 5.23. Suppose that π is a representation of GL2(F) with trivial

central character.

1. Suppose that g = diag(x, 1/x), h = diag(x, 1), and h′ = diag(−x, 1). Then

Θπ(h) = Θπ′(τ(g)) (5.24)

and

Θπ(h
′) = Θπ′(τ(−g)). (5.25)

2. Suppose that g = h2 and deth = ±1. Then

Θπ(h) = Θπ′(τ(±g)) (5.26)

and

Θπ(δ
′h) = Θπ′(τ(∓g)) (5.27)
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3. Suppose that g is not a square of an element in GL2(F). Write ξ0g = h2,

ξ0 = deth. Then

Θπ(h) = Θπ′(τ(g)) (5.28)

and

Θπ(δ
′h) = Θπ′(τ(−g)). (5.29)

Proof. Formulas (5.24) and (5.25) follow immediately from (5.21).

Suppose that g = h2 with deth = ±1. If h = ι(w) then deth = Nw.

Consequently, by (5.22),

Θπ(h) = Θπ′(ι′ϕw)

= Θπ′(ι′(w2/Nw))

= Θπ′(τ(g/ deth))

= Θπ′(τ(±g))

and (5.26) follows. Also,

Θπ(δ
′h) = Θπ′(ι′ϕδw)

= Θπ′(ι′((δw)2/N(δw)))

= Θπ′(τ(∆g/− ∆ deth))

= Θπ′(τ(∓g)).

So (5.27) follows.

Finally, suppose that ξ0g = h2 with ξ0 = deth. Write h = ι(w). Note that

ι(w2/Nw) = g. By (5.22), we have

Θπ(h) = Θπ′(ι′ϕw)

= Θπ′(ι′(w2/Nw))

= Θπ′(τ(g))
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and (5.28) follows. The proof of (5.29) is similar to the proof of (5.27) and is

omitted.

In the character formulas for L(π, ν0), we required that χπ(xI) = ν0(x
2). Then

πν−1 has trivial central character and the representation (πν−1)′ of SO1,2(F) is

defined. The main character identity which we have been seeking is contained in

the following theorem.

Theorem 5.30. Suppose that π is an irreducible representation of GL2(F). Sup-

pose that ν0 is a character of F× satisfying χπ(xI) = ν0(x
2). Then for every

regular semisimple g̃ ∈ S̃L2(F),

ΘL(π,ν0)(g̃) =
1

2

[
Γ−(g̃)Θ(πν−1)′(τ(g)) + ν0(−1)Γ+(g̃)Θ(πν−1)′(τ(−g))

]
. (5.31)

Proof. This follows immediately by substituting the equalities from Proposition

5.23 (with π replaced by πν−1) into the character identities we obtained in The-

orem 5.18.

We could have stated the next corollary after Theorem 5.18, but it is more

convenient to do so here.

Corollary 5.32. Let β0 be a character of F× satisfying β0(−1) = 1. Then

ΘL(π,ν0) = ΘL(πβ,ν0β0).

In particular, for any character β0,

ΘL(πβ2,ν0β2
0
) = ΘL(π,ν0).

Definition 5.33. Let R be the set of all pairs (π, ν0) where π is an irreducible

representation of GL2(F) satisfying χπ(−I) = 1 and ν0 is a character of F×

satisfying χπ(xI) = ν0(x
2) for all x ∈ F×. We define an equivalence relation ∼
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on R by (π, ν0) ∼ (σ, λ0) if there exists a character β0 with β0(−1) = 1 such that

σ = πβ and λ0 = ν0β0. We write

X = R/ ∼ .

Lemma 5.34. L(π, ν0) = L(σ, λ0) if and only if (π, ν0) ∼ (σ, λ0).

Proof. Suppose (π, ν0) ∼ (σ, λ0). Then L(σ, λ0) = L(π, ν0) by the character

formula.

Conversely, suppose that L(π, ν0) = L(σ, λ0). By the condition on central

characters, this implies that ν0(−1) = λ0(−1).

Recall that

LiftF(π)|gGL2(F)+
=

|F×/F×2|∑

i=1

πi, LiftF(π)|fSL2(F) =

|F×/F×2|∑

i=1

τi

and that

LiftF(σ)|gGL2(F)+
=

|F×/F×2|∑

i=1

σi, LiftF(σ)|fSL2(F) =

|F×/F×2|∑

j=1

µj.

Our assumption shows that there exist i and j such that τi = µj and hence that

∑
τi =

∑
µj. Since G̃L2(F)+ = Z(G̃L2(F)+)S̃L2(F), there exists a character β

such that
∑
σi = (

∑
πi) ⊗ β, i.e., that LiftF(σ) = LiftF(π)β. But LiftF(π)β =

LiftF(πβ2). Since Flicker’s lifting is an injection, we have that σ = πβ2. Hence

L(π, ν0) = L(πβ2, ν0) = L(π, ν0β
−2
0 ). By the central character condition, we may

find a quadratic character α0 such that β2
0 = α0λ0/ν0. That is, setting γ = β2,

we can take σ = πγ, λ0 = α0ν0γ0, and γ0(−1) = 1. This implies that α0(−1) = 1,

since ν0(−1) = λ0(−1).
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If α0 is trivial, then we are done. Otherwise, since

L(π, ν0) = L(σ, λ0)

= L(πγ, λ0)

= L(π, λ0γ
−1
0 )

and λ0γ
−1
0 = α0ν0 we have reduced to the case L(π, ν0) = L(π, ν0α0). As α is

quadratic with α0(−1) = 1, we get L(π, ν0) = L(πα, ν0). This in turn implies

that L(π, µ0) = L(πα, µ0) for all µ0, so that LiftF(π) = LiftF(πα). Since Flicker’s

lifting is an injection, we get π = πα and (π, ν0) ∼ (π, ν0α0) ∼ (σ, λ0). This

completes the proof.

The character formula obtained in Theorem 5.30 suggests that we examine

the map

Irr(S̃L2(F)) → Irr(SO1,2(F))

L(π, ν0) 7→ (πν−1)′.

This map is clearly surjective, since if π′ ∈ Irr(SO1,2(F)), then π has trivial

central character, and L(π, 1) 7→ π′. Fix a character β0 satisfying β0(−1) = −1.

Suppose that L(π, ν0) and L(πβ, ν0β0) are both nonzero. In general, L(π, ν0)

and L(πβ, ν0β0) are inequivalent because they have different central characters.

However, they both map to (πν−1)′. Therefore, this map is not injective. We

remedy this situation in the next section when we “stabilize” (5.31).

5.5 Stable Representations of S̃L2(F)

Theorem 5.35. Let β0 be a character of F× satisfying β0(−1) = −1. Then

ΘL(π,ν0)+L(πβ,ν0β0)(g̃) = Γ−(g̃)Θ(πν−1)′(τ(g)). (5.36)
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Proof. We apply Theorem 5.30 to (π, ν0) and (πβ, ν0β0). In the second case, we

replace ν with β−1ν−1, so that (πβ)(β−1ν−1) equals πν−1. It follows that

ΘL(π,ν0)(g̃) =
1

2

[
Γ−(g̃)Θ(πν−1)′(τ(g)) + ν0(−1)Γ+(g̃)Θ(πν−1)′(τ(−g)).

]

ΘL(πβ,ν0β0)(g̃) =
1

2

[
Γ−(g̃)Θ(πν−1)′(τ(g)) + β0ν0(−1)Γ+(g̃)Θ(πν−1)′(τ(−g)).

]

=
1

2

[
Γ−(g̃)Θ(πν−1)′(τ(g)) − ν0(−1)Γ+(g̃)Θ(πν−1)′(τ(−g)).

]

Adding the first and third equations gives the result.

Definition 5.37. Suppose that π is an irreducible representation of GL2(F) sat-

isfying χπ(−I) = 1. Let ν0 be a character of F× such that χπ(xI) = ν0(x
2) for

all x ∈ F×. Fix a character β0 of F× satisfying β0(−1) = −1. Define

Lst(π, ν0) = L(π, ν0) + L(πβ, ν0β0).

As before, let R be the collection of pairs (π, ν0) where π is an irreducible

representation of GL2(F) and ν0 is a character of F× with the property that

χπ(xI) = ν0(x
2). Let

Grst(S̃L2(F)) = span{Lst(π, ν0) : (π, ν0) ∈ R}.

Any ρ ∈ Grst(S̃L2(F)) will be called a stable virtual representation of S̃L2(F).

We repeat Theorem 5.35 in this notation:

ΘLst(π,ν0)(g̃) = Γ−(g̃)Θ(πν−1)′(τ(g)).

Definition 5.38. We define an equivalence relation ∼st on R by (π, ν0) ∼st

(σ, λ0) if there exists a character β0 such that σ = πβ and λ0 = ν0β0. Set

Xst = R/∼st.

Lemma 5.39. Lst(π, ν0) = Lst(σ, λ0) if and only if (π, ν0) ∼st (σ, λ0).
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Proof. Assume first that (π, ν0) ∼st (σ, λ0). It follows immediately from Theo-

rem 5.35 that Lst(π, ν0) = Lst(σ, λ0). Conversely, if Lst(π, ν0) = Lst(σ, λ0) then

(5.36) implies that (πν−1)′ = (σλ−1)′. The pullback is unique, so πν−1 = σλ−1.

Therefore π = σλ−1ν. Take β0 = λ−1
0 ν0 in the definition of ∼st to conclude that

(π, ν0) ∼st (σ, λ0).

Corollary 5.40. We have bijections

1. Xst ↔ {Lst(π, ν0)},

2. Xst ↔ Irr(SO1,2(F)) given by (π, ν0) 7→ (πν−1)′.

Proof. The obvious map Xst → {Lst(π, ν0)} gives the first bijection. The second

follows from the first and Theorem 5.35.

Corollary 5.41. The map

Lst : Gr(SO1,2(F)) → Grst(S̃L2(F))

defined by

Lst(π) = Lst(π ◦ p, 1)

is a bijection.
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Chapter 6

Properties of the Correspondence

In this chapter, we discuss the nature of the bijection

Lst : Gr(SO1,2(F)) → Grst(S̃L2(F)).

We begin with the full principal series representations of S̃L2(F) and SO1,2(F).

Then we get the correspondence for one–dimensional representations.We conclude

with the special and supercuspidal representation and after this we summarize

the results.

6.1 Principal Series Representations

We explain how the principal series fit into our correspondence. The parameter-

ization of the principal series of S̃L2(F) and SO1,2(F) is given in the following

definition. (The parameterization of principal series of GL2(F) and G̃L2(F) has

already been given in Section 2.6.)
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Recall that

A = {diag(x, 1/x) : x ∈ F×},

N =








1 y

0 1


 : y ∈ F




,

B = AN,

and that B̃ = ÃN . We also write

A′ = {diag(a, 1) : a ∈ A},

N ′ = {diag(n, 1) : n ∈ N},

B′ = {diag(b, 1) : b ∈ B}.

Definition 6.1. Let

λ̃(x; ε) = γF(x, ψ)ε;

this is a genuine character of F̃× (see Proposition 3.14). Any genuine character

of Ã is of the form ν̃0(diag(x, 1/x); ε) = ν0(x)λ̃(x; ε). Extend this trivially to N

and define

PSfSL(ν̃0) = Ind
fSL2(F)
eB

(ν̃0)

for the full principal series representation of S̃L2(F) with parameter ν̃0.

Definition 6.2. Let ν0 be any character of F×. We identify this with a character

of A′ in the obvious way. We extend ν0 to N ′ and write

PSSO(ν0) = Ind
SO1,2(F)
B′ (ν0)

for the full principal series representation of SO1,2(F) with parameter ν0.

Let DSO, DSL, and DGL be the Weyl denominators for SO1,2(F), SL2(F),

and GL2(F) respectively.
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Lemma 6.3. Let x ∈ F× and put g = diag(x, 1/x), g̃ = (g; ε). Then

Γ±(g̃) =
DSO(τ(∓g))
DSL(g)

γ(x, ψ)ε.

Proof. By Lemma 4.1, DSO(τ(∓g))/DSL(g) = | det(1∓g)|−1/2. This, in conjunc-

tion with Theorem 4.41 completes the proof.

Lemma 6.4. Suppose x ∈ F× and put g = diag(x, 1/x), h = diag(x, 1), h′ =

diag(−x, 1). Then

DSO(τ(g))

DGL(h)
=
DSO(τ(−g))
DGL(h′)

= 1.

Proof. This follows immediately from the definitions of DSO and DGL.

We state the induced character formulas for GL2(F), S̃L2(F) and SO1,2(F)

in terms of our parameterization of their principal series. Let

w =




0 −1

1 0


 .

Proposition 6.5 (Induced Character Formula). We have the following for-

mulas.

1. Let π(η1, η2) be a principal series representation of GL2(F) (see Definition

2.51). Suppose g is conjugate to diag(x, y). Then

Θπ(η1,η2)(diag(x, y)) =
η1(x)η2(y) + η1(y)η2(x)

DGL(diag(x, y))
.

If g is not conjugate to diag(x, y) for some x and y then Θπ(η1,η2)(g) = 0.

2. Suppose that h is conjugate to g = diag(x, 1/x) and let h̃ = (h; ε). Then

ΘPSgSL
(eν0)(h̃) =

ν̃0(g) + ν̃0(wgw
−1)

DSL(g)

= γF(x, ψ)ε
ν0(x) + ν−1

0 (x)

DSL(g)
,

If h is not conjugate to g = diag(x, 1/x) for some x then ΘPSgSL
(eν0)(h̃) = 0.

79



3. Suppose that h ∈ SO1,2(F) is conjugate to τ(g). Then

ΘPSSO(ν0)(h) =
ν0(τ(g)) + ν0(τ(g)

τ(w))

DSO(g)

=
ν0(x) + ν−1

0 (x)

DSO(g)
.

If h ∈ SO1,2(F) is not conjugate to τ(g) for some g, then ΘPSSO(ν0)(h) = 0.

Corollary 6.6. For all g regular semisimple, g̃ = (g; ε),

ΘPSgSL
(eν0)(g̃) = Γ−(g̃)ΘPSSO(ν0)(τ(g)). (6.7)

Proof. If g is not conjugate to an element of A, then both sides are 0. Otherwise,

by the induced character formulas,

ΘPSgSL
(eν0)(g̃) =

DSO(τ(g))

DSL(g)
γF(x, ψ)εΘPSSO(ν0)(τ(g)).

Then

ΘPSgSL
(eν0)(g̃) = Γ−(g̃)ΘPSSO(ν0)(τ(g))

by Lemma 6.3.

Suppose that π(η1, η2) is a strongly even principal series representation of

GL2(F), so that LiftF(π(η1, η2)) is non–zero (see Proposition 2.68). This implies

that there exist characters µ1 and µ2 of F×2 satisfying µi(x
2) = ηi(x) for all

x ∈ F×. Extend each µi arbitrarily to F×. In order that L(π(η1, η2), ν0) be

defined, i.e., χπ(η1,η2)(xI) = ν0(x
2), we must have that

ν2
0 = η1η2.

This implies that there is a quadratic character α0 such that

ν0 = α0µ1µ2. (6.8)
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Let g = diag(x, 1/x), g̃ = (g; ε), h = diag(x, 1), h′ = diag(−x, 1). Put

π = π(η1, η2). By Theorem 5.18, we have

ΘL(π,ν0)(g̃) =
1

2
[Γ−(g̃)Θπ⊗ν−1(h) + ν0(−1)Γ+(g̃)Θπ⊗ν−1(h′)] . (6.9)

By Theorem 5.18 and the induced character formula for GL2(F), ΘL(π,ν0)(g̃) = 0

for all other g̃ with g not conjugate to diag(x, 1/x) for some x. When we write

our character formulas below, we assume that g̃ = (diag(x, 1/x); ε) and that the

character formulas are zero for all other g̃ with g not conjugate to an element of

this form.

Proposition 6.10. Suppose that π = π(η1, η2) is a principal series such that η1

and η2 are even. Then

ΘL(π,ν0)(g̃) = Γ−(g̃)Θ(π⊗ν−1)′(τ(g)).

That is, if π is a strongly even principal series representation of GL2(F), we have

L(π, ν0) = Lst(π, ν0)

Proof. By Lemma 6.3, we have that

ν0(−1)Γ+(g̃)Θπ⊗ν−1(h′) = ν0(−1)
DSO(τ(−g))
DSL(g)

Θπ⊗ν−1(h′).

By the induced character formula, this becomes

ν0(−1)Γ+(g̃)Θπ⊗ν−1(h′) = ν0(−1)
η1(−x)ν−1

0 (−x) + η2(−x)ν−1
0 (−x)

DGL(h′)

= γF(x, ψ)ε
DSO(τ(−g))
DSL(g)

η1(−x)ν−1
0 (x) + η2(−x)ν−1

0 (x)

DGL(h′)
.

By assumption, η1(−1) = η2(−1) = 1. Furthermore, by Lemma 6.4 we have that

DSO(τ(−g))/DGL(h′) = 1. Incorporating this information, we see

ν0(−1)Γ+(g̃)Θπ⊗ν−1(h′) = γF(x, ψ)ε
η1(x)ν

−1
0 (x) + η2(x)ν

−1
0 (x)

DSL(g)
.
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By Lemma 6.4, we have that DSO(τ(g))/DSL(g) = 1. Then the above equation

becomes

ν0(−1)Γ+(g̃)Θπ⊗ν−1(h′) = γF(x, ψ)ε
DSO(τ(g))

DSL(g)

η1(x)ν
−1
0 (x) + η2(x)ν

−1
0 (x)

DGL(g)
.

By Lemma 6.3 and the induced character formula, we obtain

Γ−(g̃)Θπ⊗ν−1(h) = ν0(−1)Γ+(g̃)Θπ⊗ν−1(h′).

Then (6.9) implies that

ΘL(π,ν0)(g̃) = Γ−(g̃)Θπν−1(h) = Γ−(g̃)Θ(πν−1)′(τ(g)).

The last expression equals ΘLst(π,ν0). This completes the proof.

Lemma 6.11. Let µ0 any character of F× for which L(π(η1, η2), µ0) is defined.

Then

L(π(η1, η2), µ0) = L(π(η1η
−1
2 , 1), µ0η

−1
2 ).

Proof. Write η for η2 ◦ det. The computation

(η1, η2)η
−1(diag(x, y)) = η1(x)η2(y)η

−1
2 (xy) = η1η

−1
2 (x)

shows that π(η1, η2)η
−1 = π(η1η

−1
2 , 1). By the remarks after Definition 5.33, the

lemma follows.

Lemma 6.12. Let ν0 = α0µ1µ2 be as in (6.8). Then

(π(η1, η2) ⊗ ν−1)′ = PSSO(ν0/η2) = PSSO(η1/ν0).

Remark. ΘPSSO(λ1) = ΘPSSO(λ2) if and only if λ2 = λ1 or λ−1
1 .
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Proof. We compute

(η1, η2)ν
−1(diag(x, y)) = η1(x)η2(y)ν

−1
0 (xy)

= η1(x)η2(y)α
−1
0 (xy)µ−1

1 (xy)µ−1
2 (xy).

Recall that µ1(x
2) = η1(x) and µ2(x

2) = η2(x) and that α0 is quadratic. We get

(η1, η2)ν
−1(diag(x, y)) = α0(x/y)µ1(x/y)µ2(y/x)

= α0µ1/µ2(x/y)

= ν0/η2(x/y) = η1/ν0(x/y).

This completes the proof.

Corollary 6.13.

ΘLst(π(η1,η2),ν0)(g̃) = Γ−(g̃)ΘPSSO(ν0/η2)(τ(g)).

Hence

PSfSL(ν̃0/η2) = L(π(η1, η2), ν0).

Proof. Since µ0 is a character of the form given in (6.8), Lemma 6.12 in conjunc-

tion with Proposition 6.10 implies that

ΘL(π(η1,η2),ν0)(g̃) = ΘL(π(η1η
−1

2
,1),ν0η

−1

2
)(g̃) = Γ−(g̃)ΘPSSO(ν0η

−1

2
)(τ(g)).

Corollary 6.14.

Lst(PSSO(ν0)) = L(π(ν2
0 , 1), ν0).

Proof. By Lemma 6.12, π(ν2
0 , 1)ν

−1 is PSSO(ν0).

From these two corollaries, we easily deduce the following statement.
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Corollary 6.15. Let π be a strongly even principal series of GL2(F). Then the

correspondence

L(π, ν0) ↔ (πν−1)′

is

PSfSL(ν̃0) ↔ PSSO(ν0).

Remark. If π = π(η1, η2) is a principal series of GL2(F) with the ηi both even,

then

Lst(π(η1, η2), ν0) = L(π(η1, η2), ν0).

Suppose that η1 and η2 are odd. If β0 is a character of F× with β0(−1) = −1,

Lst(π(η1, η2), ν0) = L(π(η1β0, η2β0), ν0β0).

If one of the ηi is even and the other is odd, then Lst(π(η1, η2), ν0) is zero.

However, in order to get all principal series of S̃L2(F) it suffices to consider

L(π(η1, η2), ν0) with η1 and η2 both even.

6.2 One Dimensional Representations and the

Dependence on ψ

Suppose that µ′ is a one dimensional representation of SO1,2(F). Then µ is a

one dimensional representation of GL2(F) with trivial central character. That is,

there is a character µ0 of F× such that µ = µ0 ◦det and µ(xI) = 1 for all x ∈ F×.

This in turn implies that µ0(x
2) = 1 for all x ∈ F×, i.e., that µ0 is a quadratic

character. Then there exists y such that µ0(x) = qy(x) for all x ∈ F×. Here

qy(x) = (x, y)F as in Proposition 3.19. Hence the one dimensional representations
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of SO1,2(F) are parameterized by y ∈ F×/F×2. We put Qy = qy ◦ det and write

Q′
y for the corresponding one–dimensional representation of SO1,2(F).

In Chapter 3, we fixed an additive character ψ of F. The maps Lst, Lst, Γ−,

Γ+ and χν0 all depended on ψ. We will now vary the choice of ψ, and we write

Lψst, Lψst, Γψ+, Γψ− and χψν0 to indicate the dependence on ψ.

The following proposition lists some formal properties showing the role of the

choice of the additive character ψ. At this point we refer the reader to Sections

2.5 and 3.3 where we have established the relevant notation.

Proposition 6.16. We have that χ
ψy
ν0 = χψν0qy and

Lψst(π, ν0)
y = Lψst(π, ν0qy) = Lψst(πQy, ν0) = L

ψy
st (π, ν0)

The relationships between Γψ± and Γ
ψy
± are given in the next two lemmas.

Lemma 6.17. Suppose g ∈ SL2(F).

1. Assume that g = diag(x, 1/x) is hyperbolic. Then for each y ∈ F×,

qy(x)Γ
ψ
+(g̃) = Γ

ψy
+ (g̃).

2. Assume that g = h2 ∈ S∆ is elliptic and that deth = 1. Then for each

y ∈ F×,

qy(∆)Γψ+(g̃) = Γ
ψy
+ (g̃).

3. Assume that g = h2 ∈ S∆ is elliptic and that deth = −1. Then for each

y ∈ F×,

Γψ+(g̃) = Γ
ψy
+ (g̃).

4. Assume that g ∈ S∆ is elliptic and is not a square. Write ξ0g = h2 with

ξ0 = deth. Then for each y ∈ F×,

qy(ξ0∆)Γψ+(g̃) = Γ
ψy
+ (g̃).
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Proof. This follows from the fact that

qy(x)γF(x, ψ) = γF(x, ψy)

(see Section 2.5). Suppose that we are in case 1. By Theorem 4.41, we have that

qy(x)Γ
ψ
+(g̃) =

qy(x)γF(x, ψ)ε

| det(1 − g)|1/2

=
γF(x, ψy)ε

| det(1 − g)|1/2

= Γ
ψy
+ (g̃).

For case 2, we have that

qy(∆)Γψ+(g̃) =
εs(g)(y,∆)FγF(∆, ψ)cβ(∆I,−g)

| det(1 − g)|1/2

=
εs(g)γF(∆, ψy)cβ(∆I,−g)

| det(1 − g)|1/2

= Γ
ψy
+ (g̃).

By Theorem 4.41, case 3 does not depend on ψ so the assertion is clear. The

proof of case 4 is similar to the proofs of cases 1 and 2 and is omitted.

Lemma 6.18. Suppose g ∈ SL2(F).

1. Assume that g = diag(x, 1/x) is hyperbolic. Then for each y ∈ F×,

qy(x)Γ
ψ
−(g̃) = Γ

ψy
− (g̃).

2. Assume that g = h2 ∈ S∆ is elliptic and that deth = 1. Then for each

y ∈ F×,

Γψ−(g̃) = Γ
ψy
− (g̃).

3. Assume that g = h2 ∈ S∆ is elliptic and that deth = −1. Then for each

y ∈ F×,

qy(∆)Γψ−(g̃) = Γ
ψy
− (g̃).
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4. Assume that g ∈ S∆ is elliptic and is not a square. Write ξ0g = h2 with

ξ0 = deth. Then for each y ∈ F×,

qy(ξ0)Γ
ψ
−(g̃) = Γ

ψy
− (g̃).

Proof. The proof is the same as the proof of the previous lemma. Suppose that

we are in case 1. By Theorem 4.41, we have that

qy(x)Γ
ψ
−(g̃) =

qy(x)γF(x, ψ)ε

| det(1 + g)|1/2

=
γF(x, ψy)ε

| det(1 + g)|1/2

= Γ
ψy
− (g̃).

By Theorem 4.41, case 2 does not depend on ψ so the assertion is clear. Cases 3

and 4 follow similarly by the argument for case 1 and their proofs are omitted.

Proposition 6.19. Let ν0 be a character of F×. Then

Lψ(ν, ν0) =





ωe(ψ) if ν0(−1) = 1,

−ωo(ψ) if ν0(−1) = −1.

Proof. Assume β0 is a character of F× satisfying β0(−1) = −1. We have

ΘLψ(ν,ν0)(g; ε) + ΘLψ(νβ,ν0β0)(g; ε) = Θωe(ψ)(g; ε) − Θωo(ψ)(g; ε). (6.20)

We also have

ΘLψ(ν,ν0)(−g; ε) + ΘLψ(νβ,ν0β0)(−g; ε) = Θωe(ψ)(−g; ε) − Θωo(ψ)(−g; ε).

Recall that (−g; ε) = (−I; 1)(g; εc(−I, g)). So

γF(−1, ψ)c(−I, g)ν0(−1)(ΘLψ(ν,ν0)(g; ε) − ΘLψ(νβ,ν0β0)(g; ε)) =

γF(−1, ψ)c(−I, g)(Θωe(ψ)(g; ε) + Θωo(ψ)(g; ε)),
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i.e.,

ν0(−1)(ΘLψ(ν,ν0)(g; ε) − ΘLψ(νβ,ν0β0)(g; ε)) = Θωe(ψ)(g; ε) + Θωo(ψ)(g; ε). (6.21)

If ν0(−1) = 1, then adding (6.20) and (6.21) yields Lψ(ν, ν0) = ωe(ψ). On the

other hand if ν0(−1) = −1, then subtracting (6.21) from (6.20) yields Lψ(ν, ν0) =

−ωo(ψ).

Remark. This is consistent with (4.9), (4.22), and (4.37). Note that this could

have been proved using the computations given in Lemmas 6.17 and 6.18.

The next corollary gives the correspondence for one–dimensional representa-

tions.

Corollary 6.22. For each y ∈ F×, we have that

Lψst(Q′
y) = ωe(ψy) − ωo(ψy).

Proof. This is obvious from Proposition 6.19 because

Lψst(1, qx) = Lψ(1, qx) + Lψ(ν, ν0qx)

with ν0(−1) = −1.

We also have the following decompositions which are already well known (see

Gelbart and Piatetski–Shapiro [10]).

Corollary 6.23. Let µ0 be a character of F× such that µ0(−1) = 1. Then we

have

ω(µ)|fSL2(F) =
∑

x∈F×/F×2

ωe(ψx).

If µ′
0(−1) = −1 then

ω(µ′)|fSL2(F) =
∑

x∈F×/F×2

ωo(ψx).

Proof. The first assertion follows from Proposition 3.19. The second assertion

follows easily from the previous corollary.
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6.3 Special and Supercuspidal Representations

6.3.1 Special Representations

A reducible principal series on GL2(F) takes the form π(λ| · |1/2, λ| · |−1/2) (see

Definition 2.51). Thus the reducible principal series with trivial central character

are in one to one correspondence with π(qx| · |1/2, qx| · |−1/2).

Let σ(qx| · |1/2, qx| · |−1/2) and µ(qx| · |1/2, qx| · |−1/2) be the associated special

and one–dimensional representations respectively, and σ(qx| · |1/2, qx| · |−1/2)′ be

the push–down of σ(qx| · |1/2, qx| · |−1/2) to SO1,2(F).

Proposition 6.24.

Lst(σ(qx| · |1/2, qx| · |−1/2)′) = PSfSL( ˜qx| · |1/2) − ωe(ψx) + ωo(ψx)

= Lst(π(qx| · |1/2, qx| · |−1/2), qx) − Lst(1, qx)

Proof. By Jacquet–Langlands [12], p. 275, we have that

Θπ(qx|·|1/2,qx|·|−1/2) = Θµ(qx|·|1/2,qx|·|−1/2) + Θσ(qx|·|1/2,qx|·|−1/2).

We have shown that π(qx| · |1/2, qx| · |−1/2) pushes down to PSSO(qx| · |1/2) and that

this corresponds with PSfSL(
˜qx| · |1/2). On the other hand, Jacquet–Langlands

have shown (see [12], p. 102) that µ(qx| · |1/2, qx| · |−1/2) is equivalent to the one

dimensional representation Qx = qx ◦det. Thus µ(qx| · |1/2, qx| · |−1/2) pushes down

to Q′
x. We have shown that Lst(Q′

x) = ωe(ψx) − ωo(ψx). Hence

Lst(σ(qx| · |1/2, qx| · |−1/2)′) = PSfSL( ˜qx| · |1/2) − ωe(ψx) + ωo(ψx),

i.e.,

Lst(σ(qx| · |1/2, qx| · |−1/2)′) = Lst(π(qx| · |1/2, qx| · |−1/2), qx) − Lst(1, qx).
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The reducible principal series PSfSL( ˜qx| · |1/2) of S̃L2(F) is an even oscillator

representation plus a special representation. If σ̃(qx| · |1/2) denotes this special

representation, then PSfSL(
˜qx| · |1/2) − ωe(ψx) + ωo(ψx) = ωo(ψx) + σ̃(qx| · |1/2).

Corollary 6.25.

Lst(σ(qx| · |1/2, qx| · |−1/2)′) = ω0(ψx) + σ̃(qx| · |1/2).

In particular, a special representation of SO1,2(F) corresponds with a a sum of a

supercuspidal and a special representation of S̃L2(F).

6.3.2 Supercuspidal Representations

Suppose π′ is an irreducible supercuspidal representation of SO1,2(F). Then

π is an irreducible supercuspidal representation of GL2(F) and Flicker’s lifting

LiftF(π) is supercuspidal by Theorem 2.67. Its restriction to S̃L2(F) breaks up

into a sum of supercuspidal representations.

Proposition 6.26. Suppose π′ is an irreducible supercuspidal representation of

SO1,2(F). Then Lst(π′) is the sum of two supercuspidal representations.

6.4 Summary

Theorem 6.27. Consider the correspondence

Lψst : Gr(SO1,2(F)) ↔ Grst(S̃L2(F))

(π ⊗ ν−1)′ ↔ Lψst(π, ν0).

This satisfies:
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• Principal series on S̃L2(F) correspond to principal series on SO1,2(F).

That is, Lψst(PSSO(ν0)) = PSfSL(ν̃0).

• The one–dimensional representation Q′
x of SO1,2(F) corresponds with the

difference of the two halves of the oscillator representation of S̃L2(F) at-

tached to ψx. That is, Lψst(Q′
x) = ωe(ψx) − ωo(ψx).

• A special representation on SO1,2(F) corresponds with the sum of an odd

oscillator representation and an odd special representation of S̃L2(F). More

precisely, Lψst(σ(qx| · |1/2, qx| · |−1/2)′) = ωo(ψx) + σ̃(qx| · |1/2).

• If π′ is an irreducible supercuspidal representation of SO1,2(F), then Lψst(π′)

is the sum of two supercuspidal representations of S̃L2(F).
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