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1 Introduction

The Atlas of Lie Groups and Representations is a project in representation
theory of real reductive groups. The main goal of the atlas computer soft-
ware, currently under development, is to compute the unitary dual of any
real reductive Lie group G. As a step in this direction it currently computes
the admissible representations of G.

The underlying mathematics of the software is described in Algorithms
for Representation Theory of Real Reductive Groups [1]. This paper is a com-
plement, and contains examples illustrating the algorithm and the software.

1.1 How to read this paper

A brief summary of the main constructions and results of Algorithms for
Representation Theory of Real Reductive Groups is given in Section 2. We
recommend the reader have the paper [1] available. Unexplained notation is
as in [1]. We also recommend the reader download the software from the At-
las web site, www.liegroups.org; also see the www.liegroups.org/papers.
The online help commands are another a useful source of information.

The software is currently in an early stage of development (version 0.2.6).
There will be substantial changes to the interface for version 1.0, and some
additional features, which we hope to release in fall 2008. Most of the changes
in the interface will be in the input methods, and we do not expect the format
of ouptut to change significantly.
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We plan to publish a manual for the software at the time version 1.0 is
released.

2 Summary of the Algorithm

Here is a summary of Algorithms for Representation Theory of Real Reductive
Groups [1].

The starting point of the algorithm is a complex reductive algebraic group
G together with an inner class of real forms of G. The latter is determined
by an involution γ ∈ Out(G), the group of outer automorphisms of G. We
refer to (G, γ) as basic data [1, Section 4].

We define a semidirect product GΓ = G ⋊ Γ, where Γ = Gal(C/R) =
{1, δ}. We let δ act on G by a “distinguished” involution τ ∈ Aut(G) map-
ping to γ ∈ Out(G), via the map Aut(G) → Out(G). (A distinguished
involution is one which fixes a’splitting datum (B, H, {Xα}); it is the “most
compact” involution in this inner class.) See [1, Section 5].

A real form of G in this inner class is a conjugacy class of involutions
θ ∈ Aut(G) mapping to γ ∈ Out(G). If θ is an involution of G let σ be an
antiholomorphic involution of G commuting with θ. Then G(R) = Gσ is a
real group in the usual sense, and G(R)θ is a maximal compact subgroup of
G(R). See [1, Section 5].

By a strong involution for (G, γ) we mean an element ξ ∈ GΓ\G satisfying
ξ2 ∈ Z, where Z is the center of G. A strong real form is an equivalence
(conjugacy) class of strong involutions. If ξ is a strong involution then θξ =
int(ξ) is an involution of G in the inner class of γ, and this gives a surjective
map from strong real forms to real forms in this inner class. If G is adjoint
this map is bijective, but not otherwise.

A representation of a strong involution is a pair (ξ, π) where ξ is a strong
involution and π is a (g, Gξ)-module. A representation of a strong real form
is an equivalence class of such pairs. The natural map from representation
of strong real forms to representations of forms is a bijection if G is adjoint.
See [1, Section 6].

An alternative definition of strong involutions is obtained by choosing a
set Zr ⊂ Z of representatives of ZΓ/(1+θ)Z. Here (1+θ)Z = {zθ(z) | z ∈ Z},
where θ = int(ξ) for any strong involution ξ. (See the reduced parameter space
below.) This is a finite set. We define a strong involution to be an element ξ
satisfying ξ2 ∈ Zr, with the same notion of equivalence as before. The map
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from strong real forms to real forms is still surjective. The fibers of this map
are smaller (in particular finite). See [1, Section 13].

We fix once and for all a Cartan subgroup H of G. The main combina-
torial object is the (one sided) parameter space:

(2.1) X = {g ∈ NormGΓ\G(H) | g2 ∈ Z}/H

(the quotient is by the conjugation action of H). See [1, Section 9]. The
reduced parameter space [1, Section 13] X r, which is finite, is defined the same

way, with Z replaced by Zr. We let X̃ be the numerator of this expression
(before taking the quotient by H) and X̃ r similarly.

Fix a set of representatives of strong real forms in this inner class, in
the sense of the reduced parameter space. This is a set of representatives
{ξi | i ∈ I} of

(2.2) {ξ ∈ GΓ\G | ξ2 ∈ Zr}/G.

This is a finite set. For each i ∈ I let xi be its image in X r, θi = int(ξi) and
Ki = Gθi . See [1, 5.16].

Let W Γ = NormGΓ(H)/H and

IW = {τ ∈W Γ\W | τ 2 = 1}.

This is (identified with) the space of twisted involutions in the Weyl group

(see [1, (9.14)]). There is a natural map p̃ : X̃ r → IW , which factors to a
map p : X r → IW . These maps are surjective [1, Lemma 9.12]. The fiber of
p over an element τ ∈ IW is denoted X r

p , respectively.

The group NormGΓ(H) acts by conjugation on X̃ r, and this factors to
an action of W on X r. Because of its relationship to the cross action of [2,
Definition 8.3.1] we call this the cross action of W , and denote it w × x.
This action is equivariant for p and the conjugation action of W on IW :
p(w × x) = wp(x)w−1.

Cayley transforms play an important role in representation theory. These
appear in the space X r as follows (see [1, Section 14] for details). Fix x ∈ X r

and let τ = p(x) ∈ IW . Then τ acts on the roots, and a root α is classified
as imaginary, real or complex with respect to τ if τ(α) = α,−α or neither,

respectively. Furthermore let ξ be a preimage of x in X̃ r. If α is imaginary
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we say it is compact or noncompact with respect to x if this holds with respect
to θξ (independent of the choice of ξ).

Now suppose α is a non-compact imaginary root with respect to x. Then
associated to α and x is a new element of X r denoted cα(x). It satisfies
p(cα(x)) = sαp(x), and α is real with respect to sατ . Its inverse is the single
or double-valued real Cayley transform cα(x): if α is real with respect to x
then cα(x) is a set with one or two elements.

Given x ∈ X let

X [x] = {x′ ∈ X | x′ is G-conjugate to x}

(see [1, (9.7)]). Choose a preimage ξ of x in X̃ and let θ = int(ξ), K = Gθ.
Then X [x] is isomorphic to K\G/B. In fact, one of the important properties
of X r is that it captures information about the K orbits on G/B for all K
in this inner class:

X r =
∐

i∈I

X [xi] ≃
∐

i∈I

Ki\G/B.

The “real” Weyl group W (K, H) = NormK(H)/H∩K plays an important
role. It is isomorphic to W (G(R), H(R)) = NormG(R)(H(R))/H(R) where
G(R) is a real form of G corresponding to K, and H(R) is the corresponding
real form of H . See [1, Section 12].

The final ingredient in the algorithm is the two-sided parameter space. Let
G∨ be the dual group of G. The involution γ ∈ Out(G) defines an involution
γ∨ ∈ Out(G∨) (cf. [1, Definition 2.9]), and (G∨, γ∨) is also basic data. Let
X ∨ be the one-sided parameter space defined by (G∨, γ∨).

Suppose x ∈ X , and suppose ξ ∈ X̃ is a pre-image of x in X̃ . Then
θξ restricted to H is independent of the choice of ξ, and we denote it θx,H .
We also write θx,H ∈ End(h) for its differential. There is a natural pairing
between h and h∨ (a Cartan subalgebra on the dual side); the adjoint θt

x,H is
an element of End(h∨).

We can now define the two-sided parameter space:

(2.3) Z = {(x, y) ∈ X × X ∨ | θt
x,H = −θy}.

We define the reduced two-sided parameter space Zr by replacing X and X ∨

with the corresponding reduced spaces. This is a finite set.
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With the obvious notation W ×W∨ acts on Z and Zr; this is the cross
action. By the condition relating x and y in (2.3), if α is a real root with
respect to x then α∨ is an imaginary root with respect to y, and vice-versa.
Thus Cayley transforms are defined on Zr, via a real root on one side, and
an imaginary noncompact root on the other.

The main result in [1] is that the space Z parametrizes the irreducible
representations of strong real forms of G, with regular integral infinitesimal
character, up to “translation”. Because of our emphasis on the reduced
parameter space, we give a slightly different version here. See [1, Theorem
10.4 and Section 13].

Apply the construction in the paragraph preceding (2.1) to choose a sub-
set Z∨r of the center Z∨ of G∨. The pairing of h and h∨ gives an isomorphism
h∗ ≃ h∨, and let

(2.4) L = {λ ∈ h∗ | exp(2πiλ) ∈ Z∨r}.

Choose a set Λ of representatives of L/X∗(H∨), satisfying 〈λ, α∨〉 6= 0 for all
λ ∈ Λ and all roots α. Compare [1, Theorem 7.17].

For each i ∈ I (2.2) let Gi(R) be the real form of G defined by ξi, and
let Π(Gi(R), Λ) be the set of irreducible admissible representations of Gi(R)
with infinitesimal character contained in Λ.

Theorem 2.5 There is a natural bijection

(2.6) Z
1−1
←→

∐

i∈I

Π(Gi(R), Λ).

Fix (x, y) ∈ Zr, and consider the representations associated to the pairs
(x′, y′) in the subset X [x]×X ∨[y] of Zr. Choose i ∈ I so that x is G-conjugate
to xi. Then these are representations of Gi(R), all with the same infinitesimal
character. In fact this set of irreducible representations is a block in the sense
of [2, Chapter 9], and every block is obtained this way.

The entire construction is obviously symmetric in G and G∨, so an ele-
ment (x, y) ∈ Z, which defines a representation π of a real form of G, also
defines a representation π∨ of a real form of G∨. The map π → π∨ is a version
of Vogan Duality; see [3] and [1, (1.35) and Corollary 10.9]. In particular this
is a duality of blocks: the set X [x] × X ∨[y] defines a block B of a real form
of G, a block B∨ of a real form of G∨, and gives a bijection B ↔ B∨.
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3 Defining basic data

The first step in using the atlas software is to define basic data (G, γ), i.e.
a connected complex reductive group G and an involution γ ∈ Out(G). See
Section 2.

This proceeds in three steps:

(1) Define a complex reductive Lie algebra g, and let G∗ be the product
of a complex torus and a simply connected, semisimple complex group
with Lie algebra g;

(2) Choose a finite subgroup A of Z(G∗), and set G = G∗/A;

(3) Choose an inner class of real forms of G.

All three steps are accomplished by the type command. We break this
up into the three steps above.

3.1 Defining g and G∗

A complex reductive Lie algebra is given by a list of types An, Bn, . . . , E8, Tn,
where Tn is the abelian Lie algebra Cn. In response to the type command,
the software asks for the Lie type:. The user then enters such a list, with
terms separated by a period. The order is irrelevant here, although it plays
a role in steps (2) and (3). The entry T2 is the same as T1.T1.

This defines the complex reductive Lie algebra g, and group G∗ (step (1)
above).

Example 3.1 Here are some simple examples. We start with SL(2, C):

main: type

Lie type: A1

Here is SL(2, C)× SL(2, C):

main: type

Lie type: A1.A1

Here is SL(2, C)×C×:

main: type

Lie type: A1.T1
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and finally SL(2, C)2 × Spin(5, C)× Sp(4, C)× Sp(6, C)×C×4:

main: type

Lie type: A1.T1.B2.C2.T1.C3.T2.A1

3.2 Defining a complex group G

The second step is to pick a finite subgroup of the center of Z∗ of G∗.
The center of each simple factor of G is a finite cyclic group, except in

type D2n in which case it is Z/2Z×Z/2Z. The finite cyclic group of order n
is denoted Z/n, and is viewed as the group

1

n
Z/Z = {

0

n
,
1

n
, . . . ,

n− 1

n
}

The elements of finite order in C× are isomorphic to Q/Z, and an element of
this group is given by an element of Q.

Once the user has given the Lie type, the software prompts the user for
a finite subgroup of Z∗, generated by a set of elements of Z∗. Each such
element is given by a list of fractions, one for each term in the Lie type (two
for D2n), separated by commas. Each element is given on a single line; the
empty line terminates this aspect of the input. For example simply typing
return in response to this prompt takes A = 1 and G = G∗. Typing sc has
the same effect. Typing ad gives the adjoint group (actually a torus times
the adjoint group of the derived group of G∗).

Example 3.2 For example here is the group SL(2, C):

main: type

Lie type: A1

elements of finite order in the center of the simply connected group:

Z/2

enter kernel generators, one per line

(ad for adjoint, ? to abort):

sc

Entering a carriage return alone also gives SL(2, C).

Example 3.3 To define PSL(2, C) take A to be the center of SL(2, C),
which is generated by the element of order 2:
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Lie type: A1

elements of finite order in the center of the simply connected group:

Z/2

enter kernel generators, one per line

(ad for adjoint, ? to abort):

1/2

Entering ad instead of 1/2 has the same effect.

Example 3.4 Here is SO(10, C), which is the quotient of Spin(10, C) by
the element of Z∗ of order 2:

main: type

Lie type: D5

elements of finite order in the center of the simply connected group:

Z/4

enter kernel generators, one per line

(ad for adjoint, ? to abort):

2/4

Often a reductive group is a quotient of G∗ by a “diagonal” subgroup.

Example 3.5 Here is GL(2, C) ≃ SL(2, C)×C∗/{(−I,−1)}:

main: type

Lie type: A1.T1

elements of finite order in the center of the simply connected group:

Z/2.Q/Z

enter kernel generators, one per line

(ad for adjoint, ? to abort):

1/2,1/2

The center of Spin(4n, C) is not cyclic, and therefore requires two terms.

Example 3.6 Here is SO(8, C) ≃ Spin(8, C)/A where A is the “diagonal”
subgroup of Z∗ = Z/2Z× Z/2Z:
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main: type

Lie type: D4

elements of finite order in the center of the simply connected group:

Z/2.Z/2

enter kernel generators, one per line

(ad for adjoint, ? to abort):

1/2,1/2

Example 3.7 We can also take the quotient of Spin(8, C) by a non-diagonal
subgroup A ≃ Z/2Z:

main: type

Lie type: D8

elements of finite order in the center of the simply connected group:

Z/2.Z/2

enter kernel generators, one per line

(ad for adjoint, ? to abort):

1/2,0/2

This is not isomorphic to SO(8, C).

This defines the group G = G∗/A and completes step 2.

3.3 Defining an inner class of real forms

We next define an inner class of real forms. Recall (Section 2) this is deter-
mined by an involution in Out(G).

The trivial element of Out(G) corresponds to the inner class of real forms
containing a compact Cartan subgroup. This is the compact inner class, and
is denoted c, and also e for equal rank. In particular if G has a torus factor
its real points are isomorphic to S1 × · · · × S1.

Another natural inner class is that of the split real form This class is
denoted s. In particular if G has a torus factor its real points are isomorphic
to R× · · · ×R×. In many cases the classes c and s are the same, for example
if Out(G) = 1.

Now suppose G = G1 × G1. The outer automorphism switching the two
factors corresponds to the inner class of the real form G1(C), viewed as a
real group. This class is denoted C.
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Suppose G is simple. Then Out(G) is isomorphic to a subgroup of the
automorphism group of the Dynkin diagram of G (with equality if G is simply
connected or adjoint). In type An, Dn (n ≥ 2) and E6 the inner class of real
forms which are not of equal rank is denoted u. In types Bn, Cn, E7, E8, F4

and G2 Out(G) = 1, and there is only one inner class of real forms.
Still assuming G is simple, in most cases each inner class is either compact

or split, and the inner class u is not needed. The only exception is type D2n,
in which case compact and split inner classes coincide, i.e. c = s 6= u. See
Example 3.14.

Now suppose G = G∗. An inner class of real forms of G is specified by
choosing c,e,s,u for each simple or T 1 factor, or C for each pair of identical
(simple or T 1) factors. In general an inner class of real forms of G is given
by an allowed inner class of real forms of G∗: the involutions in this inner
class must factor to G.

To summarize, to specify an inner class of real forms of G, give a list of
choices for each simple or torus factor, or pair of identical entries in the case
of C:

• c: compact

• e: equal rank (same as c)

• s: split

• u: unequal rank

• C: complex (for an identical pair of entries).

The order of the choices corresponds to the order in which the simple and
torus factors of G∗ were specified. A factor C allowed only if there are two
subsequent identical factors, or a torus factor T 2. If G 6= G∗ some choices
may not be allowed.

Here are some examples. Getting slightly ahead of ourself, the showrealforms
command lists the real forms in the given inner class.

Example 3.8 The group SL(2, C) has two real forms SL(2, R) and SU(2),
both of which are in the same inner class. Thus c=e=s=u in this case.
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empty: type

Lie type: A1

elements of finite order in the center of the simply connected group:

Z/2

enter kernel generators, one per line

(ad for adjoint, ? to abort):

sc

enter inner class(es): s

main: showrealforms

(weak) real forms are:

0: su(2)

1: sl(2,R)

Example 3.9 The smallest simple group with two inner classes is type A2.

main: type

Lie type: A2

elements of finite order in the center of the simply connected group:

Z/3

enter kernel generators, one per line

(ad for adjoint, ? to abort):

enter inner class(es): s

main: showrealforms

there is a unique real form: sl(3,R)

This is the split inner class, containing only SL(3, R).

main: type

Lie type: A2

elements of finite order in the center of the simply connected group:

Z/3

enter kernel generators, one per line

(ad for adjoint, ? to abort):

enter inner class(es): c

main: showrealforms

(weak) real forms are:

0: su(3)

1: su(2,1)
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This is the equal rank inner class, consisting of SU(3) and SU(2, 1).

Example 3.10 Here is SL(2, C) viewed as a real group:

empty: type

Lie type: A2.A2

elements of finite order in the center of the simply connected group:

Z/3.Z/3

enter kernel generators, one per line

(ad for adjoint, ? to abort):

enter inner class(es): C

main: showrealforms

(weak) real forms are:

0: sl(3,C)

Example 3.11 If the group is a product specify the inner class as a list. For
example here is the inner class of SL(3, R)× SU(3):

Lie type: A2.A2

elements of finite order in the center of the simply connected group:

Z/3.Z/3

enter kernel generators, one per line

(ad for adjoint, ? to abort):

enter inner class(es): sc

main: showrealforms

(weak) real forms are:

0: sl(3,R).su(3)

1: sl(3,R).su(2,1)

Example 3.12 Here is the inner class of GL(2, R):

main: type

Lie type: A1.T1

elements of finite order in the center of the simply connected group:

Z/2.Q/Z

enter kernel generators, one per line

(ad for adjoint, ? to abort):
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1/2,1/2

enter inner class(es): ss

main: showrealforms

(weak) real forms are:

0: su(2).gl(1,R)

1: sl(2,R).gl(1,R)

enter your choice:

Example 3.13 On the other hand here is the inner class of U(1, 1):

main: type

Lie type: A1.T1

elements of finite order in the center of the simply connected group:

Z/2.Q/Z

enter kernel generators, one per line

(ad for adjoint, ? to abort):

1/2,1/2

enter inner class(es): cc

main: showrealforms

(weak) real forms are:

0: su(2).u(1)

1: sl(2,R).u(1)

enter your choice:

Example 3.14 The group SO(12, C) has the following real forms, in two
inner classes. One inner class consists of the groups SO(12, 0), S(10, 2),
SO(8, 4), SO(6, 6) and SO∗(12). This is both the compact inner class (it
contains SO(12, 0)) and split (it contains SO(6, 6)), and is therefore the
class c=s. There is another inner class consisting of SO(11, 1), SO(9, 3) and
SO(7, 5). This is the inner class u of unequal rank. This is an example where
u is needed.

Here is the compact and split inner class:

main: type

Lie type: D6 sc s

main: showrealform

(weak) real forms are:
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0: so(12)

1: so(10,2)

2: so*(12)[1,0]

3: so*(12)[0,1]

4: so(8,4)

5: so(6,6)

Here is the unequal rank inner class:

main: type

Lie type: D6 sc u

main: showrealforms

(weak) real forms are:

0: so(11,1)

1: so(9,3)

2: so(7,5)

For an explanation of the two version of so*(12) see Example 4.4.

Example 3.15 Here is an example in which the inner class for G∗ is not
defined for G:

main: type

Lie type: A1.A1

elements of finite order in the center of the simply connected group:

Z/2.Z/2

enter kernel generators, one per line

(ad for adjoint, ? to abort):

1/2,0/2

enter inner class(es): C

sorry, that inner class is not compatible with the weight lattice

What this means is: the automorphism which switches the two factors in
G∗ = SL(2, C) × SL(2, C) does not preserve A, and so does not factor to
G = PSL(2, C)× SL(2, C).

Example 3.16 A slightly more interesting example is the “non-diagonal”
quotient of Spin(8, C) (see Example 3.7):
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main: type

Lie type: D4

elements of finite order in the center of the simply connected group:

Z/2.Z/2

enter kernel generators, one per line

(ad for adjoint, ? to abort):

1/2,0/2

enter inner class(es): u

sorry, that inner class is not compatible with the weight lattice

Remark 3.17 Here is a very useful shortcut. You can do steps (1-3) all in
one step in many cases. Give the command type, and at the prompt enter
the Lie type, the isogeny (sc or ad) and the inner class.

For example here is the inner class of SL(2, R):

main: type

Lie type: A1 sc s

main:

or PSL(2, R):

main: type

Lie type: A1 ad s

main:

4 Defining a real group

We now suppose the user has completed the type command, which defines
G and an inner class of real forms. We now specify a particular real form of
G in the inner class. In the terminology of atlas these are weak real forms;
we drop this terminology for now, and turn to the notion of strong real forms
in the next section.

Once an inner class has been chosen, a real form of G in this inner class
is determined by a real form of g (equivalently G∗) in the given inner class.
There is a finite list of such real forms. The command showrealforms gives
a list of the real forms of g in the given inner class; the command realform

gives the same list, and the user can choose the real form from the list.
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The real forms of the classical Lie algebras are given in the usual notation.
Some examples are sl(4,R), su(3,1), su(4), sl(4,H), sp(3,2), so(3,2),
and so*(10). For a torus the real form is specified by gl(1,R), u(1) or
gl(1,C), corresponding to R×, S1 and C×, respectively.

For each exceptional group the real form is specified by specifying the
type of the maximal compact subgroup, except that the split real form is
denoted R. For example the real forms of E7 are e7 (compact), e7(e6.u(1)),
e7(so(12).su(2)) and e7(R) (split).

Here are some examples.

Example 4.1 Here is the group SL(2, R):

main: type

Lie type: A1 sc s

main: realform

(weak) real forms are:

0: su(2)

1: sl(2,R)

enter your choice: 1

Example 4.2 Here is PSL(2, R) ≃ PGL(2, R) ≃ SO(2, 1).

main: type

Lie type: A1 ad s

main: realform

(weak) real forms are:

0: su(2)

1: sl(2,R)

enter your choice: 1

Note that the weak real forms listed don’t depend on the fact that the com-
plex group is PSL(2, C) here instead of SL(2, C); the real form is determined
by a real form of g.

Example 4.3 Here are the equal rank real forms of SO(10, C):

main: type

Lie type: D5

elements of finite order in the center of the simply connected group:
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Z/4

enter kernel generators, one per line

(ad for adjoint, ? to abort):

2/4

enter inner class(es): c

main: realform

(weak) real forms are:

0: so(10)

1: so(8,2)

2: so*(10)

3: so(6,4)

Example 4.4 Type D2n is a bit different; here are the equal rank real forms
of SO(12, C) (see Example 3.14

real:main: type

Lie type: D6

elements of finite order in the center of the simply connected group:

Z/2.Z/2

enter kernel generators, one per line

(ad for adjoint, ? to abort):

1/2,1/2

enter inner class(es): c

main: realform

(weak) real forms are:

0: so(12)

1: so(10,2)

2: so*(12)[1,0]

3: so*(12)[0,1]

4: so(8,4)

5: so(6,6)

The two copies of so*(12) illustrate a technical point. We say two real
forms are equivalent if they are conjugate by G. See [1, Section 5]. The usual
definition defines equivalence to be conjugacy by Aut(G). If G is simple the
two notions agree in most cases.
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Suppose G = SO(2n, C). The outer automorphism group is Z/2Z. In our
example there are two real forms (in our sense) of SO(12, C) corresponding
to the real group SO∗(12). In other words there are two subgroups G1, G2

of SO(12, C), each isomorphic to SO∗(12), which are not conjugate to each
other. They are related by an outer automorphism of SO(12, C). (In the Kac
classification of real forms each is labelled by a 2 on one of the branches of
the fork in the Dynkin diagram). These two groups are denoted SO∗(12)[0, 1]
and SO∗(12)[0, 1]. Lest the reader think this distinction is mere sophistry,
we consider another example.

If G = Spin(2n, C), SO(2n, C) or PSO(2n, C) the two real corresponding
real forms (locally isomorphic to SO∗(2n)) are isomorphic, and interchanged
by an outer automorphism of G. However in the “non-diagonal” quotient of
Spin(2n, C) this fails, as we see by the next example.

Example 4.5

main: type

Lie type: D6

elements of finite order in the center of the simply connected group:

Z/2.Z/2

enter kernel generators, one per line

(ad for adjoint, ? to abort):

1/2,0/2

enter inner class(es): c

main: realform

(weak) real forms are:

0: so(12)

1: so(10,2)

2: so*(12)[1,0]

3: so*(12)[0,1]

4: so(8,4)

5: so(6,6)

enter your choice: 2

real: components

component group is (Z/2)^1

real: realform
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(weak) real forms are:

0: so(12)

1: so(10,2)

2: so*(12)[1,0]

3: so*(12)[0,1]

4: so(8,4)

5: so(6,6)

enter your choice: 3

real: components

group is connected

These two groups are not isomorphic.

This illustrates the command components which we had not previously
discussed. It gives the component group of the real group, which is an ele-
mentary abelian two-group.

In D4 the situation is even more interesting. Let G = Spin(8, C) and
consider the three real forms, corresponding to Spin(6, 2) and the two ver-
sions of Spin∗(8). In fact these are isomorphic; Spin(6, 2) ≃ Spin∗(8), and
these three groups are interchanged by the outer automorphism group of
Spin(8, C), which is S3. Similar statements hold in PSO(8, C). We leave
it to the reader to analyze real forms of SO(8, C) and the “non-diagonal”
quotient of Spin(8, C), in which this symmetry is broken in different ways.
See Examples 3.6 and 3.7.

5 Cartan subgroups

Fix basic data (G, γ). Let θqs be a quasisplit involution in this inner class and
let Kqs = Gθqs . Thus Kqs is the complexified maximal compact subgroup of
the quasisplit form Gqs(R) of G. The conjugacy classes of Cartan subgroups
of Gqs(R), equivalently the Kqs-conjugacy classes of θqs-stable Cartan sub-
groups of G, are in natural bijection with IW/W (twisted involutions in W
modulo the action of W ). The conjugacy classes of Cartan subgroups for
any real form of G are a subset of those for the quasisplit real form. See [1,
Propositions 12.9 and 12.12].

The cartan command gives a list of Cartan subgroups for a given inner
form. It displays the following information about each Cartan subgroup: its
structure as a real torus, the size of the corresponding W -orbit on the space
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of twisted involutions, information about the Weyl group, and information
about the corresponding fibers Xτ .

Any Cartan subgroup is isomorphic to (R×)a× (S1)b× (C×)c for integers
(a, b, c); these are the split, compact and complex entries in the output of
cartan.

Each Cartan subgroup corresponds to a W -orbit of twisted involutions.
The number of such involutions is the twisted involution orbit size.

Associated to any Cartan subgroup are the sets of real and imaginary
roots; each of these is a root system. These are given by imaginary root

system and real root system. The complex factor line in the output has
to do with the Weyl group; see Section 8. The lines beginning real form...

give information about Xτ . See Section 7; for now we observe only that for
a given Cartan only the real forms which contain this Cartan subgroup are
displayed.

Example 5.1 Let G = SL(2, C), which has a unique inner class of real
forms. Then IW = W , with the trivial action, so IW /W = {1, s}. There are
two conjugacy classes of Cartan subgroups of SL(2, R), compact and split.

main: type

Lie type: A1 sc s

main: cartan

(weak) real forms are:

0: su(2)

1: sl(2,R)

enter your choice: 1

Name an output file (return for stdout, ? to abandon):

Cartan #0:

split: 0; compact: 1; complex: 0

twisted involution orbit size: 1

imaginary root system: A1

real root system is empty

complex factor is empty

real form #1: [0] (1)

real form #0: [1] (1)
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Cartan #1:

split: 1; compact: 0; complex: 0

twisted involution orbit size: 1

imaginary root system is empty

real root system: A1

complex factor is empty

real form #1: [0] (1)

Cartan #0 is always the fundamental (most compact) Cartan subgroup,
in this case S1. The corresponding twisted involution is the identity, and its
orbit is itself. Both real forms contain this Cartan subgroup.

Cartan #1 is the split Cartan subgroup R×, and this occurs only in real
form #1 (SL(2, R)).

Example 5.2 Here is the complex group SL(2, C):

real: type

Lie type: A1.A1 sc C

main: cartan

there is a unique real form: sl(2,C)

Name an output file (return for stdout, ? to abandon):

Cartan #0:

split: 0; compact: 0; complex: 1

twisted involution orbit size: 2

imaginary root system is empty

real root system is empty

complex factor: A1

real form #0: [0] (1)

There is one real form, and one conjugacy class of Cartan subgroups, iso-
morphic to C×.

For a complex group the twisted involutions are in bijection with the
Weyl group, in this case there are 2.

Example 5.3 Here are the Cartan subgroups of Sp(4, R):

main: type

Lie type: C2 sc s
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main: cartan

(weak) real forms are:

0: sp(2)

1: sp(1,1)

2: sp(4,R)

enter your choice: 2

Name an output file (return for stdout, ? to abandon):

Cartan #0:

split: 0; compact: 2; complex: 0

twisted involution orbit size: 1

imaginary root system: B2

real root system is empty

complex factor is empty

real form #2: [0,1] (2)

real form #1: [2] (1)

real form #0: [3] (1)

Cartan #1:

split: 0; compact: 0; complex: 1

twisted involution orbit size: 2

imaginary root system: A1

real root system: A1

complex factor is empty

real form #2: [0] (1)

real form #1: [1] (1)

Cartan #2:

split: 1; compact: 1; complex: 0

twisted involution orbit size: 2

imaginary root system: A1

real root system: A1

complex factor is empty

real form #2: [0] (1)
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Cartan #3:

split: 2; compact: 0; complex: 0

twisted involution orbit size: 1

imaginary root system is empty

real root system: B2

complex factor is empty

real form #2: [0] (1)

There are four conjugacy classes of Cartan subgroups, isomorphic to
(S1)2, C×, S1 × R× and R× × R×. All four are contained in the split group
Sp(4, R); two of them are contained in Sp(1, 1), and only the compact Cartan
subgroup occurs in Sp(2, 0).

Example 5.4 Here is the real form of E6 with K of type F4:

main: type

Lie type: E6 sc s

main: realform

(weak) real forms are:

0: e6(f4)

1: e6(R)

enter your choice: 0

real: cartan

Name an output file (return for stdout, ? to abandon):

Cartan #0:

canonical twisted involution:

split: 0; compact: 2; complex: 2

twisted involution orbit size: 45

imaginary root system: D4

real root system is empty

complex factor: A2

real form #1: [0,1,2] (3)

real form #0: [3] (1)

This group has a unique conjugacy class of Cartan subgroups. See Example
10.9.

We discuss Cartan subgroups of the Classical groups.
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Example 5.5 Type An.
First let γ = 1, so W Γ = Sn×Z/2Z. It is well known that the conjugacy

classes of involutions in Sn are parametrized by ordered pairs (a, b) ∈ N2

satisfying a + 2b = n: in cycle notation take w = (1, 2)(3, 4) . . . (2b− 1, 2b).
The quasisplit group in this inner class is the quasisplit unitary group

SU(m, m) (n = 2m−1) or SU(m+1, m) (n = 2m). The Cartan correspond-
ing to (a, b) is isomorphic to (S1)a× (C×)b; the identity element corresponds
to the compact Cartan subgroup.

Now suppose γ is given by the unique non-trivial automorphism of the
Dynkin diagram of type An (n ≥ 2). This corresponds to the split group
SL(n + 1, R). It turns out that the twisted involutions in W are also
parametrized by pairs (a, b) with a + 2b = n; in this case the corresponding
Cartan subgroup is isomorphic to (R×)a×(C×)b. (This is an aspect of Vogan
duality, which relates (SL(n + 1, C), γ) and (PSL(n + 1, C), 1)).

Example 5.6 Types Bn and Cn.
In this case case γ is necessarily trivial, and the Cartan subgroups of

SO(n+1, n) or Sp(2n, R) are parametrized by conjugacy classes of involutions
in W ≃ Sn⋉(Z/2Z)n. These are are parametrized by (a, b, c) with a+b+2c =
n, and the corresponding Cartan subgroup is isomorphic to (S1)a × (R×)b ×
(C×)c.

Is is interesting to consider the Hasse diagram of these Cartan subgroups.
This is the graph, with one node for each Cartan subgroup, and an edge for
each Cayley transform relating two Cartan subgroups. We make a node black
if the corresponding Cartan subgroup is the most split Cartan subgroup of a
real form of G. The split rank is given in the first column.

Example 5.7 Type Dn.
In this case (for n ≥ 2) there are two choices of γ, corresponding to

the quasisplit groups SO(n, n) and SO(n + 1, n − 1) (γ = 1 corresponds to
SO(n, n) if n is even, and SO(n + 1, n − 1) if n is odd). It is most conve-
nient to group these two real forms together. Then the Cartan subgroups are
parametrized by (a, b, c) with a + b + 2c = n, except that (0, 0, c) is counted
twice. (These two Cartan subgroups are conjugate by the outer automor-
phism of SO(n, n) coming from O(n, n).) Again the corresponding Cartan
subgroup is isomorphic to (S1)a × (R×)b × (C×)c. If a is even this Cartan
subgroup occurs in SO(n, n) and in SO(n + 1, n− 1) otherwise.
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Cartan diagram for Sp(12, R) Cartan diagram for SO(7, 6)

Example 5.8 Note that the Cartan subgroups in G(R) only depend on W Γ,
and are therefore independent of isogeny (this is not true in the p-adic case).
While the list of Cartan subgroups is independent of isogeny, the description
as a real torus is not, and the nature of the torus can change unexpectedly
under isogenies.

For example suppose G is of type D2 ≃ A1×A1 and γ 6= 1. There is one
Cartan subgroup H(R) in this case. The possibilities are:

G G(R) H(R)
Spin(4, C) ≃ SL(2, C)× SL(2, C) Spin(3, 1) ≃ SL(2, C) C×

SO(4, C) SO(3, 1) R× × S1

PSO(4, C) ≃ PSL(2, C)× PSL(2, C) PSO(3, 1) ≃ PSL(2, C) C×

For example here is the Cartan subgroup of Spin(3, 1) ≃ SL(2, C):

main: type

Lie type: A1.A1 sc C

main: cartan
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Cartan diagram for SO(6, 6) Cartan diagram for SO(7, 5)

there is a unique real form: sl(2,C)

Name an output file (return for stdout, ? to abandon):

Cartan #0:

split: 0; compact: 0; complex: 1

...

For SO(3, 1) we get:

split: 1; compact: 1; complex: 0

and for PSO(3, 1) ≃ PSL(2, C):

split: 0; compact: 0; complex: 1

Note that G(R) is a connected complex group in the case of Spin(4, C) and
PSO(4, C), but not SO(4, C).

Remark 5.9 If G(R) is a real form of SL(n, C), Sp(2n, C) or SO(n, C) then
two Cartan subgroups are isomorphic if and only if they are conjugate by
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G(R), or by an automorphism of G(R) in the case of (C×)n ⊂ SO(2n, 2n)
(cf. Example 5.7). It is perhaps surprising that this does not necessarily hold
for isogenous groups, as the following example shows.

Let G(R) = Spin(n, n) or PSO(n, n) with n even. There are three Cartan
subgroups isomorphic to R×× S1× (C×)

n
2
−1. Two of these are interchanged

by an outer automorphism of G(R). (These are the two black dots in the
middle row of the Cartan diagram of SO(6, 6). The corresponding Cartan
subgroups of SO(n, n) are isomorphic to (C×)

n
2 .) The third one is not related

to the others: it has a different real Weyl group.
Here are the three Cartan subgroups in question for Spin(6, 6):

Cartan #4:

split: 1; compact: 1; complex: 2

twisted involution orbit size: 180

imaginary root system: A1.A1.A1

real root system: A1.A1.A1

complex factor: A1

real form #5: [0] (1)

real form #4: [1] (1)

Cartan #5:

split: 1; compact: 1; complex: 2

twisted involution orbit size: 60

imaginary root system: A1.A1.A1

real root system: A1.A1.A1

complex factor: A2

real form #5: [0] (1)

real form #3: [1] (1)

Cartan #6:

split: 1; compact: 1; complex: 2

twisted involution orbit size: 60

imaginary root system: A1.A1.A1

real root system: A1.A1.A1

complex factor: A2

real form #5: [0] (1)
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real form #2: [1] (1)

The second and third are interchanged by the outer automorphism of
Spin(6, 6).

A similar phenomenon holds in the split real forms of F4 and G2.

6 Adjoint Fiber

Fix basic data (G, γ) where G is adjoint, and a twisted involution τ ∈ IW .
The fiber Xτ of the map from X to IW plays an important role in the algo-
rithm. While it doesn’t translate directly to something with representation
theoretic meaning, it is useful to understand something about it.

Let H−τ = {h ∈ H | hτ(h) = 1}. There is a natural simply transitive
action of H−τ/(H−τ)0 on Xτ [1, Section 11]. Note that H−τ/(H−τ)0 ≃
(Z/2Z)b where b is the number of S1 factors of the real form of H . Fix
x ∈ Xτ . Via a choice of basepoint in Xτ the output of cartan identifies Xτ

with {0, 1, . . . , 2b−1}. (The element of Z/2Zb corresponding to 0 ≤ k ≤ 2b−1
is the binary expansion of k.)

The imaginary Weyl group Wi acts on Xτ , and the orbits are in one to
one correspondence with real forms containing this Cartan subgroup. The
cartan command gives this decomposition. For example a line

real form #2: [0,1,2] (3)

means that corresponding to real form #2 (from the output of the realform

command) are three elements of Xτ , labelled 0,1,2 (the number in paren-
theses is the number of elements).

The fibers Xτ for τ in a given conjugacy class may be canonically identi-
fied.

Example 6.1 Here is the adjoint group PSL(2, C):

main: type

Lie type: A1 ad s

main: cartan

(weak) real forms are:

0: su(2)

1: sl(2,R)

enter your choice: 1
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Name an output file (return for stdout, ? to abandon):

Cartan #0:

split: 0; compact: 1; complex: 0

twisted involution orbit size: 1

imaginary root system: A1

real root system is empty

complex factor is empty

real form #1: [0] (1)

real form #0: [1] (1)

Cartan #1:

split: 1; compact: 0; complex: 0

twisted involution orbit size: 1

imaginary root system is empty

real root system: A1

complex factor is empty

real form #1: [0] (1)

This means that for τ = 1, corresponding to the compact Cartan subgroup,
|Xτ | has two elements, 0 and 1, and the action of Wi = W is trivial. The
element 0 corresponds to SL(2, R), and 1 to SU(2). For τ = s (the non-
trivial element of W ) the corresponding Cartan subgroup is split, occurs
only in SL(2, R), and the fiber Xτ is a single point. See [1, Example 12.20].

The preceding example is too small to be really helpful; here is a more
interesting one.

Example 6.2 Here are the equal rank real forms of PSL(4, C):

main: type

Lie type: A3 ad c

main: cartan

(weak) real forms are:

0: su(4)

1: su(3,1)

2: su(2,2)

enter your choice: 0
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Name an output file (return for stdout, ? to abandon):

Cartan #0:

canonical twisted involution:

split: 0; compact: 3; complex: 0

twisted involution orbit size: 1

imaginary root system: A3

real root system is empty

complex factor is empty

real form #2: [0,2,5] (3)

real form #1: [1,3,4,6] (4)

real form #0: [7] (1)

This is the fundamental fiber τ = δ. In this case Wi = W . This fiber
has 23 = 8 elements. There is a fixed point of the action of W on Xδ,
corresponding to the compact real form PSU(4) (realform #0). The largest
orbit, of order 4, corresponds to the group SU(3, 1).

Here are the remaining Cartan subgroups:

Cartan #1:

canonical twisted involution: 1,2,3,2,1

split: 0; compact: 1; complex: 1

twisted involution orbit size: 6

imaginary root system: A1

real root system: A1

complex factor is empty

real form #2: [0] (1)

real form #1: [1] (1)

There are 6 elements τ here for which Xτ has order 2; all but the compact
real form appear.

Cartan #2:

canonical twisted involution: 2,1,3,2

split: 1; compact: 0; complex: 1

twisted involution orbit size: 3

imaginary root system is empty

real root system: A1.A1

complex factor: A1

real form #2: [0] (1)
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Finally only the quasisplit group PSU(3, 3) contains the maximally split
Cartan, in which case there are 3 twisted involutions τ , each with |Xτ | = 1.

Note that X therefore has 1× 8 + 6× 2 + 3× 1 = 23. See Example 9.6

7 Strong Real Forms and Fibers

Recall (Section 2) a strong involution ξ is an element of GΓ\G satisfying
ξ2 ∈ Zr, and a real form is a conjugacy class of strong involutions. The map
ξ → θξ taking strong real forms to real forms is surjective, but (if G is not
adjoint) not necessarily injective.

The strongreal command gives information about strong real forms,
which may also be interpreted as information about the fiber Xτ of the map
p : X r → IW over τ ∈ IW .

Fix a twisted involution τ ∈ IW . Let

(7.1)
H1(τ) = {h ∈ H | hτ(h) ∈ Zr}

H2(τ) = {h ∈ H | hτ(h) = 1}.

Then Xτ ≃ H1(τ)/H2(τ)0 [1, Proposition 11.2].
The strong real forms “containing” (H, τ) are parametrized by X r

τ /Wi,τ .
where Wi,τ is the Weyl group of the τ -imaginary roots. In particular ev-
ery strong real form contains the fundamental Cartan subgroup (H, δ), so
the strong real forms are parametrized by X r

δ /Wi,δ. Things are particularly
simple if G has equal rank, in which case

(7.2) X r
δ /W ≃ {h ∈ H | h2 = 1}/W.

Note that |X r
δ | = |Z

r|2n in this case.
The map H1(τ) ∋ h → hτ(h) ∈ Zr is a group homomorphism. It is not

necessarily surjective. The software labels the image {z0, . . . , zr−1}, denoted
class #0, class #1,...class #r-1. This is a subgroup of the two-group
ZΓ/(1 + θ)Z, so r = 2s ≤ |Zr| for some s. For each zj the set

(7.3) X r
τ (zj) = {x ∈ Xτ | x

2 = zj}

is isomorphic to H2(τ)/H2(τ)0 (independent of j) which has cardinality 2b.
Here b is the number of S1 factors in the real group H(R) defined by τ . See
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[1, Section 11]. The group Wi,τ acts on Xτ (zj), and the orbits correspond to
strong real forms. In particular

(7.4) |X r
τ | = 2br = 2b+s.

All of this information is given by the strongreal command.
Note that the order of X r may be computed by summing over Cartan

subgroups, taking into account the size of the conjugacy classes of twisted
involutions.

Example 7.5 Here are strong real forms of SL(2). (See [1, Example 12.20],
especially the Figure at the end). The set Xδ consists of four elements
±I,±diag(i,−i). In this case Zr = Z/Z2 = Z = {±I}.

main: type

Lie type: A1 sc s

main: strongreal

(weak) real forms are:

0: su(2)

1: sl(2,R)

enter your choice: 1

cartan class (one of 0,1):

sorry, value must be one of 0,1

try again (? to abort): 0

Name an output file (return for stdout, ? to abandon):

there are 2 real form classes:

class #0:

real form #1: [0,1] (2)

class #1:

real form #0: [0] (1)

real form #0: [1] (1)

The element class #0 of Z is −I. The two elements ±diag(i,−i) of H
map to −I. These form a single W -orbit, denoted [0,1], corresponding to
real form #1, i.e. SL(2, R); we have Xτ (z) = {±diag(i,−i)}.
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On the other hand class #1 is the element I ∈ Z. In this case Xτ (I) =
{±I}, which consists of two W -orbits. This gives two strong real forms, both
mapping to the compact real form SU(2).

Here are the strong real forms containing the split Cartan subgroup:

real: strongreal

cartan class (one of 0,1): 1

Name an output file (return for stdout, ? to abandon):

real form #1: [0] (1)

In this case Xτ = Xτ (−I) is a single element, and Xτ (I) = ∅. Only the split
real form occurs.

Example 7.6 Now consider the equal rank inner class of SL(4, C). Compare
Example 6.2.

main: type

Lie type: A3 sc c

main: strongreal

(weak) real forms are:

0: su(4)

1: su(3,1)

2: su(2,2)

enter your choice: 0

there is a unique conjugacy class of Cartan subgroups

Name an output file (hit return for stdout):

there are 2 real form classes:

class #0:

real form #2: [0,1,2,4,5,6] (6)

real form #0: [3] (1)

real form #0: [7] (1)

class #1:

real form #1: [0,2,3,5] (4)

real form #1: [1,4,6,7] (4)
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In this case Z ≃ Z/4Z and Z/Z2 ≃ Z/2Z, so |Zr| = 2. In this case b (the
number of S1 factors) is 3, so |Xτ(z)| = 8 for each z ∈ Zr (it is never 0 in
this case), and |Xτ | = 16.

For class #0 we can take I. There are three orbits of W = Wi on
Xτ (I). The W -orbit of diag(1, 1,−1,−1) has 6 elements; given in the line
real form #2: [0,1,2,4,5,6] (6); the corresponding real form (#2) is
SU(2, 2). The elements ±I are each fixed by W , and correspond to the two
lines beginning real form #0. (The software does not specify which of these
is I, and which −I).

Note that −I ≃ ImodZ2, so we could have chosen z = −I instead. Then
SU(2, 2) would be given by iI times the preceding ones, i.e. the W -orbit
of diag(i, i,−i,−i). Similarly the two strong real forms mapping to SU(2)
would be ±iI. The software does not make an acutal choice of Zr; the output
of the software, and the combinatorics of the algorithm, are independent of
any such choice. See [1, Section 13].

For class #1 we can choose z = iI. These are the elements ζ(±1, . . . ,±1)
where ζ = eπi/4, with an odd number of plus signs. The 8 such elements con-
stitute 2 W -orbits, hence the two strong real forms mapping to SU(3, 1)
(real form #1).

Here are the strong real forms containing the other two Cartan subgroups
in this example.

real: strongreal

cartan class (one of 0,1,2): 1

Name an output file (return for stdout, ? to abandon):

there are 2 real form classes:

class #0:

real form #2: [0,1] (2)

class #1:

real form #1: [0] (1)

real form #1: [1] (1)

The compact real form real form #0 only contains the compact Cartan
subgroup and doesn’t occur. In this case |Xτ (I)| = |Xτ (iI)| = 2, Xτ | = 4,
and both SU(2, 2) and SU(3, 1) occur.
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real: strongreal

cartan class (one of 0,1,2): 2

Name an output file (return for stdout, ? to abandon):

real form #2: [0] (1)

For the most split Cartan subgroup |Xτ (I)| = 0, |Xτ (iI)| = 1, and only
SU(2, 2) occurs.

The number of twisted involutions in each conjugacy class are 1, 6 and 3,
as given by the cartan command. Therefore the cardinality of X r is

(7.7) 16× 1 + 4× 6 + 1× 3 = 43.

See Example 9.4.

Example 7.8 Type A2n is a little different than A2n+1. Here are the funda-
mental fiber and the equal rank strong real forms of SL(5, C):

Lie type: A4 sc c

main: strongreal

(weak) real forms are:

0: su(5)

1: su(4,1)

2: su(3,2)

enter your choice: 0

there is a unique conjugacy class of Cartan subgroups

Name an output file (hit return for stdout):

real form #2: [0,1,2,4,5,6,8,10,11,13] (10)

real form #1: [3,9,12,14,15] (5)

real form #0: [7] (1)

In this case Z ≃ Z/5Z and Z/Z2 = 1. We can take z = I in this case, and
the map from strong real forms to real forms is bijective.

We next consider the inner class of SL(n, R). If n is odd this is the
unique real form in this inner class; if n is even there is one other real form
SL(n/2, H). We can take θ(z1, . . . , zn) = diag( 1

zn
, . . . , 1

z1

), and Zr = {I} if n
is odd, or {±I} if n is even.

Here is an example of each case.
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Example 7.9 There is only one real form in this inner class of SL(5, R):

main: type

Lie type: A4 sc s

main: strongreal

there is a unique real form: sl(5,R)

cartan class (one of 0,1,2): 0

Name an output file (hit return for stdout):

real form #0: [0] (1)

Here Zr = {I} and

(7.10) Xδ = {diag(x, y, z) | diag(x/z, 1, z/x) = I}/{diag(xz, y2, xz)} = I

There is only one strong real form in this case.

Example 7.11 Now consider the inner class of SL(4, R), which also contains
the real form SL(2, H). In this case Z = ±I.

main: type

Lie type: A3 sc s

main: strongreal

(weak) real forms are:

0: sl(2,H)

1: sl(4,R)

enter your choice: 0

there is a unique conjugacy class of Cartan subgroups

Name an output file (hit return for stdout):

there are 2 real form classes:

class #0:

real form #1: [0,1] (2)

class #1:

real form #0: [0] (1)

real form #0: [1] (1)
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Taking z = I (this is class #1) we have

Xδ(I) = {diag(z, w, w, z) | z2w2 = 1}/{diag(ad, bc, bc, ad) | abcd = 1}

= {I, diag(1,−1,−1, 1)}.

These elements are not conjugate by W , so there are two strong real forms
mapping to the real form SL(2, H) (real form #0).

On the other hand if z = −I (class #0) then

Xδ(I) = {diag(z, w,−w,−z) | z2w2 = 1}/{diag(ad, bc,−bc,−ad) | abcd = 1}

= {diag(1, 1,−1,−1), diag(−1,−1, 1, 1)}.

These two elements are conjugate by W , so there is only one strong real form
mapping to the real form SL(4, R) (real form #1).

8 Weyl Groups

Fix (G, γ), τ ∈ IW , ξ ∈ X̃τ , and set K = Gθξ . Recall (cf. Section 2)
W (K, H) is the “real” Weyl group; it is isomorphic to W (G(R), H(R)) =
NormG(R)(H(R))/H(R) where G(R) is a real form of G corresponding to K.

We briefly recall some constructions from [1, Section 8], also see [3, Propo-
sition 4.16]. We have

(8.1) W (K, H) ≃ (WC)τ ⋉ (W (M ∩K, H)×Wr).

Here

• Wr is the Weyl group of the system of real roots;

• (WC)τ is the Weyl group of a certain root system constructed using
complex roots ([3, Proposition 3.12]);

• W (K ∩ M, H) ≃ Wi,c ⋉ A(H) ⊂ Wi, where Wi,c is the Weyl group
of the root system of compact imaginary roots, and A(H) is a certain
two-group.

To describe W (K, H) it is therefore sufficient to describe Wr, Wi,c, (WC)τ and
A(H). The first three are Weyl groups of root systems, and the last is an
abelian two-group.

The realweyl command describes these three root systems, denoted W r,

W ic, WC respectively; and A(H), denoted A.
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Example 8.2 As usual we start with SL(2, R):

main: type

Lie type: A1 sc s

main: realweyl

(weak) real forms are:

0: su(2)

1: sl(2,R)

enter your choice: 1

cartan class (one of 0,1): 0

Name an output file (return for stdout, ? to abandon):

real weyl group is W^C.((A.W\_ic) x W^R), where:

W\^C is trivial

A is trivial

W\_ic is trivial

W^R is trivial

This is the compact Cartan subroup, for which W (K, H) is trivial.

real: realweyl

cartan class (one of 0,1): 1

Name an output file (return for stdout, ? to abandon):

real weyl group is W^C.((A.W\_ic) x W^R), where:

W^C is trivial

A is trivial

W\_ic is trivial

W^R is a Weyl group of type A1

For the split Cartan subgroup the only non-trivial factor is Wr, and W (K, H) =
Wr ≃ Z/2Z.

Example 8.3 There is a small change when we compute the Weyl group for
the compact Cartan subgroup of PSL(2, R) instead:

main: type

Lie type: A1 ad s

main: realweyl
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(weak) real forms are:

0: su(2)

1: sl(2,R)

enter your choice: 1

cartan class (one of 0,1): 0

Name an output file (return for stdout, ? to abandon):

real weyl group is W^C.((A.W_ic) x W^R), where:

W^C is trivial

A is an elementary abelian 2-group of rank 1

W_ic is trivial

W^R is trivial

In this case A = Z/2Z, so W (K, H) = Z/2Z. Recall PSL(2, R) ≃
SO(2, 1) is disconnected; the non-trivial Weyl group element is given by an
element in the non-identity component.

Example 8.4 Here is an example, for the split group of type D2m, in which
the group A(H) is quite large. We take the Cartan subgroup (S1)2×(C×)m−1

(cf. Example 5.7). In the notation at the beginning of [1, Section 12] we have

(8.5)

∆i = Am−1
1 ×D2 ≃ Am+1

1

∆r = Am−1
1

∆C = Am−2 × Am−2

Wi ≃ (Z/2Z)m+1, Wr ≃ (Z/2Z)m−1

Wi,c = 1

WC ≃ Sm−1 × Sm−1, (WC)τ ≃ Sm−1

W τ ≃ Sm−1 ⋉ [(Z/2Z)m+1 × (Z/2Z)m−1].

Here Sm−1 acts trivially on the final two factors of (Z/2Z)m+1.
So far this discussion is independent of isogeny.
The real Weyl group is the same as W τ , with the factor Wi = (Z/2Z)m+1

replaced by A(H), which is a subgroup satisfying

(8.6) 1 = Wi,c ⊂ A(H) ⊂Wi = (Z/2Z)m+1.

The group A(H) depends on the isogeny. If G is simply connected it is as
small as possible, and for G adjoint it is as large as possible, in fact equal to
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Wi. So if G(R) is the adjoint group PSO(n, n) we have A(H) ≃ (Z/2Z)m+1,
and W (K, H) = W τ . On the other hand if G = Spin(n, n) then A(H) ≃
(Z/2Z)m−1.

We can compute this information using the atlas software:

empty: type

Lie type: D8 ad s

main: realform

(weak) real forms are:

0: so(16)

1: so(14,2)

2: so(12,4)

3: so*(16)[0,1]

4: so*(16)[1,0]

5: so(10,6)

6: so(8,8)

enter your choice: 6

real: realweyl

cartan class (one of 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15): 5

Name an output file (hit return for stdout):

real weyl group is W^C.((A.W_ic) x W^R), where:

W^C is isomorphic to a Weyl group of type A2

A is an elementary abelian 2-group of rank 5

W_ic is trivial

W^R is a Weyl group of type A1.A1.A1

Here is the relevant output from the cartan command:

Cartan #5:

canonical twisted involution: 6,7,8,6,5,6,7,8,6,4,...[truncated]

split: 0; compact: 2; complex: 3

twisted involution orbit size: 3360

imaginary root system: A1.A1.A1.A1.A1

real root system: A1.A1.A1

complex factor: A2

If H is a fundamental Cartan subgroup then HK = H ∩K is a Cartan
subgroup of K, and it is not hard to see that W (G, H) ≃ W (K, HK). In
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partiular if K is connected this is the Weyl group of the root system of HK in
K. It is interesting to consider this in the case of real forms of E6 of unequal
rank.

Example 8.7 First suppose K is of type F4:

main: type

Lie type: E6 sc u

main: realweyl

(weak) real forms are:

0: e6(f4)

1: e6(R)

enter your choice: 0

there is a unique conjugacy class of Cartan subgroups

Name an output file (return for stdout, ? to abandon):

real weyl group is W^C.((A.W_ic) x W^R), where:

W^C is isomorphic to a Weyl group of type A2

A is trivial

W_ic is a Weyl group of type D4

W^R is trivial

Thus W (K, H) ≃ W (A2) ⋉ W (D4) ≃ S3 ⋉ W (D4). The action of S3 on
W (D4) is induced by the action of S3 on the Dynkian diagram of D4. By
the remarks above we have obtained the classical isomorphism

(8.8) W (F4) ≃ S3 ⋉ W (D4).

Example 8.9 Something similar happens for the split real form of E6, i.e.
K is of type C4:

real: type

Lie type: E6 sc s

main: realform

(weak) real forms are:

0: e6(f4)

1: e6(R)

enter your choice: 1

real: realweyl
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cartan class (one of 0,1,2,3,4): 0

Name an output file (return for stdout, ? to abandon):

real weyl group is W^C.((A.W_ic) x W^R), where:

W^C is isomorphic to a Weyl group of type A2

A is an elementary abelian 2-group of rank 2

W_ic is a Weyl group of type A1.A1.A1.A1

W^R is trivial

Thus

(8.10)
W (C4) ≃ S3 ⋉ (Z2

2 ⋉ Z4
2)

≃ S4 ⋉ Z4
2.

Example 8.11 Here is an example of the Weyl group of a complex group.
Fix basic data (G1×G1, γ) where for some group G1, with γ the inner class of
the complex group. Thus G(R) = G1(C). If H1 is a Cartan subgroup of G1

then H = H1×H1 is a Cartan subgroup of G, and W (G, H) ≃ W (G1, H1)×
W (G1, H1), and W (K, H) = W (G1, H1)

∆ (the diagonal embedding). In the
notation of the output of realweyl W C = W (G) and (W C)τ = W (G1, H1).

empty: type

Lie type: A3.A3 sc C

main: realweyl

there is a unique real form: sl(4,C)

there is a unique conjugacy class of Cartan subgroups

Name an output file (hit return for stdout):

real weyl group is W^C.((A.W_ic) x W^R), where:

W^C is isomorphic to a Weyl group of type A3

A is trivial

W_ic is trivial

W^R is trivial

generators for W^C:

2,5

3,6

1,4

Simple roots 1, 2, 3 give the first copy of G1, and 4, 5, 6 give the second. The
elements s1s4, s2s5 and s3s6 generate the W (G1, H1)

∆ ≃W (A3).
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9 K orbits on the flag variety and the param-

eter space X

Fix (G, γ), ξ ∈ X̃ and let K = Gξ. The space K\G/B of K-orbits on G/B
is finite. It is described by the kgb command.

Example 9.1 We first consider SL(2, R). See [1, Example 12.20].

main: type

Lie type: A1 sc s

main: kgb

(weak) real forms are:

0: su(2)

1: sl(2,R)

enter your choice: 1

kgbsize: 3

Name an output file (return for stdout, ? to abandon):

0: 1 2 [n] 0

1: 0 2 [n] 0

2: 2 * [r] 1 1

Here G(R) = SL(2, R), K(R) = S1 and K = K(C) = C×. This acts on
G/B = P 1(C) = C∪∞ by C× ∋ z : w → z2w. There are three orbits of this
action: 0,∞ and C×. These are orbits #0,1,2 respectively (the first entry
in each line) in the output of kgb. In this case the penultimate entry in each
line gives the dimension of the orbit.

Example 9.2 Here is PGL(2, R); see [1, Example 12.25] for more detail.

main: type

Lie type: A1 ad s

main: kgb

(weak) real forms are:

0: su(2)

1: sl(2,R)

enter your choice: 1

kgbsize: 2

Name an output file (return for stdout, ? to abandon):
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0: 0 1 [n] 0

1: 1 * [r] 1 1

If G(R) = PGL(2, R) there are only two orbits, one open and one closed.
In this case K = O(2, C) acts on G/B = P 1(C). The orbits are the same
as in the previous example, except that an element from the non-identity
component of K takes z to 1

z
, and 0 to ∞.

We now explain the other information given in the output. Let n be the
semisimple rank of G. The simple roots are labelled 1, . . . , n. Recall (2)
K\G/B →֒ X r. Each row i of output corresponds to an element x = xi of
X r, and an orbit Oi of K on G/B. Fix a row i with corresponding x = xi.

Suppose α is a (simple) root. Then α is real, complex, compact imaginary,
or non-compact imaginary with respect to x (see Section 2 and [1, Section
12]). The term in brackets in row i of the output gives this information for
each simple root: r,C,n or c, respectively. There are n terms in the brackets.

After the first entry i:, the next n columns give the cross action of the
simple roots. An entry j in column k of row i means that the the cross
action of the kth simple root takes xi to xj .

The next n columns give Cayley transforms by non-compact imaginary
roots. There is an entry in in column k of row i only if the kth simple root
is non-compact imaginary for xi; in this case an entry j means this Cayley
transform takes xi to xj . These Cayley transforms are single valued (the
inverse, multivalued Cayley transforms are not listed).

The penultimate entry in row i is dim(Oi)− dim(O0). The closed orbits
are listed first; there is at least one such orbit (#0), and all such orbits have
the same dimension.

Recall there is a map p : X r → IW ⊂ W Γ. Then p(xi) = wδ for some
w ∈W , given by the last entry in the row as a product of simple reflections.

Here is the SL(2, R) example again:

0: 1 2 [n] 0

1: 0 2 [n] 0

2: 2 * [r] 1 1

Here is the information we can read off from this output. Orbits #0 and
#1 are closed and 0-dimensional, and orbit #2 is one dimensional. The first
two orbits are interchanged by the cross action of the unique simple root.
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For orbits #0,#1 this root is non-compact, and the Cayley transform takes
each of this orbits to orbit #2.

See [1, Example 14.19] for a detailed discussion of Sp(4, R).

Example 9.3 Here is SL(3, R):

main: type

Lie type: A2 sc s

main: kgb

there is a unique real form: sl(3,R)

kgbsize: 4

Name an output file (hit return for stdout):

0: 2 1 * * [CC] 0

1: 1 0 3 * [nC] 1 2,1

2: 0 2 * 3 [Cn] 1 1,2

3: 3 3 * * [rr] 2 1,2,1

This is not an equal rank case; the dimension of the closed orbit is 1, and
the dimension of the unique open orbit is 1 + 2 = 3, the dimension of G/B.

Example 9.4 Here are the equal rank real forms of SL(4, C). See Example
7.6.

empty: type

Lie type: A3 sc c

main: realform

(weak) real forms are:

0: su(4)

1: su(3,1)

2: su(2,2)

enter your choice: 2

real: kgb

kgbsize: 21

Name an output file (return for stdout, ? to abandon): kgb_SU22

real: realform

(weak) real forms are:

0: su(4)

1: su(3,1)
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2: su(2,2)

enter your choice: 1

real: kgb

kgbsize: 10

Name an output file (return for stdout, ? to abandon): kgb_SU31

real: realform

(weak) real forms are:

0: su(4)

1: su(3,1)

2: su(2,2)

enter your choice: 0

real: kgb

kgbsize: 1

Name an output file (return for stdout, ? to abandon): kgb_SU4

The number of K orbits on G/B is 21 for SU(2, 2), 10 for SU(3, 1) and 1
for SU(4). Recall (cf. Example 7.6) there are two strong real forms mapping
to SU(4) and SU(3, 1), and one mapping to SU(2, 2). This means that the
set K\G/B for SU(3, 1), of order 10, appears twice in X r, and similary for
SU(4). Therefore the order of X r is

(9.5) 2× 1 + 2× 10 + 1× 21 = 43.

This agrees with the counting done a different way in Example 7.6 (cf. (7.7)).

Example 9.6 We do the same example again for equal rank forms of the
adjoint group PSL(4, C).

main: type

Lie type: A3 ad c

main: realform

(weak) real forms are:

0: su(4)

1: su(3,1)

2: su(2,2)

enter your choice: 2

real: kgb

kgbsize: 12
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Name an output file (return for stdout, ? to abandon): kgb_PSU22

real: realform

(weak) real forms are:

0: su(4)

1: su(3,1)

2: su(2,2)

enter your choice: 1

real: kgb

kgbsize: 10

Name an output file (return for stdout, ? to abandon): kgb_PSU31

real: realform

(weak) real forms are:

0: su(4)

1: su(3,1)

2: su(2,2)

enter your choice: 0

real: kgb

kgbsize: 1

Name an output file (return for stdout, ? to abandon): kgb_PSU4

In this case X r has order 12 + 10 + 1 = 23. See Example 6.2

Example 9.7 Complex Groups.
Suppose G(C) = G1(C) × G1(C) and θ(g, h) = (h, g). Then G(R) =

G1(C), K(C) = G(C)θ = G1(C)∆ ≃ G1(C), and K(R) is the compact form
of G1(C). The map φ(g, h) = gh−1 takes G1(C)×G1(C) to G1(C). It is well
known, and not hard to see, that this induces an isomorphism

(9.8) G1(C)∆\G1(C)×G1(C)/B1(C) ≃ B1(C)\G1(C)/B1(C).

Thus the orbits of K on G/B are in bijection with orbits of B1(C) on
G1(C)/B1(C), which is described by the well known theory of the Schubert
calculus. In particular the orbits are parametrized by W .

For example suppose G(R) = SL(n, C), i.e. take G1(C) = SL(n, C) and
G(C) = SL(n, C)× SL(n, C). Then K(C) = SL(n, C) and K(R) = SU(n).

Example 9.9 Here is the real group SL(3, C):

main: type
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Lie type: A2.A2 sc C

main: kgb

there is a unique real form: sl(3,C)

kgbsize: 6

Name an output file (hit return for stdout):

0: 2 1 2 1 * * * * [CCCC] 0

1: 4 0 3 0 * * * * [CCCC] 1 2,4

2: 0 3 0 4 * * * * [CCCC] 1 1,3

3: 5 2 1 5 * * * * [CCCC] 2 2,1,3,4

4: 1 5 5 2 * * * * [CCCC] 2 1,2,4,3

5: 3 4 4 3 * * * * [CCCC] 3 1,2,1,3,4,3

Since all roots are complex there are no Cayley transforms. The cross action
of the Weyl group W (A2) ≃ S3 is simply transitive. The last column gives
the Weyl group element (w, w) as a product of simple reflections; just taking
the first half of each entry we see W = {id, s2, s1, s2s1, s1s2, s1s2s1}. See
Example 8.11.

10 Representation Theory: Blocks and the

two-sided parameter space

The block command gives information about blocks of representations. Re-
call (Section 2) a block of representations of G(R) is a set of representations
with fixed infinitesimal character. An irreducible representation is deter-
mined by an element (x, y) of Zr, and the block containing this representa-
tion corresponds to X [x] × X ∨[y] ⊂ Zr. Thus a block is determined by a
pair: (strong real form of G, strong real form of G∨).

There is an important subtle point here. Fix x ∈ X r with corresponding
real group G(R). Suppose y, y′ ∈ X ∨r define different strong real forms (y
is not G∨-conjugate to y′) but the same (weak) real form. Then the blocks
B,B′ for G(R) defined by (x, y) and (x, y′) are isomorphic, but not equal.
The output of block does not distinguish between these two blocks, and is
therefore determined by the choice of a weak real form only. The result is
that the output of block only shows one block here; there are k isomorphic
blocks.

The cases of real forms of SL(2, C) and PSL(2, C) are explained in detail
in [1, Example 12.20]. Here is a brief summary.
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Example 10.1 SL(2, R) and SU(2):

main: type

Lie type: A1 sc s

main: realform

(weak) real forms are:

0: su(2)

1: sl(2,R)

enter your choice: 1

real: block

possible (weak) dual real forms are:

0: su(2)

1: sl(2,R)

enter your choice: 1

Name an output file (return for stdout, ? to abandon):

0(0,1): 1 (2,*) [i1] 0

1(1,1): 0 (2,*) [i1] 0

2(2,0): 2 (*,*) [r1] 1 1

real: block

possible (weak) dual real forms are:

0: su(2)

1: sl(2,R)

enter your choice: 0

Name an output file (return for stdout, ? to abandon):

0(2,0): 0 (*,*) [rn] 1 1

Thus SL(2, R) has two blocks, of size 3 and 1 respectively. We can take
the infinitesimal character to be ρ, and the big block to be the two discrete
series representations and the trivial representation. The singleton block
is the irreducible principal series representation (with odd K-types) with
infinitesimal character ρ.

Of course SU(2) has a single block, consisting of a finite dimensional
representation (the trivial representation if we take infinitesimal character
ρ):

real: realform

(weak) real forms are:

0: su(2)

1: sl(2,R)
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enter your choice: 0

real: block

there is a unique dual real form choice: sl(2,R)

Name an output file (return for stdout, ? to abandon):

0(0,1): 0 (*,*) [ic] 0

Example 10.2 The groups PSL(2, R) ≃ SO(2, 1) and SO(3) give the dual
picture to the preceding one:

Lie type: A1 ad s

main: realform

(weak) real forms are:

0: su(2)

1: sl(2,R)

enter your choice: 1

real: block

possible (weak) dual real forms are:

0: su(2)

1: sl(2,R)

enter your choice: 1

Name an output file (return for stdout, ? to abandon):

0(0,2): 0 (1,2) [i2] 0

1(1,0): 2 (*,*) [r2] 1 1

2(1,1): 1 (*,*) [r2] 1 1

The group SO(2, 1) has a block of three elements (dual to the big block
of SL(2, R). We can take the infinitesimal character to be ρ, and this block
consists of the unique discrete series representation, the trivial representation,
and the sgn representation. These are the only irreducible representation of
SO(2, 1) with infinitesimal character ρ.

Since PSL(2, C) is not simply connected, the set Λ of Theorem 2.5 has
two elements, which we can take to be ρ and 2ρ. Now SO(2, 1) has two
irreducible representation PS± at infinitesimal character 2ρ. Both are irre-
ducible principal series; PS+ contains the trivial (lowest) K-type, and PS−

contains the sgn K-type. These two representations differ by tensoring with
sgn. Both PS+ and PS− are blocks containing a single irreducible represen-
tation.

Here is the relevant atlas command:
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real: block

possible (weak) dual real forms are:

0: su(2)

1: sl(2,R)

enter your choice: 0

Name an output file (return for stdout, ? to abandon):

0(1,0): 0 (*,*) [rn] 1 1

This is an example of the subtlety discussed above. There are two
strong real forms of (the dual group) SL(2, C) mapping to the compact form
SU(2) (see Example 10.1); call them SU(2, 0) and SU(0, 2). Then one block
(say {PS+}) is dual to the trivial representation of SU(2, 0), and the other
({PS−}) is dual to the trivial representation of SU(0, 2). See the table at
the end of [1, Section 12], and Example 10.4.

We illustrate the other information in the output of block by looking at
Sp(4, R). See [1, Example 14.19].

Example 10.3 main: type

Lie type: C2 sc s

main: block

(weak) real forms are:

0: sp(2)

1: sp(1,1)

2: sp(4,R)

enter your choice: 2

possible (weak) dual real forms are:

0: so(5)

1: so(4,1)

2: so(2,3)

enter your choice: 2

Name an output file (return for stdout, ? to abandon):

0( 0,6): 1 2 ( 6, *) ( 4, *) [i1,i1] 0

1( 1,6): 0 3 ( 6, *) ( 5, *) [i1,i1] 0

2( 2,6): 2 0 ( *, *) ( 4, *) [ic,i1] 0

3( 3,6): 3 1 ( *, *) ( 5, *) [ic,i1] 0

4( 4,4): 8 4 ( *, *) ( *, *) [C+,r1] 1 2

5( 5,4): 9 5 ( *, *) ( *, *) [C+,r1] 1 2

6( 6,5): 6 7 ( *, *) ( *, *) [r1,C+] 1 1
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7( 7,2): 7 6 (10,11) ( *, *) [i2,C-] 2 2,1,2

8( 8,3): 4 9 ( *, *) (10, *) [C-,i1] 2 1,2,1

9( 9,3): 5 8 ( *, *) (10, *) [C-,i1] 2 1,2,1

10(10,0): 11 10 ( *, *) ( *, *) [r2,r1] 3 1,2,1,2

11(10,1): 10 11 ( *, *) ( *, *) [r2,rn] 3 1,2,1,2

This block has 12 representations, labelled 0, . . . , 11. These are parametrized
by pairs (x, y), the second entry on each line, from the corresponding kgb

commands for G and G∨:

main: kgb

(weak) real forms are:

0: sp(2)

1: sp(1,1)

2: sp(4,R)

enter your choice: 2

kgbsize: 11

Name an output file (return for stdout, ? to abandon):

0: 1 2 6 4 [nn] 0

1: 0 3 6 5 [nn] 0

2: 2 0 * 4 [cn] 0

3: 3 1 * 5 [cn] 0

4: 8 4 * * [Cr] 1 2

5: 9 5 * * [Cr] 1 2

6: 6 7 * * [rC] 1 1

7: 7 6 10 * [nC] 2 2,1,2

8: 4 9 * 10 [Cn] 2 1,2,1

9: 5 8 * 10 [Cn] 2 1,2,1

10: 10 10 * * [rr] 3 1,2,1,2

main: type

Lie type: C2 ad s

main: kgb

(weak) real forms are:

0: sp(2)

1: sp(1,1)

2: sp(4,R)

enter your choice: 2

kgbsize: 7

Name an output file (return for stdout, ? to abandon):
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0: 0 1 3 2 [nn] 0

1: 1 0 * 2 [cn] 0

2: 5 2 * * [Cr] 1 2

3: 3 4 * * [rC] 1 1

4: 4 3 6 * [nC] 2 2,1,2

5: 2 5 * 6 [Cn] 2 1,2,1

6: 6 6 * * [rr] 3 1,2,1,2

Thus |K\G/B| = 11 and K∨\G∨/B∨| = 7.
The next two columns give cross actions of the simple roots, similar to

the kgb command, followed by two columns for Cayley transforms. These
follow from the cross action/Cayley transforms for kgb on both the G and
G∨ side.

For example s1 × π0 = π1, or in terms of (x, y) parameters s1 × (0, 6) =
(1, 6). For G we have s1 × 0 = 1 (from the output of kgb for G) and for G∨

we have s1 × 6 = 6 (from the output of kgb for G∨).
In this setting (unlike kgb) these can be double valued, even for a non-

compact imaginary root, since this corresponds to a real root on the dual
side.

The term in brackets list the roots as

• compact imaginary: ic

• noncompact imaginary, type I: i1

• noncompact imaginary, type II: i2

• complex: C+,C-

• real, not satisfying the parity condition: rn

• real, satisfying the parity condition type I: r1

• real, satisfying the parity condition type II: r2

The penultimate column gives the length of this parameter, and the fi-
nal column is the corresponding twisted involution, exactly as in the kgb

command for x.
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The blocksizes command gives the sizes of all blocks. (As in the example
of SO(2, 1) above, if G is not simply connected there may be more than one
block of each size.)

The output of blocksizes has one row for each real form of G, and one
column for each real form of G∨.

Example 10.4 Here are real forms of SL(2, C):

main: type

Lie type: A1 sc s

main: blocksizes

0 1

1 3

or adding some labelling by hand:

SO(3) SO(2,1)

SU(2) 0 1

SL(2,R) 1 3

Thus SU(2) has a single block, dual to a block of SO(2, 1), and SL(2, R) has
two blocks, dual to SO(3), and SO(2, 1), respectively. Since the dual group
is adjoint, there is only one block of each size.

Example 10.5 The corresponding output for PSL(2, C) is the same, but
there is a subtle point here.

main: type

Lie type: A1 sc s

main: blocksizes

SU(2) SL(2,R)

SO(3) 0 1

SO(2,1) 1 3

(labelling added). Now the dual group SL(2, C) is not adjoint, and the map
from strong real forms to real forms is not injective (there are two strong real
forms mapping to SU(2). Consequently there are two blocks of SO(2, 1) of
size 1. See Example 10.2. We could display this information by constructing
a table by hand showing strong real forms on the dual side:
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SU(2,0) SU(0,2) SL(2,R)

SO(3) 0 0 1

SO(2,1) 1 1 3

The output of block tends to be concentrated on the quasisplit forms of
G or G∨:

Example 10.6 Here is the output of blocksizes for of Sp(12, C), with the
real forms added:

Lie type: C6 sc s

main: blocksizes

SO(13) SO(12,1) SO(11,2) SO(10,3) SO(9,4) SO(8,5) SO(7,6)

Sp(6) 0 0 0 0 0 0 1

Sp(5,1) 0 0 0 0 0 0 36

Sp(4,2) 0 0 0 0 0 0 315

Sp(3,3) 0 0 0 0 0 0 680

Sp(12,R) 1 13 108 556 1975 4707 7416

Example 10.7 In the case of equal rank real forms of SO(12, C) we get
some non-diagonal elements:

main: type

Lie type: D6

elements of finite order in the center of the simply connected group:

Z/2.Z/2

enter kernel generators, one per line

(ad for adjoint, ? to abort):

1/2,1/2

enter inner class(es): e

main: blocksizes

SO(12) SO(10,2) SO*(12) SO*(12) SO(8,4) SO(6,6)

SO(12) 0 0 0 0 0 1

SO(10,2) 0 0 0 0 15 66

SO*(12) 0 0 0 60 0 692

SO*(12) 0 0 60 0 0 692

SO(8,4) 0 15 0 0 300 885

SO(6,6) 1 66 692 692 885 2320
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Note that this diagram is symmetric: SO(12, C) is self-dual (and the equal
rank and split inner classes coincide). For a discussion of the two version of
so*(12) see Example 4.4.

Example 10.8 We break the symmetry between G and G∨ of the previous
example by taking Spin(12, C), which is dual to PSO(12, C).

main: type

Lie type: D6 sc s

main: blocksizes

PSO(12) PSO(10,2) PSO*(12) PSO*(12) PSO(8,4) PSO(6,6)

Spin(12) 0 0 0 0 0 1

Spin(10,2) 0 0 0 0 15 87

Spin*(12) 0 0 0 60 0 692

Spin*(12) 0 0 60 0 0 692

Spin(8,4) 0 15 0 0 300 915

Spin(6,6) 1 66 436 436 885 2180

There is an interesting phenomenon here. Note that Spin(6, 6) has a
block Bspin of order 66, dual to a block of PSO(10, 2). From the previous
example SO(6, 6) also has a block of order 66, denoted BSO, dual to a block
for SO(10, 2). From the output of the block command one can see these
blocks are isomorphic.

All representations in a block have the same central character, and the
representations BSpin factor to the image of Spin(6, 6) in SO(6, 6). Now
Spin(6, 6) is connected, and SO(6, 6) has two components, so the image of
this map has index 2 in SO(6, 6). Therefore it is not obvious that BSpin and
BSO should be isomorphic.

The explanation is seen by looking at the dual side. The map SO(10, 2)→
PSO(10, 2) is surjective. It follows easily that the dual blocks are isomorphic,
hence the blocks themselves are isomorphic.

We leave it to the reader to see that the symmetry between the two ver-
sions of SO∗(12) is broken by taking the “non-diagonal” quotient of SO(12, C).
See Examples 3.7 and 4.4.

Example 10.9 We conclude with a large example, for the (simply con-
nected) real form of E6 with K of type A5 × A1.
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main: typex

Lie type: E6 sc e

main: block

(weak) real forms are:

0: e6

1: e6(so(10).u(1))

2: e6(su(6).su(2))

enter your choice: 2

possible (weak) dual real forms are:

0: e6(f4)

1: e6(R)

enter your choice: 0

Name an output file (return for stdout, ? to abandon):

Block for E6(A5 × A1) (simply connected), dual to E6(F4) (adjoint)

0( 851,44): 2 0 0 0 0 1 ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) [C+,rn,rn,rn,rn,C+]

1(1013,43): 4 1 1 1 3 0 ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) [C+,rn,rn,rn,C+,C-]

2(1014,42): 0 2 5 2 2 4 ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) [C-,rn,C+,rn,rn,C+]

3(1165,41): 8 3 3 6 1 3 ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) [C+,rn,rn,C+,C-,rn]

4(1166,40): 1 4 9 4 8 2 ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) [C-,rn,C+,rn,C+,C-]

5(1167,39): 5 5 2 7 5 9 ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) [rn,rn,C-,C+,rn,C+]

6(1304,38): 11 10 10 3 6 6 ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) [C+,C+,C+,C-,rn,rn]

7(1305,37): 7 14 7 5 14 12 ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) [rn,C+,rn,C-,C+,C+]

8(1306,36): 3 8 13 11 4 8 ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) [C-,rn,C+,C+,C-,rn]

9(1307,35): 9 9 4 12 13 5 ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) [rn,rn,C-,C+,C+,C-]

10(1430,34): 18 6 6 10 10 10 ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) [C+,C-,C-,rn,rn,rn]

11(1431,33): 6 18 15 8 11 11 ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) [C-,C+,C+,C-,rn,rn]

12(1432,32): 12 19 12 9 17 7 ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) [rn,C+,rn,C-,C+,C-]

13(1433,31): 13 13 8 16 9 13 ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) [rn,rn,C-,C+,C-,rn]

14(1434,30): 14 7 14 14 7 19 ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) [rn,C-,rn,rn,C-,C+]

15(1536,29): 24 24 11 20 15 15 ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) [C+,C+,C-,C+,rn,rn]

16(1537,28): 16 22 20 13 21 16 ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) [rn,C+,C+,C-,C+,rn]

17(1538,27): 17 23 17 21 12 23 ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) [rn,C+,rn,C+,C-,C+]

18(1539,26): 10 11 24 18 18 18 ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) [C-,C-,C+,rn,rn,rn]

19(1540,25): 19 12 19 19 23 14 ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) [rn,C-,rn,rn,C+,C-]

20(1620,24): 28 26 16 15 25 20 ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) [C+,C+,C-,C-,C+,rn]

21(1621,23): 21 29 25 17 16 27 ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) [rn,C+,C+,C-,C-,C+]

22(1622,22): 22 16 26 22 29 22 ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) [rn,C-,C+,rn,C+,rn]

23(1623,21): 23 17 23 27 19 17 ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) [rn,C-,rn,C+,C-,C-]

24(1624,20): 15 15 18 28 24 24 ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) [C-,C-,C-,C+,rn,rn]

25(1684,19): 32 31 21 25 20 30 ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) [C+,C+,C-,rn,C-,C+]

26(1685,18): 34 20 22 34 31 26 ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) [C+,C-,C-,C+,C+,rn]

27(1686,17): 27 33 30 23 27 21 ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) [rn,C+,C+,C-,rn,C-]

28(1687,16): 20 34 28 24 32 28 ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) [C-,C+,rn,C-,C+,rn]

29(1688,15): 29 21 31 33 22 33 ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) [rn,C-,C+,C+,C-,C+]

30(1730,14): 37 36 27 30 30 25 ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) [C+,C+,C-,rn,rn,C-]

31(1731,13): 38 25 29 35 26 36 ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) [C+,C-,C-,C+,C-,C+]

32(1732,12): 25 38 32 32 28 37 ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) [C-,C+,rn,rn,C-,C+]

57



33(1733,11): 33 27 36 29 33 29 ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) [rn,C-,C+,C-,rn,C-]

34(1734,10): 26 28 34 26 38 34 ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) [C-,C-,rn,C-,C+,rn]

35(1760, 9): 40 35 39 31 40 39 ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) [C+,rn,C+,C-,C+,C+]

36(1761, 8): 41 30 33 39 36 31 ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) [C+,C-,C-,C+,rn,C-]

37(1762, 7): 30 41 37 37 37 32 ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) [C-,C+,rn,rn,rn,C-]

38(1763, 6): 31 32 38 40 34 41 ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) [C-,C-,rn,C+,C-,C+]

39(1777, 5): 43 39 35 36 42 35 ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) [C+,rn,C-,C-,C+,C-]

40(1778, 4): 35 40 42 38 35 43 ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) [C-,rn,C+,C-,C-,C+]

41(1779, 3): 36 37 41 43 41 38 ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) [C-,C-,rn,C+,rn,C-]

42(1786, 2): 44 42 40 42 39 44 ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) [C+,rn,C-,rn,C-,C+]

43(1787, 1): 39 43 44 41 44 40 ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) [C-,rn,C+,C-,C+,C-]

44(1790, 0): 42 44 43 44 43 42 ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) ( *, *) [C-,rn,C-,rn,C-,C-]

(The last two columns of the output of block, have been deleted.)
Note that in this case there are no Cayley transforms; all of these repre-

sentations come from a single Cartan subgroup H(R), which is isomorphic to
S1 × S1 × C× × C×. Although this group has 5 conjugacy classes of Cartan
subgroups (see the cartan command), including a compact Cartan subgroup,
but not a split one, the dual block is for the adjoint group E6(F4), which has
only one conjugacy class of Cartan subgroups (cf. Example 5.4).

There are 1, 791 orbits of K on G/B for G = E6(A5× A1), (as given by
the kgb command). For the dual group E6(F4) there are 45 such orbits. The
fact that there are precisely 45 representations in this block, with distinct y
values, is due to the fact that H(R) is connected. The fact that 45 distinct x
values 0 ≤ x ≤ 1790 occur is due to the fact that the dual Cartan subgroup
is also connected. (The remaining 1746 x values play a role in other blocks
of E6(A5 × A1)).

11 Appendix: List of commands

• block

• blockd

• blocksizes

• blockstabilizer

• blocku

• blockwrite

• cartan
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• cmatrix

• components

• corder

• coroots

• coroots rootbasis

• dualblock

• dualkgb

• dualmap

• extract-cells

• extract-graph

• gradings

• help

• kgb

• klbasis

• kllist

• klwrite

• poscoroots

• poscoroots rootbasis

• posroots

• posroots rootbasis

• primkl

• q

• qq
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• realform

• realweyl

• rootdatum

• roots

• roots rootbasis

• showdualforms

• showrealforms

• simplecoroots

• simpleroots

• special

• strongreal

• test

• type

• wcells

• wgraph
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