Representations of p-adic groups

Jessica Fintzen

University of Cambridge, Duke University and IAS

November 2020
Notation: F/\mathbb{Q}_p finite or $F = \mathbb{F}_q((t))$, $F \supset \mathcal{O} \supset \mathfrak{p}$, residue field \mathbb{F}_q
Representations of \(p \)-adic groups

Notation: \(F/\mathbb{Q}_p \) finite or \(F = \mathbb{F}_q((t)) \), \(F \supset O \supset \mathfrak{p} \), residue field \(\mathbb{F}_q \)

\(G \) (connected) reductive group over \(F \), e.g. \(\text{GL}_n(F) \), \(\text{SL}_n(F) \), \(\text{SO}_n(F) \), \(\text{Sp}_{2n}(F) \), \ldots
Notation: F/\mathbb{Q}_p finite or $F = \mathbb{F}_q((t))$, $F \supset \mathcal{O} \supset p$, residue field \mathbb{F}_q

G (connected) reductive group over F, e.g. $GL_n(F), SL_n(F), SO_n(F), Sp_{2n}(F), \ldots$

Motivation / longterm goal

Want to construct all (irreducible, smooth, complex) representations of G.
Representations of p-adic groups

Notation: F/\mathbb{Q}_p finite or $F = \mathbb{F}_q((t))$, $F \supset \mathcal{O} \supset p$, residue field \mathbb{F}_q

G (connected) reductive group over F, e.g. $\text{GL}_n(F), \text{SL}_n(F), \text{SO}_n(F), \text{Sp}_{2n}(F), \ldots$

Motivation / longterm goal

Want to construct all (irreducible, smooth, complex or $\overline{\mathbb{F}_\ell}$-) representations of G. (ℓ a prime $\neq p$)
Representations of p-adic groups

Notation: F/\mathbb{Q}_p finite or $F = \mathbb{F}_q((t))$, $F \supset \mathcal{O} \supset \mathfrak{p}$, residue field \mathbb{F}_q

G (connected) reductive group over F, e.g. $GL_n(F), SL_n(F), SO_n(F), Sp_{2n}(F), \ldots$

Motivation / longterm goal

Want to construct all (irreducible, smooth, complex or $\overline{\mathbb{F}_\ell}$-) representations of G. (ℓ a prime $\neq p$)

Applications to, for example,

- representation theory of p-adic groups
Representations of p-adic groups

Notation: F/\mathbb{Q}_p finite or $F = \mathbb{F}_q((t))$, $F \supset \mathcal{O} \supset p$, residue field \mathbb{F}_q

G (connected) reductive group over F, e.g. $\text{GL}_n(F), \text{SL}_n(F), \text{SO}_n(F), \text{Sp}_{2n}(F), \ldots$

Motivation / longterm goal

Want to construct all (irreducible, smooth, complex or $\overline{\mathbb{F}_\ell}$-) representations of G. (ℓ a prime $\neq p$)

Applications to, for example,

- representation theory of p-adic groups
- explicit local Langlands correspondence
Representations of p-adic groups

Notation: F/\mathbb{Q}_p finite or $F = \mathbb{F}_q((t))$, $F \supset \mathcal{O} \supset p$, residue field \mathbb{F}_q

G (connected) reductive group over F, e.g. $\text{GL}_n(F), \text{SL}_n(F), \text{SO}_n(F), \text{Sp}_{2n}(F), \ldots$

Motivation / longterm goal

Want to construct all (irreducible, smooth, complex or \mathbb{F}_ℓ-) representations of G. (ℓ a prime $\neq p$)

Applications to, for example,

- representation theory of p-adic groups
- explicit local Langlands correspondence
- automorphic forms (e.g. J.F. and S.W. Shin)
Representations of \(p \)-adic groups

Notation: \(F/\mathbb{Q}_p \) finite or \(F = \mathbb{F}_q((t)) \), \(F \supset \mathcal{O} \supset \mathfrak{p} \), residue field \(\mathbb{F}_q \)
\(G \) (connected) reductive group over \(F \), e.g.
\(\text{GL}_n(F), \text{SL}_n(F), \text{SO}_n(F), \text{Sp}_{2n}(F), \ldots \)

Motivation / long term goal

Want to construct all (irreducible, smooth, complex or \(\overline{\mathbb{F}_\ell} \)-) representations of \(G. \) (\(\ell \) a prime \(\neq p \))

Applications to, for example,

- representation theory of \(p \)-adic groups
- explicit local Langlands correspondence
- automorphic forms (e.g. J.F. and S.W. Shin)
- \(p \)-adic automorphic forms, \(p \)-adic Langlands program
- ...
Motivation / longterm goal

Want to construct all (irreducible, smooth, complex or $\overline{\mathbb{F}}_\ell$-) representations of G.
Motivation / longterm goal

Want to construct all (irreducible, smooth, complex or $\overline{\mathbb{F}}_\ell$-) representations of G.

Building blocks $=$ (irreducible) supercuspidal representations (or cuspidal representations)
Representations of \(p \)-adic groups

Motivation / longterm goal

Want to construct all (irreducible, smooth, complex or \(\overline{\mathbb{F}_\ell} \)-) representations of \(G \).

Building blocks = (irreducible) supercuspidal representations
(or cuspidal representations)

Construction of (super)cuspidal representations:
Motivation / longterm goal
Want to construct all (irreducible, smooth, complex or \(\overline{\mathbb{F}_\ell} \)-) representations of \(G \).

Building blocks \(\Rightarrow \) (irreducible) supercuspidal representations (or cuspidal representations)

Construction of (super)cuspidal representations:
\(\text{GL}_n \):
R. Howe, A. Moy, \ldots, (1970s and later)
Motivation / longterm goal

Want to construct all (irreducible, smooth, complex or $\overline{\mathbb{F}_\ell}$-) representations of G.

Building blocks = (irreducible) supercuspidal representations (or cuspidal representations)

Construction of (super)cuspidal representations:

GL_n: R. Howe, A. Moy, ..., (1970s and later)
C. Bushnell and P. Kutzko (1993),
Motivation / longterm goal

Want to construct all (irreducible, smooth, complex or $\overline{\mathbb{F}_\ell}$-) representations of G.

Building blocks = (irreducible) supercuspidal representations (or cuspidal representations)

Construction of (super)cuspidal representations:

GL_n: R. Howe, A. Moy, . . ., (1970s and later)
 C. Bushnell and P. Kutzko (1993),
 M.-F. Vigneras (1996)
Motivation / longterm goal

Want to construct all (irreducible, smooth, complex or $\overline{\mathbb{F}_\ell}$-) representations of G.

Building blocks = (irreducible) supercuspidal representations (or cuspidal representations)

Construction of (super)cuspidal representations:

- Classical groups ($p \neq 2$): . . ., S. Stevens (2008),
Motivation / longterm goal

Want to construct all (irreducible, smooth, complex or $\overline{\mathbb{F}}_\ell$-) representations of G.

Building blocks = (irreducible) supercuspidal representations (or cuspidal representations)

Construction of (super)cuspidal representations:

GL_n:
- R. Howe, A. Moy, ..., (1970s and later)

classical groups ($p \neq 2$):
Representations of p-adic groups

Motivation / longterm goal

Want to construct all (irreducible, smooth, complex or $\overline{\mathbb{F}}_\ell$-) representations of G.

Building blocks = (irreducible) supercuspidal representations (or cuspidal representations)

Construction of (super)cuspidal representations:

GL_n: R. Howe, A. Moy, ..., (1970s and later)
C. Bushnell and P. Kutzko (1993),
M.-F. Vigneras (1996)

classical groups ($p \neq 2$): ..., S. Stevens (2008),
inner forms of GL_n: ..., V. Sécherre and S. Stevens (2008)
Constructions of supercuspidal representations for general G:

- 1994/96 A. Moy and G. Prasad
- 2007 J.-L. Kim: Yu's construction yields all supercuspidal representations if p is very large and $\text{char} \ F$ is zero.
- 2014 M. Reeder and J.-K. Yu: epipelagic representations
Constructions of supercuspidal representations for general G:

1994/96 A. Moy and G. Prasad
Constructions of supercuspidal representations for general G:

1994/96 A. Moy and G. Prasad
Constructions of supercuspidal representations for general G:

2001 J. Adler, J.-K. Yu

2007 J.-L. Kim: Yu's construction yields all supercuspidal representations if p is very large and $\text{char } F$ is 0

2014 M. Reeder and J.-K. Yu: epipelagic representations

Jessica Fintzen

Representations of p-adic groups
Constructions of supercuspidal representations for general G:

Jessica Fintzen
Representations of p-adic groups
Constructions of supercuspidal representations for general G:

2007 J.-L. Kim: Yu’s construction yields all supercuspidal representations \textbf{if p is very large and $\text{char } F = 0$}
Construction of supercuspidal representations

Constructions of supercuspidal representations for general G:

2007 J.-L. Kim: Yu’s construction yields all supercuspidal representations if p is very large and char $F = 0$

2014 M. Reeder and J.-K. Yu: epipelagic representations
Figure: The epipelagic zone of the ocean;
Constructions of supercuspidal representations for general G:

2007 J.-L. Kim: Yu’s construction yields all supercuspidal representations \textbf{if p is very large and char $F = 0$}

2014 M. Reeder and J.-K. Yu: epipelagic representations

Jessica Fintzen

Representations of p-adic groups
Constructions of supercuspidal representations for general G:

- **1994/96** A. Moy and G. Prasad (L. Morris: 1993/99)
- **2007** J.-L. Kim: Yu’s construction yields all supercuspidal representations if p is very large and char $F = 0$
- **2014** M. Reeder and J.-K. Yu: epipelagic representations
- **2017, 2020?** J. F. and B. Romano (special case), J. F. (general case): input for Reeder–Yu exists also for small p
Constructions of supercuspidal representations for general G:

2007 J.-L. Kim: Yu’s construction yields all supercuspidal representations if p is very large and $\text{char } F = 0$

2014 M. Reeder and J.-K. Yu: epipelagic representations

Constructions of supercuspidal representations for general G:

2007 J.-L. Kim: Yu’s construction yields all supercuspidal representations if p is very large and $\text{char } F = 0$

2014 M. Reeder and J.-K. Yu: epipelagic representations

Jessica Fintzen Representations of p-adic groups
Constructions of supercuspidal representations for general G:

2007 J.-L. Kim: Yu’s construction yields all supercuspidal representations if p is very large and $\text{char } F = 0$

2014 M. Reeder and J.-K. Yu: epipelagic representations

Constructions of supercuspidal representations for general G:

2007 J.-L. Kim: Yu’s construction yields all supercuspidal representations if p is very large and $\text{char } F = 0$

2014 M. Reeder and J.-K. Yu: epipelagic representations

Constructions of supercuspidal representations for general G:

- **1994/96** A. Moy and G. Prasad (L. Morris: 1993/99)

- **2007** J.-L. Kim: Yu’s construction yields all supercuspidal representations if p is very large and char $F = 0$

- **2014** M. Reeder and J.-K. Yu: epipelagic representations

- **2017, 2020?** J. F. and B. Romano (special case), J. F. (general case): input for Reeder–Yu exists also for small p
Theorem 1 (F., 2021 (arxiv Oct 2018))

Suppose G splits over a tame extension of F and $p \nmid |W|$, then Yu’s construction yields all supercuspidal representations.
Theorem 1 (F., 2021 (arxiv Oct 2018))

Suppose G splits over a tame extension of F and $p \nmid |W|$, then Yu’s construction yields all supercuspidal representations.

<table>
<thead>
<tr>
<th>type</th>
<th>$A_n (n \geq 1)$</th>
<th>$B_n, C_n (n \geq 2)$</th>
<th>$D_n (n \geq 3)$</th>
<th>E_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>W</td>
<td>$</td>
<td>$(n + 1)!$</td>
<td>$2^n \cdot n!$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>type</th>
<th>E_7</th>
<th>E_8</th>
<th>F_4</th>
<th>G_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>W</td>
<td>$</td>
<td>$2^{10} \cdot 3^4 \cdot 5 \cdot 7$</td>
<td>$2^{14} \cdot 3^5 \cdot 5^2 \cdot 7$</td>
</tr>
</tbody>
</table>

Diagram:

- **Depth**
 - 0 prime p
 - p large
 - p very large

- **Exhaustion**
Theorem 1 (F., 2021 (arxiv Oct 2018))
Suppose G splits over a tame extension of F and $p \nmid |W|$, then Yu’s construction yields all supercuspidal representations.

Theorem 2 (F., May 2019)
A construction analogous to Yu’s construction yields all cuspidal \overline{F}_ℓ-representations if $p \nmid |W|$ (and G is tame).
Results

Theorem 1 (F., 2021 (arxiv Oct 2018))

Suppose G splits over a tame extension of F and $p \nmid |W|$, then Yu’s construction yields all supercuspidal representations.

Theorem 2 (F., May 2019)

A construction analogous to Yu’s construction yields all cuspidal \overline{F}_ℓ-representations if $p \nmid |W|$ (and G is tame).

The condition $p \nmid |W|$ is optimal in general*. (F., Jan 2018)
Results

Theorem 1 (F., 2021 (arxiv Oct 2018))

Suppose G splits over a tame extension of F and $p \nmid |W|$, then Yu’s construction yields all supercuspidal representations.

Theorem 2 (F., May 2019)

A construction analogous to Yu’s construction yields all cuspidal \overline{F}_ℓ-representations if $p \nmid |W|$ (and G is tame).

The condition $p \nmid |W|$ is optimal in general*. (F., Jan 2018)
Theorem 1 (F., 2021 (arxiv Oct 2018))
Suppose G splits over a tame extension of F and $p
mid |W|$, then Yu’s construction yields all supercuspidal representations.

Theorem 2 (F., May 2019)
A construction analogous to Yu’s construction yields all cuspidal \(\overline{F}_\ell \)-representations if $p
mid |W|$ (and G is tame).

The condition $p
mid |W|$ is optimal in general*. (F., Jan 2018)
Proposition 3 (F., Aug 2019)
There exists a counterexample to the key ingredient of Yu’s proof (Yu’s Prop 14.1 and Thm 14.2, which were based on a misprint).
Results continued

Proposition 3 (F., Aug 2019)
There exists a counterexample to the key ingredient of Yu's proof (Yu’s Prop 14.1 and Thm 14.2, which were based on a misprint).

Theorem 4 (F., Aug 2019)
Yu’s construction yields indeed supercuspidal representations.

Jessica Fintzen
Representations of p-adic groups
Proposition 3 (F., Aug 2019)
There exists a counterexample to the key ingredient of Yu’s proof (Yu’s Prop 14.1 and Thm 14.2, which were based on a misprint).

Theorem 4 (F., Aug 2019)
Yu’s construction yields indeed supercuspidal representations.
Proposition 3 (F., Aug 2019)
There exists a counterexample to the key ingredient of Yu’s proof (Yu’s Prop 14.1 and Thm 14.2, which were based on a misprint).

Theorem 4 (F., Aug 2019)
Yu’s construction yields indeed supercuspidal representations.

Approach to construct supercuspidal representations
1. Construct a representation ρ_K of a compact (mod center) subgroup $K \subset G$ (e.g. $K = \text{SL}_n(\mathbb{Z}_p)$ inside $G = \text{SL}_n(\mathbb{Q}_p)$).
Proposition 3 (F., Aug 2019)
There exists a counterexample to the key ingredient of Yu’s proof (Yu’s Prop 14.1 and Thm 14.2, which were based on a misprint).

Theorem 4 (F., Aug 2019)
Yu’s construction yields indeed supercuspidal representations.

Approach to construct supercuspidal representations

1. Construct a representation ρ_K of a compact (mod center) subgroup $K \subset G$ (e.g. $K = \text{SL}_n(\mathbb{Z}_p)$ inside $G = \text{SL}_n(\mathbb{Q}_p)$).
2. Build a representation of G from the representation ρ_K (keyword: compact-induction).
Example of a supercuspidal representation

\[G = \text{SL}_2(F), \]
Example of a supercuspidal representation

\[G = \text{SL}_2(F), \ K = \left(\begin{array}{cc} 1 + p & p \\ \mathcal{O} & 1 + p \end{array} \right) \times \{ \pm 1 \} \]
Example of a supercuspidal representation

\[G = \text{SL}_2(F), \quad K = \left(\begin{array}{cc} 1 + p & p \\ \mathcal{O} & 1 + p \end{array} \right) \times \{ \pm 1 \} \]

\[\rho_K : K \to \text{GL}_1(\mathbb{C}) = \mathbb{C}^*, \]
Example of a supercuspidal representation

$G = \text{SL}_2(F)$, $K = \begin{pmatrix} 1+p & p \\ 0 & 1+p \end{pmatrix} \times \{\pm 1\}$

$\rho_K : K \to \text{GL}_1(\mathbb{C}) = \mathbb{C}^*$, $\rho_K : \{\pm 1\} \to 1 \in \mathbb{C}^*$
Example of a supercuspidal representation

\[G = \text{SL}_2(F), \ K = \begin{pmatrix} 1 + p & p \\ 0 & 1 + p \end{pmatrix} \times \{ \pm 1 \} \]

\[\rho_K : K \to \text{GL}_1(\mathbb{C}) = \mathbb{C}^*, \ \rho_K : \{ \pm 1 \} \to 1 \in \mathbb{C}^* \]
Example of a supercuspidal representation

\[G = \text{SL}_2(F), \quad K = \begin{pmatrix} 1 + p & p \\ \mathcal{O} & 1 + p \end{pmatrix} \times \{ \pm 1 \} \]

\[\rho_K : K \to \text{GL}_1(\mathbb{C}) = \mathbb{C}^*, \quad \rho_K : \{ \pm 1 \} \to 1 \in \mathbb{C}^* \]

\[\rho_K : \begin{pmatrix} 1 + p & p \\ \mathcal{O} & 1 + p \end{pmatrix} \]
Example of a supercuspidal representation

\(G = \text{SL}_2(F), \ K = \begin{pmatrix} 1+p & p \\ \mathcal{O} & 1+p \end{pmatrix} \times \{\pm 1\} \)

\(\rho_K : K \to \text{GL}_1(\mathbb{C}) = \mathbb{C}^*, \ \rho_K : \{\pm 1\} \to 1 \in \mathbb{C}^* \)

\(G_{x,0.5} \)

\(\rho_K : \begin{pmatrix} 1+p & p \\ \mathcal{O} & 1+p \end{pmatrix} \)
Example of a supercuspidal representation

\[G = \text{SL}_2(F), \quad K = \begin{pmatrix} 1 + p & p \\ \mathcal{O} & 1 + p \end{pmatrix} \times \{ \pm 1 \} \]

\[\rho_K : K \rightarrow \text{GL}_1(\mathbb{C}) = \mathbb{C}^*, \quad \rho_K : \{ \pm 1 \} \rightarrow 1 \in \mathbb{C}^* \]

\[\rho_K : \begin{pmatrix} 1 + p & p \\ \mathcal{O} & 1 + p \end{pmatrix} \rightarrow \begin{pmatrix} 1 + p & p \\ \mathcal{O} & 1 + p \end{pmatrix} / \begin{pmatrix} 1 + p & p^2 \\ p & 1 + p \end{pmatrix} \]
Example of a supercuspidal representation

\[G = \text{SL}_2(F), \quad K = \begin{pmatrix} 1 + p & p \\ \mathcal{O} & 1 + p \end{pmatrix} \times \{ \pm 1 \} \]

\[\rho_K : K \to \text{GL}_1(\mathbb{C}) = \mathbb{C}^*, \quad \rho_K : \{ \pm 1 \} \to 1 \in \mathbb{C}^* \]

\[\rho_K : \begin{pmatrix} 1 + p & p \\ \mathcal{O} & 1 + p \end{pmatrix} \mapsto \begin{pmatrix} 1 + p & p \\ \mathcal{O} & 1 + p \end{pmatrix} \bigg/ \begin{pmatrix} 1 + p & p^2 \\ p & 1 + p \end{pmatrix} \]

\[\simeq \begin{pmatrix} 0 & \mathbb{F}_q \\ \mathbb{F}_q & 0 \end{pmatrix} \]
Example of a supercuspidal representation

\[G = \text{SL}_2(F), \quad K = \begin{pmatrix} 1 + p & p \\ \mathcal{O} & 1 + p \end{pmatrix} \times \{ \pm 1 \} \]

\[\rho_K : K \to \text{GL}_1(\mathbb{C}) = \mathbb{C}^*, \quad \rho_K : \{ \pm 1 \} \to 1 \in \mathbb{C}^* \]

\[\rho_K : \begin{pmatrix} 1 + p & p \\ \mathcal{O} & 1 + p \end{pmatrix} \rightarrow \begin{pmatrix} 1 + p & p \\ \mathcal{O} & 1 + p \end{pmatrix} / \begin{pmatrix} 1 + p & p^2 \\ p & 1 + p \end{pmatrix} \]

\[\rho_K : \begin{pmatrix} 0 & F_q \\ F_q & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & a \\ b & 0 \end{pmatrix} \rightarrow a + b \]
Example of a supercuspidal representation

\[G = \text{SL}_2(F), \ K = \begin{pmatrix} 1 + p & p \\ 0 & 1 + p \end{pmatrix} \times \{ \pm 1 \} \]

\[\rho_K : K \to \text{GL}_1(\mathbb{C}) = \mathbb{C}^*, \ \rho_K : \{ \pm 1 \} \to 1 \in \mathbb{C}^* \]

\[\rho_K : \begin{pmatrix} 1 + p & p \\ 0 & 1 + p \end{pmatrix} \to \begin{pmatrix} 1 + p & p \\ 0 & 1 + p \end{pmatrix} / \begin{pmatrix} 1 + p & p^2 \\ p & 1 + p \end{pmatrix} \]

\[\begin{pmatrix} 0 & \mathbb{F}_q \\ \mathbb{F}_q & 0 \end{pmatrix} \to \mathbb{F}_q \]

\[\begin{pmatrix} 0 & a \\ b & 0 \end{pmatrix} \mapsto a + b \]
Example of a supercuspidal representation

\[G = \text{SL}_2(F), \ K = \begin{pmatrix} 1 + p & p \\ \mathcal{O} & 1 + p \end{pmatrix} \times \{ \pm 1 \} \]

\[\rho_K : K \to \text{GL}_1(\mathbb{C}) = \mathbb{C}^*, \ \rho_K : \{ \pm 1 \} \to 1 \in \mathbb{C}^* \]

\[G_{x,0.5} \]

\[\rho_K : \begin{pmatrix} 1 + p & p \\ \mathcal{O} & 1 + p \end{pmatrix} \to \begin{pmatrix} 1 + p & p \\ \mathcal{O} & 1 + p \end{pmatrix} \big/ \begin{pmatrix} 1 + p & p^2 \\ p & 1 + p \end{pmatrix} \]

\[\cong \ \begin{pmatrix} 0 & \mathbb{F}_q \\ \mathbb{F}_q & 0 \end{pmatrix} \to \mathbb{F}_q \to \mathbb{C}^* \]

\[\begin{pmatrix} 0 & a \\ b & 0 \end{pmatrix} \mapsto a + b \]
Example of a supercuspidal representation

\[G = \text{SL}_2(F), \quad K = \left(\begin{array}{cc} 1+p & p \\ \mathcal{O} & 1+p \end{array} \right) \times \{ \pm 1 \} \]

\[\rho_K : K \to \text{GL}_1(\mathbb{C}) = \mathbb{C}^*, \quad \rho_K : \{ \pm 1 \} \to 1 \in \mathbb{C}^* \]

\[\rho_K : \left(\begin{array}{cc} 1+p & p \\ \mathcal{O} & 1+p \end{array} \right) \to \frac{\left(\begin{array}{cc} 1+p & p \\ \mathcal{O} & 1+p \end{array} \right)}{\left(\begin{array}{cc} 1+p & p^2 \\ p & 1+p \end{array} \right)} \]

\[\cong \left(\begin{array}{cc} 0 & F_q \\ F_q & 0 \end{array} \right) \to F_q \to \mathbb{C}^* \]

Supercuspidal representation:

\[\text{c-ind}_{K}^{G} \rho_K = \left\{ f : G \to \mathbb{C} \middle| f(kg) = \rho_K(k)f(g) \ \forall g \in G, \ k \in K \right\} \]
Example of a supercuspidal representation

\[G = \text{SL}_2(F), \; K = \begin{pmatrix} 1+p & p \\ \mathcal{O} & 1+p \end{pmatrix} \times \{ \pm 1 \} \]

\[\rho_K : K \to \text{GL}_1(\mathbb{C}) = \mathbb{C}^*, \; \rho_K : \{ \pm 1 \} \to 1 \in \mathbb{C}^* \]

\[G_{x,0.5} \]

\[\rho_K : \begin{pmatrix} 1+p & p \\ \mathcal{O} & 1+p \end{pmatrix} \to \begin{pmatrix} 1+p & p \\ \mathcal{O} & 1+p \end{pmatrix} / \begin{pmatrix} 1+p & p^2 \\ p & 1+p \end{pmatrix} \]

\[\cong \begin{pmatrix} 0 & \mathbb{F}_q \\ \mathbb{F}_q & 0 \end{pmatrix} \to \mathbb{F}_q \to \mathbb{C}^* \]

\[\begin{pmatrix} 0 & a \\ b & 0 \end{pmatrix} \leftrightarrow a + b \]

Supercuspidal representation:

\[\text{c-ind}^G_K \rho_K = \left\{ f : G \to \mathbb{C} \mid f(kg) = \rho_K(k)f(g) \; \forall g \in G, \; k \in K \right\} \]

\[f \text{ compactly supported} \]
Example of a supercuspidal representation

\[G = \text{SL}_2(F), \ K = \left(\begin{array}{cc} 1+p & p \\ \mathcal{O} & 1+p \end{array} \right) \times \{ \pm 1 \} \]
\[\rho_K : K \to \text{GL}_1(\mathbb{C}) = \mathbb{C}^*, \ \rho_K : \{ \pm 1 \} \to 1 \in \mathbb{C}^* \]

\[\rho_K : \left(\begin{array}{cc} 1+p & p \\ \mathcal{O} & 1+p \end{array} \right) \to \left(\begin{array}{cc} 1+p & p \\ \mathcal{O} & 1+p \end{array} \right) / \left(\begin{array}{cc} 1+p & p^2 \\ \mathcal{O} & 1+p \end{array} \right) \]
\[\cong \left(\begin{array}{cc} 0 & \mathbb{F}_q \\ \mathbb{F}_q & 0 \end{array} \right) \to \mathbb{F}_q \to \mathbb{C}^* \]
\[\left(\begin{array}{cc} 0 & a \\ b & 0 \end{array} \right) \mapsto a + b \]

Supercuspidal representation:

\[\text{c-ind}_{K}^{G} \rho_K = \left\{ f : G \to \mathbb{C} \mid f(kg) = \rho_K(k)f(g) \ \forall g \in G, \ k \in K \right\} \]
\[f \text{ compactly supported} \]

\[G\text{-action: } g.f(\star) = f(\star \cdot g) \]
Yu’s construction and my exhaustion result

Example of a supercuspidal representation

\[G = \text{SL}_2(F), \ K = \left(\begin{array}{cc} 1 + p & p \\ \mathcal{O} & 1 + p \end{array} \right) \times \{ \pm 1 \} \]
\[\rho_K : K \rightarrow \text{GL}_1(\mathbb{C}) = \mathbb{C}^*, \ \rho_K : \{ \pm 1 \} \rightarrow 1 \in \mathbb{C}^* \]

\[\rho_K : \left(\begin{array}{cc} 1 + p & p \\ \mathcal{O} & 1 + p \end{array} \right) \rightarrow \left(\begin{array}{cc} 1 + p & p \\ \mathcal{O} & 1 + p \end{array} \right) / \left(\begin{array}{cc} 1 + p & p^2 \\ \mathcal{O} & 1 + p \end{array} \right) \]
\[\sim \left(\begin{array}{cc} 0 & F_q \\ F_q & 0 \end{array} \right) \rightarrow F_q \rightarrow \mathbb{C}^* \]
\[\left(\begin{array}{cc} 0 & a \\ b & 0 \end{array} \right) \mapsto a + b \]

Supercuspidal representation:

\[\text{c-ind}_{\rho_K}^G = \left\{ f : G \rightarrow \mathbb{C} \left| \begin{array}{c} f(kg) = \rho_K(k)f(g) \ \forall g \in G, k \in K \\ f \ \text{compactly supported} \end{array} \right\} \right\} \]

\[G \text{-action: } g.f(*) = f(* \cdot g) \]
Yu’s construction and my exhaustion result

\[G = SL_2(F), \]
\[x \in B(G), r = 0.5, \]
character \(\rho_K \)

(Reeder–)Yu

Example of a supercuspidal representation

\[G = SL_2(F), K = \left(\begin{array}{cc} 1 + p & p \\ \mathcal{O} & 1 + p \end{array} \right) \times \{ \pm 1 \} \]
\[\rho_K : K \rightarrow GL_1(\mathbb{C}) = \mathbb{C}^*, \rho_K : \{ \pm 1 \} \rightarrow 1 \in \mathbb{C}^* \]

\[G_{x,0.5} \]
\[G_{x,0.5} / G_{x,0.5+} \]
\[\rho_K : \left(\begin{array}{cc} 1 + p & p \\ \mathcal{O} & 1 + p \end{array} \right)
\rightarrow \left(\begin{array}{cc} 1 + p & p \\ \mathcal{O} & 1 + p \end{array} \right) / \left(\begin{array}{cc} 1 + p & p^2 \\ p & 1 + p \end{array} \right) \]
\[\simeq \left(\begin{array}{cc} 0 & \mathbb{F}_q \\ \mathbb{F}_q & 0 \end{array} \right) \rightarrow \mathbb{F}_q \rightarrow \mathbb{C}^* \]
\[\left(\begin{array}{cc} 0 & a \\ b & 0 \end{array} \right) \mapsto a + b \]

Supercuspidal representation:

\[c\text{-}\text{ind}_{K\rho_K}^G(f : G \rightarrow \mathbb{C} \mid f(kg) = \rho_K(k)f(g) \ \forall g \in G, k \in K \text{ } f \text{ compactly supported} \} \]

G-action: \(g.f(\ast) = f(\ast \cdot g) \)
Yu’s construction and my exhaustion result

\[G = \text{SL}_2(F), \quad x \in \mathcal{B}(G), \quad r = 0.5, \quad \text{character } \rho_K \]

(Reeder–)Yu

\[\pi := \text{c-ind}_G^K \rho_K, \quad K = G_{x,0.5} \times \{ \pm 1 \} \]

Example of a supercuspidal representation

\[G = \text{SL}_2(F), \quad K = \left(\begin{array}{cc} 1 + p & p \\ \mathcal{O} & 1 + p \end{array} \right) \times \{ \pm 1 \} \]
\[\rho_K : K \to \text{GL}_1(\mathbb{C}) = \mathbb{C}^*, \quad \rho_K : \{ \pm 1 \} \to 1 \in \mathbb{C}^* \]

\[\rho_K : \left(\begin{array}{cc} 1 + p & p \\ \mathcal{O} & 1 + p \end{array} \right) \to \left(\begin{array}{cc} 1 + p & p \\ \mathcal{O} & 1 + p \end{array} \right) / \left(\begin{array}{cc} 1 + p & p^2 \\ p & 1 + p \end{array} \right) \]
\[\simeq \left(\begin{array}{cc} 0 & \mathbb{F}_q \\ \mathbb{F}_q & 0 \end{array} \right) \to \mathbb{F}_q \to \mathbb{C}^* \]
\[\left(\begin{array}{cc} 0 & a \\ b & 0 \end{array} \right) \mapsto a + b \]

Supercuspidal representation:

\[\text{c-ind}_G^K \rho_K = \left\{ f : G \to \mathbb{C} \mid f(kg) = \rho_K(k)f(g) \quad \forall g \in G, \quad k \in K \quad f \text{ compactly supported} \right\} \]

\[G\text{-action: } g.f(*) = f(*) \cdot g \]
Yu’s construction and my exhaustion result

\[
G = \text{SL}_2(F), \quad x \in \mathcal{B}(G), \quad r = 0.5, \quad \text{character } \rho_K
\]

\[
(\text{Reeder–})\text{Yu} \quad \pi := \text{c-ind}^G_K \rho_K, \quad K = G_{x,0.5} \times \{\pm 1\}
\]

\[
r = \text{smallest non-negative real number such that } \pi \text{ has nontrivial } G_{x,r+}-\text{fixed vectors,}
\]
Yu’s construction and my exhaustion result

\[G = \text{SL}_2(F), \]
\[x \in B(G), \quad r = 0.5, \]
\[\text{character } \rho_K \]

\[\pi := c\text{-ind}_{K}^{G} \rho_K, \]
\[K = G_{x,0.5} \times \{ \pm 1 \} \]
Yu’s construction and my exhaustion result

\[G = \text{SL}_2(F), \]
\[x \in \mathcal{B}(G), \quad r = 0.5, \]
character \(\rho_K \)

\[\pi := \text{c-ind}^G_K \rho_K, \]
\[K = G_{x,0.5} \times \{ \pm 1 \} \]

(Reeder–)Yu

\[r = \text{smallest non-negative real number such that } \pi \text{ has nontrivial } G_{x,r+}\text{-fixed vectors}, \rho_K \]

\[G = G_1 \supseteq G_2 \supseteq \ldots \supseteq G_{n+1}, \]

Jessica Fintzen

Representations of \(p \)-adic groups
Yu’s construction and my exhaustion result

\[G = \text{SL}_2(F), \]
\[x \in \mathcal{B}(G), \ r = 0.5, \]
character \(\rho_K \)

(Reeder–) Yu

\[\pi := \text{c-ind}_K^G \rho_K, \]
\[K = G_{x,0.5} \times \{ \pm 1 \} \]

\[r = \text{smallest non-negative real number such that } \pi \text{ has nontrivial } G_{x,r+}-\text{fixed vectors}, \rho_K \]

\[G = G_1 \supseteq G_2 \supsetneq \ldots \supsetneq \]
\[G_n \supsetneq G_{n+1}, \]

e.g. twist of

\[\begin{pmatrix}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{pmatrix}
\]

\[\supseteq
\begin{pmatrix}
* & * & 0 & 0 \\
* & * & 0 & 0 \\
0 & 0 & * & * \\
0 & 0 & * & *
\end{pmatrix}
\]

\[\supseteq
\begin{pmatrix}
* & 0 & 0 & 0 \\
0 & * & 0 & 0 \\
0 & 0 & * & 0 \\
0 & 0 & 0 & *
\end{pmatrix} \]
Yu’s construction and my exhaustion result

\[G = \text{SL}_2(F), \]
\[x \in \mathcal{B}(G), \ r = 0.5, \]
\[\text{character } \rho_K \]
\[\pi := \text{c-ind}_K^G \rho_K, \]
\[K = G_{x,0.5} \times \{ \pm 1 \} \]

\[r = \text{smallest non-negative real number such that } \pi \text{ has nontrivial } G_{x,r+}-\text{fixed vectors, } \rho_K \]

\[G = G_1 \supseteq G_2 \supseteq \ldots \supseteq G_n \supseteq G_{n+1}, \ x \in \mathcal{B}(G), \]

\[\text{e.g. twist of} \]

\[\text{GL}_4 = \frac{\begin{pmatrix} * & * & * & * \\ * & * & * & * \\ * & * & * & * \\ * & * & * & * \end{pmatrix}}{\begin{pmatrix} * & * & 0 & 0 \\ * & * & 0 & 0 \\ 0 & 0 & * & * \\ 0 & 0 & * & * \end{pmatrix}} \supseteq \frac{\begin{pmatrix} * & * & 0 & 0 \\ * & * & 0 & 0 \\ 0 & 0 & * & * \\ 0 & 0 & * & * \end{pmatrix}}{\begin{pmatrix} * & 0 & 0 & 0 \\ 0 & * & 0 & 0 \\ 0 & 0 & * & 0 \\ 0 & 0 & 0 & * \end{pmatrix}} \]
Yu’s construction and my exhaustion result

\[G = \text{SL}_2(F), \quad x \in B(G), \quad r = 0.5, \quad \text{character } \rho_K \]

\[(\text{Reeder–})\text{Yu} \]

\[\pi := \text{c-ind}^G_K \rho_K, \quad K = G_{x,0.5} \times \{\pm 1\} \]

\[r = \text{smallest non-negative real number such that } \pi \text{ has nontrivial } G_{x,r^+}-\text{fixed vectors, } \rho_K \]

\[G = G_1 \supset G_2 \supset \cdots \supset G_n \supset G_{n+1}, \quad x \in B(G), \quad r_1 > r_2 > \ldots > r_n > 0, \]

e.g. twist of

\[\text{GL}_4 = \begin{pmatrix} * & * & * & * \\ * & * & * & * \\ * & * & * & * \\ * & * & * & * \end{pmatrix} \supset \begin{pmatrix} * & * & 0 & 0 \\ * & * & 0 & 0 \\ 0 & 0 & * & * \\ 0 & 0 & * & * \end{pmatrix} \supset \begin{pmatrix} * & 0 & 0 & 0 \\ 0 & * & 0 & 0 \\ 0 & 0 & * & 0 \\ 0 & 0 & 0 & * \end{pmatrix} \]
Yu’s construction and my exhaustion result

\[G = \text{SL}_2(F), \]
\[x \in \mathcal{B}(G), \quad r = 0.5, \]
\[\text{character } \rho_K \]

(Reeder–)Yu

\[\pi := \text{c-ind}_K^G \rho_K, \]
\[K = G_{x,0.5} \times \{ \pm 1 \} \]

\[r = \text{smallest non-negative real number such that } \pi \text{ has nontrivial } G_{x,r^+}-\text{fixed vectors, } \rho_K \]

\[G = G_1 \supsetneq G_2 \supsetneq \ldots \supsetneq \]
\[G_n \supsetneq G_{n+1}, \quad x \in \mathcal{B}(G), \]
\[r_1 > r_2 > \ldots > r_n > 0, \]
\[\text{characters } \phi_1, \phi_2, \ldots, \phi_n \]
Yu’s construction and my exhaustion result

\[G = \text{SL}_2(F), \]
\[x \in \mathcal{B}(G), \ r = 0.5, \]
character \(\rho_K \)

(Reeder–)Yu

\[\pi := \text{c-ind}_K^G \rho_K, \]
\[K = G_{x,0.5} \times \{ \pm 1 \} \]

\(r = \) smallest non-negative real number such that \(\pi \) has nontrivial \(G_{x,r+} \)-fixed vectors, \(\rho_K \)

\[G = G_1 \supseteq G_2 \supseteq \ldots \supseteq \]
\[G_n \supsetneq G_{n+1}, \ x \in \mathcal{B}(G), \ \rho, \]
\[r_1 > r_2 > \ldots > r_n > 0, \]
characters \(\phi_1, \phi_2, \ldots, \phi_n \)
Yu’s construction and my exhaustion result

\[G = SL_2(F), \]
\[x \in B(G), \quad r = 0.5, \]
character \(\rho_K \)

(Reeder–)Yu

\[\pi := \text{c-ind}_K^G \rho_K, \]
\[K = G_{x,0.5} \times \{ \pm 1 \} \]

\[r = \text{smallest non-negative real number such that } \pi \text{ has nontrivial } G_{x,r^+}\text{-fixed vectors}, \rho_K \]

\[G = G_1 \supseteq G_2 \supsetneq \ldots \supsetneq G_n \supsetneq G_{n+1}, \quad x \in B(G), \quad \rho, \]
\[r_1 > r_2 > \ldots > r_n > 0, \]
characters \(\phi_1, \phi_2, \ldots, \phi_n \)

Yu’s construction

\[K, \rho_K \text{ such that } \pi := \text{c-ind}_K^G \rho_K \text{ is supercuspidal} \]
Yu’s construction and my exhaustion result

\[G = \text{SL}_2(F), \]
\[x \in \mathcal{B}(G), \ r = 0.5, \]
character \(\rho_K \)

(Reeder–) Yu

\[\pi := \text{c-ind}_K^G \rho_K, \]
\[K = G_{x,0.5} \times \{ \pm 1 \} \]

\[r = \text{smallest non-negative real number such that } \pi \text{ has nontrivial } G_{x,r^{+}}\text{-fixed vectors}, \ \rho_K \]

Yu’s construction

\[G = G_1 \supsetneq G_2 \supsetneq \ldots \supsetneq \]
\[G_n \supsetneq G_{n+1}, \ x \in \mathcal{B}(G), \ \rho, \]
\[r_1 > r_2 > \ldots > r_n > 0, \]
characters \(\phi_1, \phi_2, \ldots, \phi_n \)

\[K, \rho_K \text{ such that } \pi := \text{c-ind}_K^G \rho_K \text{ is supercuspidal} \]

\[r_1 = \text{smallest non-negative real number such that } \pi \text{ has nontrivial } G_{x,r_1^{+}}\text{-fixed vectors} \]
Yu’s construction and my exhaustion result

\[G = \text{SL}_2(F), \]
\[\chi \in \mathcal{B}(G), \quad r = 0.5, \]
character \(\rho_K \)

(Reeder–) Yu

\[\pi := \text{c-ind}^G_K \rho_K, \]
\[K = G_{x,0.5} \times \{ \pm 1 \} \]

\(r \) = smallest non-negative real number such that \(\pi \) has nontrivial \(G_{x,r^+} \)-fixed vectors, \(\rho_K \)

Yu’s construction

\[G = G_1 \supseteq G_2 \supsetneq \ldots \supsetneq \]
\[G_n \supsetneq G_{n+1}, \quad \chi \in \mathcal{B}(G), \quad \rho, \]
\[r_1 > r_2 > \ldots > r_n > 0, \]
characters \(\phi_1, \phi_2, \ldots, \phi_n \)

\[K, \rho_K \text{ such that } \pi := \text{c-ind}_K^G \rho_K \text{ is supercuspidal} \]
Yu’s construction and my exhaustion result

\(G = SL_2(F) \),
\(x \in B(G), \ r = 0.5, \) character \(\rho_K \)

(Reeder–)Yu

\(\pi := c\text{-ind}^G_K \rho_K, \)
\(K = G_{x,0.5} \times \{ \pm 1 \} \)

\(r = \) smallest non-negative real number such that \(\pi \) has nontrivial \(G_{x,r} \)-fixed vectors, \(\rho_K \)

\(G = G_1 \supseteq G_2 \supseteq \ldots \supseteq G_n \supseteq G_{n+1}, \ x \in B(G), \ \rho, \)
\(r_1 > r_2 > \ldots > r_n > 0, \) characters \(\phi_1, \phi_2, \ldots, \phi_n \)

Yu’s construction

\(K, \rho_K \) such that \(\pi := c\text{-ind}^G_K \rho_K \) is supercuspidal

\(r_1, \phi_1, G_2 \sim \text{“Cent}(\phi_1)\text{”}, \)
Yu's construction and my exhaustion result

\[G = \text{SL}_2(F), \]
\[x \in \mathcal{B}(G), \ r = 0.5, \]
\[\text{character } \rho_K \]

(Reeder–)Yu

\[\pi := \text{c-ind}^G_K \rho_K, \]
\[K = G_{x,0.5} \times \{\pm 1\} \]

\[r = \text{smallest non-negative real number such that } \pi \text{ has nontrivial } G_{x,r^+}\text{-fixed vectors, } \rho_K \]

Yu's construction

\[G = G_1 \supseteq G_2 \supsetneq \ldots \supsetneq G_n \supsetneq G_{n+1}, \ x \in \mathcal{B}(G), \ \rho, \]
\[r_1 > r_2 > \ldots > r_n > 0, \]
\[\text{characters } \phi_1, \phi_2, \ldots, \phi_n \]

\[K, \rho_K \text{ such that } \pi := \text{c-ind}^G_K \rho_K \text{ is supercuspidal} \]

\[r_1, \phi_1, G_2 \sim \text{“Cent}(\phi_1)\text{”}, \ r_2, \]
Yu’s construction and my exhaustion result

\[G = \text{SL}_2(F), \]
\[x \in \mathcal{B}(G), \quad r = 0.5, \]
character \(\rho_K \)

\[\pi := \text{c-ind}_K^G \rho_K, \]
\[K = G_{x,0.5} \times \{ \pm 1 \} \]

(Reeder–) Yu

\[r = \text{smallest non-negative real number such that } \pi \text{ has nontrivial } G_{x,r^+}-\text{fixed vectors, } \rho_K \]

Yu’s construction

\[G = G_1 \supseteq G_2 \supseteq \ldots \supseteq G_n \supseteq G_{n+1}, \quad x \in \mathcal{B}(G), \quad \rho, \]
\[r_1 > r_2 > \ldots > r_n > 0, \]
characters \(\phi_1, \phi_2, \ldots, \phi_n \)

\[K, \rho_K \text{ such that } \pi := \text{c-ind}_K^G \rho_K \text{ is supercuspidal} \]

\[r_1, \phi_1, G_2 \sim \text{"Cent}(\phi_1)\", r_2, \]
Yu’s construction and my exhaustion result

\[G = \text{SL}_2(F), \quad \chi \in \mathcal{B}(G), \quad r = 0.5, \quad \text{character } \rho_K \]

(Reeder–) Yu

\[\pi := \text{c-ind}_K^G \rho_K, \quad K = G_{x,0.5} \times \{ \pm 1 \} \]

\[r = \text{smallest non-negative real number such that } \pi \text{ has nontrivial } G_{x,r+}\text{-fixed vectors, } \rho_K \]

Yu’s construction

\[G = G_1 \supseteq G_2 \supseteq \ldots \supseteq G_n \supseteq G_{n+1}, \quad \chi \in \mathcal{B}(G), \quad \rho, \quad r_1 > r_2 > \ldots > r_n > 0, \quad \text{characters } \phi_1, \phi_2, \ldots, \phi_n \]

\[K, \rho_K \text{ such that } \pi := \text{c-ind}_K^G \rho_K \text{ is supercuspidal} \]

\[r_1, \phi_1, G_2 \sim \text{“Cent}(\phi_1)\text{”}, r_2, \phi_2, \ldots \]
Yu’s construction and my exhaustion result

\[G = \text{SL}_2(F), \]
\[x \in \mathcal{B}(G), \ r = 0.5, \]
character \(\rho_K \)

(Reeder–) Yu

\[\pi := \text{c-ind}^G_K \rho_K, \]
\[K = G_{x,0.5} \times \{ \pm 1 \} \]

\[r = \text{smallest non-negative real number such that } \pi \text{ has nontrivial } G_{x,r+}-\text{fixed vectors}, \ \rho_K \]

\[G = G_1 \supseteq G_2 \supsetneq \ldots \supsetneq G_n \supsetneq G_{n+1}, \ x \in \mathcal{B}(G), \ \rho, \]
\[r_1 > r_2 > \ldots > r_n > 0, \]
characters \(\phi_1, \phi_2, \ldots, \phi_n \)

Yu’s construction

\[K, \rho_K \text{ such that } \pi := \text{c-ind}^G_K \rho_K \text{ is supercuspidal} \]

\[r_1, \phi_1, G_2 \sim \text{“Cent}(\phi_1)”, \ r_2, \phi_2, \]
\[G_3 \sim \text{“Cent}_{G_2}(\phi_2), \]
Yu’s construction and my exhaustion result

\[G = \text{SL}_2(F), \]
\[x \in \mathcal{B}(G), \quad r = 0.5, \]
character \(\rho_K \)

(Reeder–)Yu \[\pi := \text{c-ind}^G_K \rho_K, \]
\[K = G_{x,0.5} \times \{ \pm 1 \} \]

\(r = \) smallest non-negative real number such that \(\pi \) has nontrivial \(G_{x,r^+} \)-fixed vectors, \(\rho_K \)

\[G = G_1 \supseteq G_2 \supseteq \ldots \supseteq G_n \supseteq G_{n+1}, \quad x \in \mathcal{B}(G), \rho, \]
\[r_1 > r_2 > \ldots > r_n > 0, \]
characters \(\phi_1, \phi_2, \ldots, \phi_n \)

Yu’s construction \[K, \rho_K \] such that \(\pi := \text{c-ind}^G_K \rho_K \) is supercuspidal

\[r_1, \phi_1, G_2 \sim \text{“Cent}(\phi_1)”, \quad r_2, \phi_2, \]
\[G_3 \sim \text{“Cent}_{G_2}(\phi_2)”, \ldots, r_n, \phi_n, G_{n+1}, \]
Yu’s construction and my exhaustion result

$G = \text{SL}_2(F)$, $x \in \mathcal{B}(G)$, $r = 0.5$, character ρ_K

(Reeder–)Yu

$\pi := \text{c-ind}_K^G \rho_K$, $K = G_{x,0.5} \times \{\pm 1\}$

$r = \text{smallest non-negative real number such that } \pi \text{ has nontrivial } G_{x,r^+}-\text{fixed vectors, } \rho_K$

$G = G_1 \supsetneq G_2 \supsetneq \ldots \supsetneq G_n \supsetneq G_{n+1}$, $x \in \mathcal{B}(G)$, ρ, $r_1 > r_2 > \ldots > r_n > 0$, characters $\phi_1, \phi_2, \ldots, \phi_n$

Yu’s construction

K, ρ_K such that $\pi := \text{c-ind}_K^G \rho_K$ is supercuspidal

$r_1, \phi_1, G_2 \sim \text{"Cent}(\phi_1)\text{"}, r_2, \phi_2$, $G_3 \sim \text{"Cent}_{G_2}(\phi_2)\text{"}, \ldots, r_n, \phi_n, G_{n+1}, \rho$
Proposition 3 (F., Aug 2019)
There exists a counterexample to the key ingredient of Yu’s proof (Yu’s Prop 14.1 and Thm 14.2, which were based on a misprint).

Theorem 4 (F., Aug 2019)
Yu’s construction yields indeed supercuspidal representations:
Proposition 3 (F., Aug 2019)

There exists a counterexample to the key ingredient of Yu’s proof (Yu’s Prop 14.1 and Thm 14.2, which were based on a misprint).

Theorem 4 (F., Aug 2019)

Yu’s construction yields indeed supercuspidal representations:
\[\text{c-ind}_{K_{Yu}}^{G} \rho_{K_{Yu}}. \]
Proposition 3 (F., Aug 2019)
There exists a counterexample to the key ingredient of Yu’s proof (Yu’s Prop 14.1 and Thm 14.2, which were based on a misprint).

Theorem 4 (F., Aug 2019)
Yu’s construction yields indeed supercuspidal representations: $c\text{-ind}_{K_{Yu}}^{G} \rho_{K_{Yu}}$.

Theorem 5 (F.–Kaletha–Spice, 2019/2020)
There exists a character $\epsilon : K_{Yu} \to \{\pm 1\}$ such that Yu’s Prop 14.1 and Thm 14.2 are satisfied for the twisted representation $\epsilon \rho_{K_{Yu}}$ of K_{Yu}.
Proposition 3 (F., Aug 2019)

There exists a counterexample to the key ingredient of Yu’s proof (Yu’s Prop 14.1 and Thm 14.2, which were based on a misprint).

Theorem 4 (F., Aug 2019)

Yu’s construction yields indeed supercuspidal representations:
\[\text{c-ind}^{G}_{K_{Yu}} \rho_{K_{Yu}}. \]

Theorem 5 (F.–Kaletha–Spice, 2019/2020)

There exists a character \(\epsilon : K_{Yu} \rightarrow \{\pm 1\} \) such that Yu’s Prop 14.1 and Thm 14.2 are satisfied for the twisted representation \(\epsilon \rho_{K_{Yu}} \) of \(K_{Yu} \). In particular, \(\text{c-ind}^{G}_{K_{Yu}} \epsilon \rho_{K_{Yu}} \) is supercuspidal.
Theorem 5 (F.–Kaletha–Spice, 2019/2020)

There exists a character $\epsilon : K_{Yu} \rightarrow \{\pm 1\}$ such that Yu’s Prop 14.1 and Thm 14.2 are satisfied for the twisted representation $\epsilon \rho_{K_{Yu}}$ of K_{Yu}. In particular, $\text{c-ind}_{K_{Yu}}^{G} \epsilon \rho_{K_{Yu}}$ is supercuspidal.

Applications of Theorem 5

- Formula for Harish-Chandra character of these supercuspidal representations (Spice, in progress)
- Candidate for local Langlands correspondence for non-singular representations (Kaletha, Dec 2019)
- Character identities for the LLC for regular supercuspidal representations (in progress)
- Hecke-algebra identities (hope)
Theorem 5 (F.–Kaletha–Spice, 2019/2020)

There exists a character $\epsilon : K_{Yu} \to \{\pm 1\}$ such that Yu’s Prop 14.1 and Thm 14.2 are satisfied for the twisted representation $\epsilon \rho_{K_{Yu}}$ of K_{Yu}. In particular, $\text{c-ind}_{K_{Yu}}^{G} \epsilon \rho_{K_{Yu}}$ is supercuspidal.

Applications of Theorem 5

- Formula for Harish-Chandra character of these supercuspidal representations (Spice, in progress)
Theorem 5 (F.–Kaletha–Spice, 2019/2020)

There exists a character $\epsilon : K_{Yu} \to \{\pm 1\}$ such that Yu’s Prop 14.1 and Thm 14.2 are satisfied for the twisted representation $\epsilon \rho_{K_{Yu}}$ of K_{Yu}. In particular, $\text{c-ind}_{K_{Yu}}^{G} \epsilon \rho_{K_{Yu}}$ is supercuspidal.

Applications of Theorem 5

- Formula for Harish-Chandra character of these supercuspidal representations (Spice, in progress)
- Candidate for local Langlands correspondence for non-singular representations (Kaletha, Dec 2019)
Theorem 5 (F.–Kaletha–Spice, 2019/2020)

There exists a character $\epsilon : K_{Yu} \to \{\pm 1\}$ such that Yu’s Prop 14.1 and Thm 14.2 are satisfied for the twisted representation $\epsilon \rho_{K_{Yu}}$ of K_{Yu}. In particular, $c\text{-}\text{ind}_{K_{Yu}}^{G} \epsilon \rho_{K_{Yu}}$ is supercuspidal.

Applications of Theorem 5

- Formula for Harish-Chandra character of these supercuspidal representations (Spice, in progress)
- Candidate for local Langlands correspondence for non-singular representations (Kaletha, Dec 2019)
- Character identities for the LLC for regular supercuspidal representations (in progress)
Theorem 5 (F.–Kaletha–Spice, 2019/2020)

There exists a character $\epsilon : K_{Yu} \to \{\pm 1\}$ such that Yu’s Prop 14.1 and Thm 14.2 are satisfied for the twisted representation $\epsilon \rho_{K_{Yu}}$ of K_{Yu}. In particular, $\text{c-ind}_{K_{Yu}}^{G} \epsilon \rho_{K_{Yu}}$ is supercuspidal.

Applications of Theorem 5

- Formula for Harish-Chandra character of these supercuspidal representations (Spice, in progress)
- Candidate for local Langlands correspondence for non-singular representations (Kaletha, Dec 2019)
- Character identities for the LLC for regular supercuspidal representations (in progress)
- Hecke-algebra identities (hope)
The quadratic character ϵ

Theorem 5’ (F.–Kaletha–Spice, 2019/2020)

Let G be adjoint, M a twisted Levi subgroup of G that splits over a tamely ramified extension of F (given by a generic element),

There is an explicitly constructed sign character ϵ of \mathcal{M} with the following property:

For every tame maximal torus $T \in \mathcal{M}$ with $x \in B_p M$, the restriction of ϵ to T equals a given quadratic character $\epsilon_1 \epsilon_2 \epsilon_3$.

Construction of ϵ

Jessica Fintzen
Representations of p-adic groups
The quadratic character ϵ

Theorem 5’ (F.–Kaletha–Spice, 2019/2020)

Let G be adjoint, M a twisted Levi subgroup of G that splits over a tamely ramified extension of F (given by a generic element), $p \neq 2$, $x \in B(M, F) \subset B(G, F)$.

There is an explicitly constructed sign character $\epsilon_{G}\{M\}$ with the following property:

For every tame maximal torus $T \in M$ with $x \in B(M, F) \subset B(G, F)$, the restriction of $\epsilon_{G}\{M\}$ to $T \cap F_{q}$ equals a given quadratic character $\epsilon_{G}\{M\}$.
The quadratic character ϵ

Theorem 5' (F.–Kaletha–Spice, 2019/2020)

Let G be adjoint, M a twisted Levi subgroup of G that splits over a tamely ramified extension of F (given by a generic element), $p \neq 2$, $x \in B(M, F) \subset B(G, F)$.

There is an explicitly constructed sign character $\epsilon_{x}^{G/M} : M_{x} \rightarrow M_{x}/M_{x,0+} \rightarrow \{ \pm 1 \}$ with the following property:
The quadratic character ϵ

Theorem 5’ (F.–Kaletha–Spice, 2019/2020)

Let G be adjoint, M a twisted Levi subgroup of G that splits over a tamely ramified extension of F (given by a generic element), $p \neq 2$, $x \in \mathcal{B}(M, F) \subset \mathcal{B}(G, F)$.

There is an explicitly constructed sign character $\epsilon_{x}^{G/M} : M_{x} \rightarrow M_{x}/M_{x,0+} \rightarrow \{ \pm 1 \}$ with the following property: For every tame maximal torus $T \subset M$ with $x \in \mathcal{B}(T, F)$ the restriction of $\epsilon_{x}^{G/M}$ to $T(F) \cap M_{x}$ equals a given quadratic character $(\epsilon_{\#}^{G/M} \cdot \epsilon_{b,0}^{G/M} \cdot \epsilon_{b,1}^{G/M} \cdot \epsilon_{b,2}^{G/M} \cdot \epsilon_{f}^{G/M})$.
The quadratic character ϵ

Theorem 5’ (F.–Kaletha–Spice, 2019/2020)

Let G be adjoint, M a twisted Levi subgroup of G that splits over a tamely ramified extension of F (given by a generic element), $p \neq 2$, $x \in B(M, F) \subset B(G, F)$.

There is an explicitly constructed sign character $\epsilon_{x}^{G/M} : M_{x} \rightarrow M_{x}/M_{x,0+} \rightarrow \{\pm 1\}$ with the following property:

For every tame maximal torus $T \subset M$ with $x \in B(T, F)$ the restriction of $\epsilon_{x}^{G/M}$ to $T(F) \cap M_{x}$ equals a given quadratic character $(\epsilon_{\#}^{G/M} \cdot \epsilon_{b,0}^{G/M} \cdot \epsilon_{b,1}^{G/M} \cdot \epsilon_{b,2}^{G/M} \cdot \epsilon_{f}^{G/M})$.

\[
\epsilon_{\#}^{G/M}(\gamma) = \prod_{\alpha \in R(T, G/M)_{\text{asym}}/(\Gamma \times \{\pm 1\}) \atop s \in \text{ord}_{x}(\alpha)} \text{sgn}_{k_{\alpha}}(\alpha(\gamma)) \cdot \prod_{\alpha \in R(T, G/M)_{\text{sym,unram}}/\Gamma \atop s \in \text{ord}_{x}(\alpha)} \text{sgn}_{k_{\alpha}^{-1}}(\alpha(\gamma))
\]

\[
\epsilon_{b,0}^{G/M}(\gamma) = \prod_{\alpha \in R(T, G/M)_{\text{asym}}/(\Gamma \times \{\pm 1\}) \atop \alpha_{0} \in R(Z_{M}, G/M)_{\text{sym,ram}} \atop 2|e(\alpha/\alpha_{0})} \text{sgn}_{k_{\alpha}}(\alpha(\gamma)) \cdot \prod_{\alpha \in R(T, G/M)_{\text{sym,unram}}/\Gamma \atop \alpha_{0} \in R(Z_{M}, G/M)_{\text{sym,ram}} \atop 2|e(\alpha/\alpha_{0})} \text{sgn}_{k_{\alpha}^{-1}}(\alpha(\gamma))
\]
The quadratic character ϵ

Theorem 5’ (F.–Kaletha–Spice, 2019/2020)

Let G be adjoint, M a twisted Levi subgroup of G that splits over a tamely ramified extension of F (given by a generic element), $p \neq 2$, $x \in \mathcal{B}(M, F) \subset \mathcal{B}(G, F)$.

There is an explicitly constructed sign character

$\epsilon_{G/M}^x : M_x \rightarrow M_x/M_{x,0^+} \rightarrow \{\pm 1\}$

with the following property: For every tame maximal torus $T \subset M$ with $x \in \mathcal{B}(T, F)$ the restriction of $\epsilon_{G/M}^x$ to $T(F) \cap M_x$ equals a given quadratic character

$(\epsilon_{G/M}^\# \cdot \epsilon_{G/M}^{b,0} \cdot \epsilon_{G/M}^{b,1} \cdot \epsilon_{G/M}^{b,2} \cdot \epsilon_{G/M}^f)$.

Construction of ϵ

$\epsilon_{G/M}^x = \epsilon_1 \cdot \epsilon_2 \cdot \epsilon_3$
The quadratic character ϵ

Theorem 5' (F.–Kaletha–Spice, 2019/2020)

Let G be adjoint, M a twisted Levi subgroup of G that splits over a tamely ramified extension of F (given by a generic element), $p \neq 2$, $x \in B(M, F) \subset B(G, F)$.

There is an explicitly constructed sign character $\epsilon_{G/M}^x : M_x \to M_x/M_{x,0+} \to \{\pm 1\}$ with the following property:

For every tame maximal torus $T \subset M$ with $x \in B(T, F)$ the restriction of $\epsilon_{G/M}^x$ to $T(F) \cap M_x$ equals a given quadratic character $(\epsilon_{G/M}^G \cdot \epsilon_{G/M}^G \cdot \epsilon_{G/M}^G \cdot \epsilon_{G/M}^G \cdot \epsilon_{G/M}^G)$.

Construction of ϵ

$$\epsilon_{G/M}^x = \epsilon_1 \cdot \epsilon_2 \cdot \epsilon_3$$

$$
\epsilon_1(g) = \text{sgn}_{F_q} \left(\begin{vmatrix}
\det
\end{vmatrix}_{\alpha \in R(Z_M, G)_{\text{sym,ram}}/\Gamma}
\bigoplus_{t \in (0, \frac{1}{2e_\alpha})} g_{\Gamma, \alpha_0}(F)_x, t / g_{\Gamma, \alpha_0}(F)_x, t^+ \bigoplus
\end{vmatrix}
\right)
$$
Construction of ϵ

$$
\epsilon_{G/M} = \epsilon_1 \cdot \epsilon_2 \cdot \epsilon_3
$$

$$
\epsilon_1(g) = \text{sgn}_{\mathbb{F}_q} \left(\det \left(\bigoplus_{\alpha_0 \in R(Z_M, G)_{\text{sym, ram}} / \Gamma} \bigoplus_{t \in (0, \frac{1}{2e\alpha_0})} g_{\Gamma, \alpha_0}(F)_x, t / g_{\Gamma, \alpha_0}(F)_x, t + \right) \right)
$$
The quadratic character ϵ continued

Construction of ϵ

$$\epsilon_{x/M}^G = \epsilon_1 \cdot \epsilon_2 \cdot \epsilon_3 : M_x \to M_{x/M_{x,0+}} =: M(\mathbb{F}_q) \to \{\pm 1\}$$

$$\epsilon_1(g) = \text{sgn}_{\mathbb{F}_q} \left(\det \left(\bigoplus_{\alpha_0 \in R(Z_M, G)_{\text{sym,ram}}/\Gamma} \bigoplus_{t \in (0, \frac{1}{2e\alpha_0})} g_{\alpha_0}(F)_x, t/g_{\alpha_0}(F)_x, t+ \right) \right)$$
The quadratic character ϵ continued

Construction of ϵ

$$\epsilon_{x/M} = \epsilon_1 \cdot \epsilon_2 \cdot \epsilon_3 : M_x \to M_x/M_{x,0^+} =: M(\mathbb{F}_q) \to \{\pm 1\}$$

$$\epsilon_1(g) = \text{sgn}_{\mathbb{F}_q} \left(\det \left(g | \bigoplus_{\alpha_0 \in R(Z_M, G)_{\text{sym,ram}}/\Gamma} \bigoplus_{t \in (0, \frac{1}{2e\alpha_0})} g_{\Gamma.\alpha_0}(F)_{x,t}/g_{\Gamma.\alpha_0}(F)_{x,t+} \right) \right)$$

ϵ_2 is constructed via the Galois hypercohomology of the complex $X^*(M) \xrightarrow{2} X^*(M)$ from explicit 1-hypercocycles via $H^1(\Gamma, X^*(M) \to X^*(M)) \to \text{Hom}(M(\mathbb{F}_q), \mathbb{F}_q^\times/(\mathbb{F}_q^\times)^2)$
The quadratic character ϵ continued

Construction of ϵ

$$\epsilon_{G/M} = \epsilon_1 \cdot \epsilon_2 \cdot \epsilon_3 : M_x \to M_x/M_{x,0+} =: M(\mathbb{F}_q) \to \{\pm 1\}$$

$$\epsilon_1(g) = \text{sgn}_{\mathbb{F}_q} \left(\det \left(\bigoplus_{\alpha_0 \in R(Z_M, G)_{\text{sym,ram}}/\Gamma} g_{\Gamma, \alpha_0}(F)(x, t) / g_{\Gamma, \alpha_0}(F)(x, t+) \right) \right)$$

ϵ_2 is constructed via the Galois hypercohomology of the complex $X^*(M) \to X^*(M)$ from explicit 1-hypercocycles via $H^1(\Gamma, X^*(M) \to X^*(M)) \to \text{Hom}(M(\mathbb{F}_q), \mathbb{F}_q^\times / (\mathbb{F}_q^\times)^2)$

ϵ_3 is constructed using the spinor norm:

$$M_x \to O(W, \varphi_W)(\mathbb{F}_q) \xrightarrow{\text{spinor norm}} \mathbb{F}_q^\times / (\mathbb{F}_q^\times)^2 \to \{\pm 1\}$$
The quadratic character ϵ continued

$$
\epsilon_1(g) = \text{sgn}_{\mathbb{F}_q} \left(\det \left(g \mid \bigoplus_{\alpha_0 \in R(Z_M, G)_{\text{sym,ram}}/\Gamma} \bigoplus_{t \in (0, \frac{1}{2e\alpha_0})} \text{Gr}_{\alpha_0}(F)_x/t \bigoplus \text{Gr}_{\alpha_0}(F)_x/t+ \right) \right)
$$

ϵ_2 is constructed via the Galois hypercohomology of the complex $X^*(M) \rightarrow X^*(M)$ from explicit 1-hypercocycles via $H^1(\Gamma, X^*(M) \rightarrow X^*(M)) \rightarrow \text{Hom}(M(\mathbb{F}_q), \mathbb{F}_q^\times/(\mathbb{F}_q^\times)^2)$

ϵ_3 is constructed using the spinor norm:

$$
M_x \rightarrow O(W, \varphi_W)(\mathbb{F}_q) \overset{\text{spinor norm}}{\longrightarrow} \mathbb{F}_q^\times/(\mathbb{F}_q^\times)^2 \rightarrow \{\pm 1\}
$$
The quadratic character ϵ continued

$$\epsilon_1(g) = \text{sgn}_{\mathbb{F}_q} \left(\det \left(g \mid \bigoplus_{\alpha_0 \in R(Z_M, G)_{\text{sym,ram}}/\Gamma} \bigoplus_{t \in (0, \frac{1}{2e\alpha_0})} g_{\alpha_0}(F)_x, t / g_{\alpha_0}(F)_x, t^+ \right) \right)$$

ϵ_2 is constructed via the Galois hypercohomology of the complex $X^*(M) \to X^*(M)$ from explicit 1-hypercocycles via $H^1(\Gamma, X^*(M) \to X^*(M)) \to \text{Hom}(M(\mathbb{F}_q), \mathbb{F}_q^\times / (\mathbb{F}_q^\times)^2)$

ϵ_3 is constructed using the spinor norm:

$M_x \to O(W, \varphi_W)(\mathbb{F}_q) \xrightarrow{\text{spinor norm}} \mathbb{F}_q^\times / (\mathbb{F}_q^\times)^2 \to \{\pm 1\}$

Spinor norm

1 $\to \mu_2 \to \text{Pin}(W, \varphi_W) \to O(W, \varphi_W) \to 1$ leads to

1 $\to \mu_2(\mathbb{F}_q) \to \text{Pin}(W, \varphi_W)(\mathbb{F}_q) \to O(W, \varphi_W)(\mathbb{F}_q) \to H^1(\text{Gal}(\overline{\mathbb{F}_q}, \mathbb{F}_q), \mu_2) \to \cdots$
The quadratic character ϵ continued

$$\epsilon_1(g) = \text{sgn}_{\mathbb{F}_q} \left(\det \left(g \bigg| \bigoplus_{\alpha_0 \in R(Z_M, G)_{\text{sym,ram}}} \bigoplus_{t \in (0, \frac{1}{2 e \alpha_0})} g_{\Gamma \cdot \alpha_0}(F)_x, t / g_{\Gamma \cdot \alpha_0}(F)_x, t^+ \right) \right)$$

ϵ_2 is constructed via the Galois hypercohomology of the complex $X^*(M) \to X^*(M)$ from explicit 1-hypercocycles via $H^1(\Gamma, X^*(M) \to X^*(M)) \to \text{Hom}(M(\mathbb{F}_q), \mathbb{F}_q^\times / (\mathbb{F}_q^\times)^2)$

ϵ_3 is constructed using the spinor norm:

$$M_x \to O(W, \varphi_W)(\mathbb{F}_q) \xrightarrow{\text{spinor norm}} \mathbb{F}_q^\times / (\mathbb{F}_q^\times)^2 \to \{ \pm 1 \}$$

Spinor norm

1 $\to \mu_2 \to \text{Pin}(W, \varphi_W) \to O(W, \varphi_W) \to 1$ leads to

1 $\to \mu_2(\mathbb{F}_q) \to \text{Pin}(W, \varphi_W)(\mathbb{F}_q) \to O(W, \varphi_W)(\mathbb{F}_q) \to H^1(\text{Gal}(\overline{\mathbb{F}_q}, \mathbb{F}_q), \mu_2) = \mathbb{F}_q^\times / (\mathbb{F}_q^\times)^2 \to \ldots$
The quadratic character ϵ continued

$$\epsilon_1(g) = \text{sgn}_{F_q} \left(\det \left(g \mid \bigoplus_{\alpha_0 \in R(Z_M, G)_{\text{sym,ram}}} \bigoplus_{t \in (0, \frac{1}{2e\alpha_0})} \text{gr.}_\alpha_0(F)_x, t/\text{gr.}_\alpha_0(F)_x, t+ \right) \right)$$

ϵ_2 is constructed via the Galois hypercohomology of the complex $X^*(M) \to X^*(M)$ from explicit 1-hypercocycles via $H^1(\Gamma, X^*(M) \to X^*(M)) \to \text{Hom}(M(F_q), F_q^\times/(F_q^\times)^2)$

ϵ_3 is constructed using the spinor norm:

$M_x \to O(W, \varphi_W)(F_q) \xrightarrow{\text{spinor norm}} F_q^\times/(F_q^\times)^2 \to \{\pm1\}$

Spinor norm

1. $\mu_2 \to \text{Pin}(W, \varphi_W) \to O(W, \varphi_W) \to 1$ leads to
2. $1 \to \mu_2(F_q) \to \text{Pin}(W, \varphi_W)(F_q) \to O(W, \varphi_W)(F_q) \xrightarrow{\text{spinor norm}} H^1(\text{Gal}(\overline{F}_q, F_q), \mu_2) = F_q^\times/(F_q^\times)^2 \to \ldots$
The quadratic character ϵ continued

$$\epsilon_1(g) = \text{sgn}_{\mathbb{F}_q} \left(\det \left(g \bigg| \bigoplus_{\alpha_0 \in R(Z_M,G)_{\text{sym,ram}}/\Gamma} \bigoplus_{t \in (0, \frac{1}{2e\alpha_0})} g\Gamma.\alpha_0(F)x,t / g\Gamma.\alpha_0(F)_x,t+ \right) \right)$$

ϵ_2 is constructed via the Galois hypercohomology of the complex $X^*(M) \rightarrow X^*(M)$ from explicit 1-hypercocycles via $H^1(\Gamma, X^*(M) \rightarrow X^*(M)) \rightarrow \text{Hom}(M(\mathbb{F}_q), \mathbb{F}_q^\times/\mathbb{F}_q^\times 2)$

ϵ_3 is constructed using the spinor norm:

$$M_x \rightarrow O(W, \varphi_W)(\mathbb{F}_q) \xrightarrow{\text{spinor norm}} \mathbb{F}_q^\times/\mathbb{F}_q^\times 2 \rightarrow \{ \pm 1 \}$$

$W = \bigoplus_{\alpha_0 \in R(Z_M,G)_{\text{sym,ram}}/\Gamma} g\Gamma.\alpha_0(F)x,0 / g\Gamma.\alpha_0(F)_x,0+$

Spinor norm

$$1 \rightarrow \mu_2 \rightarrow \text{Pin}(W, \varphi_W) \rightarrow O(W, \varphi_W) \rightarrow 1$$

leads to

$$1 \rightarrow \mu_2(\mathbb{F}_q) \rightarrow \text{Pin}(W, \varphi_W)(\mathbb{F}_q) \rightarrow O(W, \varphi_W)(\mathbb{F}_q) \xrightarrow{\text{spinor norm}} H^1(\text{Gal}(\overline{\mathbb{F}_q}, \mathbb{F}_q), \mu_2) = \mathbb{F}_q^\times/\mathbb{F}_q^\times 2 \rightarrow \ldots$$
Advertisement:

luxury postdoc position in Cambridge

see my homepage https://www.dpmms.cam.ac.uk/~jf457/
The end of the talk, but only the beginning of the story ...