
Exerpt from A MATLAB Companion for Multivariable Calculus by Jeffery
Cooper, Harcourt/Academic Press, 2001.

1. The Command Line

In this chapter, we discuss operations that can be performed from the com-
mand line. In Chapter 2, we discuss mfiles and programs.

1.1 First Steps

When you invoke MATLAB to begin a session, you see the prompt

>>

When we give instructions for an operation, or request information, following this
prompt, we say that we are working on the command line.

We can do simple arithmetic operations on the command line such as
(2 + 3.52 − 4 · 7)/12,

>> (2+3.5^2 -4*7)/12

ans =

-1.1458

We can also do this calculation by assigning variable names to the quantities.

>> x = 2+3.5^2

ans =

14.2500

>> y = 4*7

ans =

28

>> z = (x-y)/12

ans =

-1.1458

If we do not wish to see the intermediate results, we can suppress the numerical
output by putting a semicolon at the end of the line. Then the sequence of
commands and output looks like this.

>> x = 2+3.5^2;

>> y = 4*7;

>> z = (x-y)/12;

>> z

z =

-1.1458

1

2 Chapter 1 Basic MATLAB: The command line

MATLAB does numerical calculations in double precision, which is 15 digits.
Normally only five digits are displayed. If we want to see all 15 digits, we use the
command format long.

>> format long

>> z

z =

-1.14583333333333

To return to the short format, enter format short.

Error messages

If we enter an expression incorrectly, MATLAB will return an error message,
which sometimes locates the error. For example, in the following, we left out the
* in 3*x.

>> x = 4;

>> 3x

??? 3

|

Missing operator, comma, or semicolon.

Another example.

>> 2*(x+y

??? 2*(x+y

|

A closing right parenthesis is missing.

Check for a missing ")" or a missing operator.

Making corrections

To make corrections, we can, of course, retype the expression. But if the
expression is lengthy, we may make more mistakes by typing a second time. Un-
fortunately we can not move the cursor to the line we wish to repair. Instead we
can press the up arrow key until we reach the desired line and then the left and
right arrows, until we reach the offending characters. Type in the correction and
enter return.

Exiting

To leave MATLAB enter quit .
If MATLAB gets hung up in calculation, or is taking a long time, and you

want to stop the calculation, without exiting MATLAB, enter Ctrl+C.

Chapter 1 Basic MATLAB: The command line 3

HELP ! ! Help with most operations is available with a keystroke, thanks to the
on line help provided by MATLAB. To get information on a particular command
or operation, simply enter help command name. For example, to get information
on how to use the plotting commands, enter help plot.

1.2 Vectors and matrices

Vectors and matrices are the basic elements of the MATLAB environment. In
this text we shall be using the word vector in two, related, ways.

In Chapter 3, we shall speak of vectors as directed line segments in two and
three dimensional space, used to represent physical and geometric quantities such
as force and velocity.

In this chapter, we shall use vector to mean an ordered list of numbers, written
either horizontally, or vertically. For example,

u = [2, 1.3,
√

2, 8,−4, π]

or

v =











1
−2

π
4.2











.

We say that u is a row vector and that v is a column vector.
A matrix is a rectangular array of numbers. For example,

A =







1 2 3 9
4 5 6.1 −2

π/2 1/3 4 −1






.

The dimensions of a matrix are the number of rows and the number of columns,
with the number of rows usually given first. The matrix A above is a 3×4 matrix.
The row vector u is a 1 × 6 matrix, and the column vector v is a 4 × 1 matrix.
A single number, like 5.2, is a scalar and can be considered a 1 × 1 matrix. The
entries in a matrix often are written ai,j with i being the row index and j being
the column index. For example, in the matrix A, above, a2,1 = 4 and a3,2 = 1/3.

The transpose of an m×n real matrix A is the n×m matrix that results from
interchanging the rows and columns of A. The transpose matrix is denoted AT .
The transpose of the matrix A above is

AT =











1 4 π/2
2 5 1/3
3 6.1 4
9 −2 −1











.

4 Chapter 1 Basic MATLAB: The command line

Various operations can be performed on vectors and matrices and we shall
illustrate them in the context of MATLAB.

Forming vectors and matrices

Matrices can be entered by typing in the elements one at a time. To enter the
matrix

A =

[

1 2 3
4 5 6

]

,

we type

>> A = [1 2 3;4 5 6]

A =

1 2 3

4 5 6

Notice that we use a semicolon to separate the rows. Remember, to suppress
the output, put a semicolon after the defining statement. This can be especially
important if the matrix or vector has thousands of elements.

The transpose of a real matrix is formed by the command A’. If the row vector
x is defined by

>> x = [1 5 4 8 10]

then x is turned into a column vector with the command x’. If the matrix or vector
has complex elements, the command A’ produces the Hermitian transpose, which
is the transpose with the complex conjugate of the elements. For example

Z =

1+i 2 1

2+5i i 2

>> Z’

Z’=

1-i 2-5i

2 -i

1 2

To get a transpose, without taking the complex conjugates, use A.’. That is, put
a dot before the apostrophe.

To determine the dimensions of a vector or matrix, use the command size as
follows:

Chapter 1 Basic MATLAB: The command line 5

>> size(A)

ans =

2 3

>> size(x)

ans =

1 5

>> size(x’)

5 1

We can view a particular element in a vector or matrix by specifying its location:

>> A(1,2)

ans =

2

>> x(5)

ans =

10

Often we must deal with vectors or matrices which are too large to enter one
element at a time. If there is some formula or some regular pattern to the elements,
we may be able to enter them as follows. Suppose we want to enter a vector x

consisting of points (0, .1, .2, .3, .4, . . . , 5.9, 6). We can use the command

>> x = 0:.1:6 ;

This row vector has 61 elements. Another way to create the same vector is to use
the command linspace .

>> x = linspace(0,6,61);

linspace stands for “linear spacing”. It is useful when we want to divide an
interval into a number of subintervals of the same length. For example, theta
= linspace(0, 2*pi, 41) divides the interval [0, 2π] into 40 equal subintervals,
creating a vector of 41 elements.

To create a vector of zeros or of ones of the same dimensions as a given vector
x, there are commands

>> y = ones(size(x));

>> z = zeros(size(x));

6 Chapter 1 Basic MATLAB: The command line

The same works for matrices

>> Z = zeros(size(A));

>> Y = ones(size(A))

Y =

1 1 1

1 1 1

One can also specify a matrix of zeros or ones by giving the dimensions.

>> Z = zeros(2,3)

The n × n identity matrix is produced with the command eye(n). There are
special commands for entering sparse matrices or diagonal matrices. For more
information, enter help sparse or help diag.

1.3 Array operations

Arithmetic of matrices

There is an obvious, natural, way to add and subtract matrices.

>> B = [2 0 -1; 1 2 7];

>> A + B

ans =

3 2 2

5 7 13

Usually, we can add together only matrices having the same dimension. There
is an exception in MATLAB, however, which is very useful. Suppose we want to
add the same number c to each element of a matrix A. This can be done with
the command A + c*ones(size(A)), or more simply, A + c. In particular, if x is
a vector, we can add a scalar t to each component of x with the command x+t.

We can always multiply a matrix by a scalar, or divide by a nonzero scalar.

>> 2 * A

ans =

2 4 6

8 10 12

>> A/2

ans =

0.5000 1.0000 1.5000

2.0000 2.5000 3.0000

Chapter 1 Basic MATLAB: The command line 7

Array operations

Arithmetic operations can also be performed on matrices, entry by entry.
These are called array operations. Array multiplication is an example. If A

and B are two matrices of the same size with elements ai,j and bi,j, then the
symbol

>> C = A.*B

produces another matrix C of the same size with elements ci,j = ai,jbi,j. For
example using the same 2 × 3 matrices A and B we defined earlier, we have

>> C = A.*B

C =

2 0 -3

4 10 42

To raise a scalar to a power, say two, we use the command 5^2. If we want the
operation to be applied to each element of a matrix, we use .^2. For example, if
we want to produce a new matrix whose elements are the square of the elements
of the matrix A we enter

>> A.^2

ans =

1 4 9

16 25 36

There is also a kind of array division for two matrices of the same size which
divides the two matrices element by element.

>> D = [1 3 5; -2 4 -1]

>> A./D

ans =

1.0000 0.6667 0.6000

-2.0000 1.2500 -6.0000

1.4 Matrix multiplication and linear systems

Another kind of multiplication between matrices is motivated by the consid-
eration of linear systems of equations. Let A be a 2 × 3 matrix

A =

[

a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

]

8 Chapter 1 Basic MATLAB: The command line

and

x =







x1

x2

x3







a 3 × 1 column vector. We define the product Ax to be a 2 × 1 column vector
with components

[

a1,1x1 + a1,2x2 + a1,3x3

a2,1x1 + a2,2x2 + a2,3x3

]

.

With this definition of multiplication of a matrix by a vector, we can write the
linear system of two equations in the three unknowns x1, x2, x3,

a1,1x1 + a1,2x2 + a1,3x3 = b1

a2,1x1 + a2,2x2 + a2,3x3 = b2,

as simply

Ax = b

where b is the 2 × 1 column vector
[

b1

b2

]

.

More generally, if A = [ai,j] is an m×n matrix, and x = [x1, x2, . . . , xn] is an n×1
column vector, we define Ax to be the m × 1 column vector with ith component

n
∑

j=1

ai,jxj.

In this way, the system of m linear equations in n unknowns xj,

n
∑

j=1

ai,jxj = bi, i = 1, . . . , m

can be written compactly as

Ax = b. (0.1)

Now let A be an m×n matrix and B be an n×p matrix. We label the columns
of B as Bj = [bi,j], j = 1, . . . , p. We define

Chapter 1 Basic MATLAB: The command line 9

AB = C (0.2)

where C is the m × p matrix whose columns are the m × 1 column vectors Cj =
ABj, j = 1, . . . , p. In terms of the entries,

ci,j =
n

∑

k=1

ai,kbk,j.

This matrix multiplication AB is only defined for an m×n matrix A and an n×p
matrix B. The column dimension of A must equal the row dimension of B.

In MATLAB we can multiply matrices in this fashion with the * symbol. It
is very important to notice that this kind of matrix operation uses the symbol *,
without the dot in front. Remember we use the symbol .* for array multiplication.
We assume we have matrices of the correct dimensions.

>> A = [1 2; 3 3; 4 5];

>> B = [-1 3; 5 1];

>> C = A*B;

>> C

= 9 5

12 12

21 17

If A is a square matrix, n × n, A can be multiplied times itself any number of
times. We use the notation Ak to denote the product of k factors AA . . .A.
The MATLAB command for raising a matrix to a power is A^k. Notice that the
command does not have the dot in front. A.^k means the array operation which
raises each element of A to the kth power.

Given an n×n matrix A and an n column vector b, the linear system Ax = b

can be solved in several ways. The simplest way is to use the following method.

>> A = [1 2 3; 4 5 6; 6 7 9];

>> b = [1 0 1]’;

>> x = A\b;

x =

-0.0000

-2.0000

1.6667

10 Chapter 1 Basic MATLAB: The command line

The key command is A\b. MATLAB uses the method of Gaussian elimination
with partial pivoting to solve linear systems.

1.5 MATLAB functions

MATLAB basically has two kinds of functions, numerical functions and sym-
bolic expressions of functions. A numerical function is really a short program that
operates on numbers to produce numbers. A symbolic expression of a function

operates on symbolic variables to produce symbolic results. These symbolic ex-
pressions can be manipulated with operations like differentiation and integration.
We shall discuss symbolic expressions of functions in the next section.

MATLAB has the usual built in numerical functions such as sin x, cos x, tanx,
exp x, log x,

√
x, etc. These functions can take matrices as arguments, in which

case the function is applied to each element of the matrix. We say that such a
function is array-smart. For example, the cosine function can be applied to a
matrix:

>> T = [2 3 pi; 8 pi/2 1];

>> cos(T)

ans =

-0.4161 -0.9900 -1.0000

-0.1455 0.0000 0.5403

>> sqrt(A)

ans =

1.0000 1.4142 1.7321

2.0000 2.2361 2.4495

In addition many other specialized functions are available. These include the
error function, called by erf(x), and Bessel functions of all orders. There are also
functions of linear algebra which find information about matrices, such as eig(A)
which finds the eigenvalues of a matrix A.

Nevertheless, we will often need to build our own numerical functions of one,
two, or three variables. In this section we shall only consider functions of one
variable. Functions of several variables will be discussed in a later chapter.

Prior to version 5.0 of MATLAB numerical functions could only be constructed
in separate files called mfiles. This way of constructing functions will be covered
in Chapter 2.

Now with versions 5.0 and higher, there is an easy way of constructing a
numerical function on the command line. This kind of numerical function is
called an inline function. Here is a simple example.

Chapter 1 Basic MATLAB: The command line 11

>> f = inline(’x^3 +x -1’)

To evaluate f(x) = x3 + x− 1 at x = 2, enter f(2). If we wish the function to be
array-smart, we must write

>> f = inline(’x.^3 +x -1’)

Here we have used the symbol .^ for the array operation. Functions created this
way can accept vectors and matrices as arguments. The function will be applied
to each element of the vector or matrix. For example, if the matrix A is given by

A =

1 2 3

4 5 6

then,

>> B = f(A)

B = 1 9 29

67 129 221

We shall need our numerical functions to be array-smart to do many compu-
tations, and for the purposes of graphing.

One of the most common mistakes of beginners is to forget to make

their numerical functions array-smart by inserting the dot before the

operations *, /, and ^.

Unfortunately, we cannot add or multiply inline functions to produce a new
function. If we define the inline function g by the command

>> g = inline(’cos(x) + x’)

we cannot use the command

>> h = f+g

to produce the function f + g. Instead we must define a new inline function

>> h = inline(’x.^3 + 2*x - 1 + cos(x)’)

1.6 Symbolic calculations

Up to this point, we have been using MATLAB on your computer as a large,
sophisticated calculator. For example, if we enter a matrix A of numbers, we

12 Chapter 1 Basic MATLAB: The command line

can find its determinant as a number. We have also created numerical functions.
However, MATLAB also has the capability to manipulate expressions symboli-
cally. There are tools to perform algebraic operations, differentiate and integrate
functions, solve systems of equations, and solve ordinary differential equations.
These tools come from the software program Maple developed at the University
of Waterloo, Canada.

Creating symbolic expressions

Variables x, y, z, a, b, c, etc. can be declared symbolic variables with the com-
mand

>> syms x y z a b c

This command is a short cut for the more elaborate command sym(’x’, ’y’,

’z’, ’a’, ’b’, ’c’), or even more deliberately, x = sym(’x’),

y = sym(’y’), We can then define expressions using these variables and
these expressions can be manipulated symbolically. For example a matrix A can
be defined by

>> A = [a b 1; 0 1 c; x 0 0]

A =

[a, b, 1]

[0, 1, c]

[x, 0, 0]

Since A is a symbolic expression, we can calculate its determinant in terms of the
variables a, b, c, x with the usual MATLAB command

>> d = det(A)

d = x*(b*c-1)

Functions defined symbolically

A function f(x) can be defined in terms of a symbolic expression by this kind
of command.

>> f = a*x^2 + b*x +c + 2*cos(x)

Notice that we do not use the array operations .^, .*, ./ in symbolic ex-
pressions because symbolic expressions are not applied directly to vectors and
matrices.

The symbolic expression for this function cannot be evaluated with the simple
command f(2). We will need another set of commands which are explained a bit
further on.

Now we can differentiate this symbolic expression with the command (and
output)

Chapter 1 Basic MATLAB: The command line 13

>> diff(f)

ans = 2*a*x+b-2*sin(x)

MATLAB differentiates with respect to the variable closest to x in the alphabet.
If we wish to differentiate f with respect to the variable a, we must specify that in
the command: diff(f,a). If we wish to make further operations on the derivative
we can give it a name, which will be the name for another symbolic expression:

>> fprime = diff(f)

fprime = 2*a*x+b-2*sin(x)

The second derivative can be computed by differentiating the expression fprime,
or by using a variation on the diff operation,

>> diff(f,2)

>> 2*a-2*cos(x)

Higher derivatives are calculated with diff(f,3), diff(f,4), etc.
We can also find the antiderivative of functions defined symbolically. For

example, using the same function defined above, we have

>> int(f)

ans =

1/3*a*x^3 + 1/2*b*x^2 +c*x +2*sin(x)

This operation provides us with an indefinite integral, to which we may add any
constant. To compute the definite integral, over say [0, 3], we use the command

>> int(f,0,3)

ans =

9*a +9/2*b +c*c+2*sin(3)

Here we assumed that we wanted to integrate the expression with respect to the
variable x. If instead, we wanted to consider a as the variable of integration, we
must specify that, with the command

int(f,a)

ans =

1/2*a^2*x^2 +b*x*a +c*a+2*cos(x)*a

Many other variations are possible. To see them enter help sym/int.m

Evaluating symbolic expressions

Next, how do we specify the values of the parameters in the expression, and
how do we evaluate the symbolically defined function at a point? This is done

14 Chapter 1 Basic MATLAB: The command line

using the substitution command subs. The syntax is subs(f,old,new) where
the old values of the parameters and variables are replaced by new values.

For example, if we wish to evaluate the function f defined above at x = 2,
leaving in the parameters a, b, c, we enter

>> subs(f,x,2)

ans =

9*a+3*b+c+2*cos(3)

The result is still a symbolic expression. If we wish to specify the values of the
parameters, say a = 2, b = −3, c = 9, we do it this way:

>> g = subs(f, [a b c], [2 -3 9])

g =

2*x^2-3*x+9+2*cos(x)

Now we have a symbolic expression depending on the one variable x. To eval-
uate this function at a particular point, say x = −1.5, we can make another
substitution subs(g,x,-1.5) with the answer of 18 + 2*cos(3/2). The result
is still a symbolic quantity. If we wish to convert it to a floating point num-
ber in double precision, we use double(18 + 2*cos(3/2)), or in one command
as double(subs(g,x,-1.5)). Again, many variations are possible. For further
information, enter help sym/subs.m.

In Chapter 13, we discuss how to convert symbolic expressions to inline func-
tions. This is important for graphing functions of several variables that arise in
symbolic computations.

Solving equations symbolically

MATLAB can also solve certain equations symbolically, in terms of parameters
in the equation. For example, to solve the equation ax2 + bx+ c = 0 we define the
symbolic variables x, a, b, c and the expression f = ax2 + bx + c with commands

>> syms x a b c

>> f = a*x^2+b*x+c

>> solve(f)

ans =

[1/2/a*(-b+(b^2-4*a*c)^(1/2))]

[1/2/a*(-b-(b^2-4*a*c)^(1/2))]

Of course, these are the two solutions of the quadratic formula. The command
solve assumes you want to solve the equation f(x) = 0.

Chapter 1 Basic MATLAB: The command line 15

For another example, consider the equation

ln(y) − ln(r − y) = kt + C.

To solve for y in terms of t, r, k and C, we can use the symbolic expression for
f = ln(y) − ln(r − y) − kt − C.

>> syms t y r k C

>> f = log(y) - log(r-y) - k*t - C

>> y = solve(f,y)

y =

r/(1+exp(k*t+C))*exp(k*t+C)

We can then find that value of t such that y = 5, in terms of the other parameters
r, k, C with the commands

>> solve(y-5,t)

ans =

-(-log(5/(r-5))+C)/k

We shall investigate how to solve systems of equations involving several vari-
ables in later chapters.

1.7 Two dimensional graphs

Graphing numerical functions

MATLAB has an excellent set of graphic tools. In this section we will only
touch on some of the most elementary ones. We begin with two dimensional
graphs. The basic MATLAB graphing procedure in two dimensions is to take
a vector of x coordinates, x = (x1, . . . , xN), and a vector of y coordinates, y =
(y1, . . . , yN), locate the points (xj, yj), and then join them by straight lines. The
command is plot(x,y). The vectors x = (1, 2, 3, 4, 5) and y = (−1, 2, 3, 1, 5)
plotted this way produce the picture shown in Figure 1.1.

>> x = [1 2 3 4 5];

>> y = [-1 2 3 1 5];

>> plot(x,y)

We graph a numerical function in the same way. For example, to graph the
function cos x on the interval [−π, π], we first create a vector of x coordinates.
Then we create a vector of y coordinates which are the values of cos x at these
points. Finally, the points are plotted and joined by straight lines.

16 Chapter 1 Basic MATLAB: The command line

1 1.5 2 2.5 3 3.5 4 4.5 5
−1

0

1

2

3

4

5

 x axis

 y
 a

xi
s

Figure 1: Plot x versus y for the vectors x = (1, 2, 3, 4, 5) and y = (−1, 2, 3, 1, 5).

>> x = linspace(-pi, pi, 51)

>> y = cos(x);

>> plot(x,y)

If the function f is defined as an inline function, we can graph it with the
command plot(x,f(x)). For example, if we want to plot f(x) = x3 + x − 1 on
the interval [1, 5], we use the commands

>> f = inline(’x.^3 + x -1’)

>> x = linspace(0,5, 101);

>> plot(x, f(x))

The color of a single curve, in MATLAB 5.0 or higher, is by default blue, but
other colors are possible. The desired color is indicated by a third argument which
is a character string. For example, red is selected by plot(x,y,’r’). Note the
single quotes around r. The color table is

y yellow
m magenta
c cyan
r red
g green
b blue
w white
k black

.

Chapter 1 Basic MATLAB: The command line 17

For a complete listing of the combinations of colors and symbols, enter help plot.
There are two ways that we can plot several curves on the same graph. Remem-

ber, a curve is determined by a pair of vectors x,y each with the same dimensions
n × 1 or 1 × n. Suppose there is another pair of vectors z,w with dimensions
m × 1 or 1 × m where m may differ from n. The first way to plot the two curves
on the same graph is with the command

>> plot(x,y,z,w)

In MATLAB4.2 the first curve will be in yellow, the second in magenta. In
MATLAB5.0 and higher, the colors will be blue and green.

Two functions f and g given as array-smart inline functions, can be plotted
on [−1, 4] together with exp(x) by the commands

>> x = -1:.1:4;

>> plot(x,f(x),x,g(x),x,exp(x))

The three curves will be in different colors.
The second way to plot several curves on the same graph uses the command

hold on.

>> plot(x,y)

>> hold on

>> plot(z,w)

>> hold off

Both curves will now be same color. The three functions f(x), g(x), and ex are
plotted together with these commands.

>> plot(x,f(x))

>> hold on

>> plot(x,g(x))

>> plot(x,exp(x))

>> hold off

The ezplot command

The command ezplot is used primarily to graph functions which are defined
symbolically. If f is defined by a symbolic expression and we wish to graph it on
the interval [1, 5], we can do it with the one command, ezplot(f, [1,5]). For
example

>> syms x

>> f = cos(x)^2*exp(x)

>> ezplot(f, [1,5])

18 Chapter 1 Basic MATLAB: The command line

This can be most useful after a symbolic calculation leads to a complicated ex-
pression. Using the function f(x) = (cos x)2 exp x, if we want to quickly graph
the second derivative of f , we could add the lines

>> g = diff(f,2)

>> ezplot(g, [1,5])

The ezplot command picks its own points for graphing, using more where the
function changes rapidly, and fewer where it changes more slowly.

In versions 5.2 and higher of MATLAB the ezplot feature has been extended
to graph curves given parametrically in two and three dimensions (with anima-
tion). It has also been extended to graph functions of two variables. We shall see
these new features as each topic is considered.

Further graphing features

Labels and a title can be attached to the graph with additional commands,
for example

>> xlabel(’ t, time after lift off,

in seconds ’)

>> ylabel(’ h, height above ground in meters ’)

>> title(’ vertical climb of rocket ’)

The axis command. When we use the command plot(x,y), MATLAB auto-
matically plots the curve on the rectangle [xmin, xmax] × [ymin, ymax]. If we wish
to change this scale, perhaps to expand a portion of the graph, and instead plot
on the rectangle [a, b] × [c, d], we follow the plot command with axis([a b c

d]). You can return the axis scaling to the automatic, default, mode with the
command axis(’auto’) (alternate form axis auto).

The zoom command. This is another way to enlarge a portion of the graph,
using the mouse. Enter the command zoom on. Then move the pointer to the
region of the graph you want to blow up. Click with the left mouse button. This
will enlarge the portion by a factor of two. Clicking again enlarges it again by
a factor of two. Clicking with the right mouse button has the opposite effect.
The command zoom out restores the original figure. zoom off turns off the zoom
feature.

1.8 Managing the workspace and getting help

Now that you can solve some equations and graph some functions, you will
find the following utility commands very useful.

Workspace commands

Chapter 1 Basic MATLAB: The command line 19

These commands allow you to find what you have in your workspace, and how
to clear out unneeded variables.

who lists variables currently in the workspace and their type.
clear clears the workspace; all variables are removed.
clear x y g removes only the variables x, y and the function (either inline or

symbolic) g.
clf clears the figure window.
close closes the figure window.

Getting information

Remember if you know the name of the command or feature, and want in-
formation about it, enter help command name. If you want to see the code of
this command displayed on the screen, enter type command name. For example,
the MATLAB feature fzero finds the zeros of a function of one variable. For
information on how to use it, we enter help fzero. To see the code, we enter
type fzero. To find where in the structure of directories fzero can be found, we
enter which fzero.

Some of the help files and codes are rather long, and they go by on the screen
very quickly. To see them one screen at a time, enter more on before entering any
of the query commands. When you are done, enter more off.

All this information is very accessible if you know the name of the command.
However, suppose you want to know if MATLAB has a command, or several
commands, that deal with a certain kind of problem. In this case we use the
command lookfor. For example, suppose we want to know if MATLAB has a
function that finds the largest element of a vector or matrix. We would enter
lookfor largest. The professional version yields the following listing.

>> lookfor largest

REALMAX Largest positive floating point number.

MAX Largest component.

NNFMC Find largest column vector in matrix.

When we enter help max we find

>> help max

MAX Largest component.

For vectors, MAX(X) is the largest element in X. For

matrices, MAX(X) is a row vector containing the maximum

20 Chapter 1 Basic MATLAB: The command line

element from each column. For N-D arrays, MAX(X) operates

along the first non-singleton dimension.

.

.

.

See also MIN, MEDIAN, MEAN, SORT.

Excerpt from A MATLAB Companion for Multivariable Calculus by Jeffery

Cooper, copyright Harcourt/Academic Press, 2001.

2. Beyond the Command Line

We discuss how to create and edit files in MATLAB. This is followed by a
description of function mfiles and script mfiles. We finish the chapter with in-
structions on how to save work, print out figures, and prepare documents.

2.1 Creating and editing files in MATLAB

Working in MATLAB from the command line is virtually independent of the
type of machine you are using. The different versions of MATLAB for PC, Mac,
and Unix machines are adapted to run the same way on each of these platforms.
However, when we venture beyond the command line, there are differences. We
shall need to create and edit files, called mfiles, to

(i) create and save more complicated functions;
(ii) write and record longer sequences of commands.

PC’s and Macs

On PC’s and Mac’s, MATLAB provides its own editor. In the upper left
corner of the command window, click on the word “File”. This opens the “File”
menu. To write a new mfile, click on the line “New”. This will bring up another
window which is the MATLAB Editor/Debugger. After writing your file, usually
a sequence of MATLAB commands, open the “File” menu of the Editor/Debugger
window. Then you can name your file and save it with the “Save as” command.
Usually, this will save your file in the current working directory and MATLAB
will be able to find it when you call for it from the command line. However, if
you are working on a shared system, there may be different arrangements and you
must check with the system manager.

After you have saved your file, do not close the Editor/Debugger window. All
too often, there is an error in the sequence of commands and you must return to
the file to change it. With the file still in the Editor/Debugger window, you can
make changes. However, these changes will not be recorded until you again go to
the “File”menu of the Editor/Debugger window, and click on “Save”.

Unix machines

Prior to version 5.2, Unix versions of MATLAB do not provide their own
editor. In this case you must use your choice of Unix editor, such as vi, emacs
or pico, in a separate window into the same working directory. It is possible to

21

22 Chapter 2 Basic MATLAB: mfiles

work from the MATLAB command window by entering the command !vi [file

name]. In this case, MATLAB turns over control to the local system until you
have finished editing the file.

With versions 5.2 and higher of MATLAB the command edit brings up the
Editor/Debugger window, and you can use it as if you were working on a PC.

Now you may be impatiently asking, what kind of files will we be writing?

2.2 Mfiles

Mfiles are a very convenient, flexible way of collecting sequences of commands
that may be lengthy or tedious to type over and over again. Mfiles may be saved
to be used at another time. There are two kinds of mfiles: function mfiles and
script mfiles. The names of mfiles always have the extension .m.

Function mfiles

Function mfiles are mostly used to write numerical functions whose expression
is long or complicated and which we want to save for future use.

Suppose we need to compute the values of the function

f(x) = x exp(− sin x)/(1 + x2).

We can create a function mfile, called f.m, so that to evaluate f at x = 2, we need
only enter f(2) on the command line. The mfile is a file that should be placed in
the same directory where you are using MATLAB. Here is what the mfile looks
like. Function mfiles always begin with a function statement.

function y = f(x)

y = x*exp(-sin(x))/(1+x^2);

Written this way, the function can only take scalars for x. However, if we write it
using the symbols for the array operations, like this,

function y = f(x)

y = x.*exp(-sin(x))./(1+x.^2);

the function is now array-smart and can be used on vectors and matrices. Notice,
in the denominator we are adding the scalar 1 to the vector x.^2 to produce
another vector, which then divides in array fashion the factor x.*exp(-sin(x)) .

Functions which are defined piecewise may also be constructed in an array-
smart fashion. Consider the example

f(x) =











x x < 0
x2 0 ≤ x < 2
4 x ≥ 2

.

Chapter2 Basic MATLAB: mfiles 23

The building blocks for this kind of function are the characteristic functions for
intervals of the form (−∞, a) and (a,∞). For example, the characteristic function
for (−∞, a) is c(x) = 1 for x < a and c(x) = 0 for x ≥ a. We use the MATLAB
logical expression (x < a). When applied to a scalar x, this function returns a
1 if the inequality is true, and a 0 if it is false. When applied to an n vector
x = (x1, . . . , xn), the logical function (x < a) returns an n vector of 0’s and
1’s, with a 1 whenever the inequality if true and a 0 whenever it is false. The
logical functions (x >a) and (x <=a) work in the same way. An mfile for the
characteristic function of the interval (−∞, 3) would be

function y = c(x)

y = (x < 3);

Check that c(x) = 1 for x < 3 and c(x) = 0 for x ≥ 3. Now we make an mfile for
f which is array-smart as follows:

function y = f(x)

y1 = x.*(x < 0);

y2 = x.^2.*((x < 2) - (x < 0));

y3 = 4*(1 - (x < 2));

y = y1 + y2 + y3;

Finally, we note that the variables used in the mfile to define the function are
“dummy” variables. One can use any variable names to call the function. For
example, for the function f defined above, we can use the statements

s = -2:.1:4;

r = f(s);

The first command defines the vector s with 61 components, and the second
command computes another vector r with ri = f(si) for i = 1, . . . , 61.

Summary of function construction

We have now seen three ways to create functions with MATLAB.
Numerical functions are constructed using inline functions (Section 1.5) and

function mfiles (this section).
Symbolic expressions for function are constructed, and manipulated, using the

symbolic operations described in Section 1.6.

Graphing

The command plot works with numerical functions defined in mfiles exactly
the same way it works with inline functions, e.g. plot(x,f(x)) graphs the func-
tion given by the mfile f.m.

24 Chapter 2 Basic MATLAB: mfiles

However, the command ezplot uses a slightly different call. Remember for a
function given as an inline function, or defined symbolically, the call is
ezplot(f,1,3). When the function is given in an mfile f.m, the call is
ezplot(’f’, 1,3). Note the single quotes. We shall see this difference often.

ezplot is an example of a function mfile which can operate on other functions.
These function mfiles have the name of a function as an argument in the call.
When the function is given as an inline function, the name of the function is f or
g, etc. When the function is given in an mfile, the name of the function is ’f’ or
’g’, etc. We give two more examples of this type of function mfile in section 2.3.

2.3 Function functions

MATLAB has a number of routines that operate on functions, called function

functions. These are function mfiles that generally have function names as well
as variables as arguments. We give only a couple of examples that we shall use
later.

The root finder fzero finds numerical estimates of the roots of an equation
f(x) = 0. First we define f in an mfile, or as an inline function. If f is continuous
and changes sign in the interval [x0, x1], then there must be a root x∗ of f(x) = 0
in this interval. When f is defined as an inline function, we can get a numerical
estimate of the root with the call root = fzero(f, [x0, x1]) . If f is defined
in an mfile, the call is root = fzero(’f’, [x0, x1]). Note that in the latter
case, we use single quotes around f.

Example 2.1

The function f(x) = sin x− x/2 changes sign in the interval [1, 3]. To find the
root of f(x) = 0 in this interval we use the following commands:

>> f = inline(’sin(x) - x/2’)

>> root = fzero(f, [1,3])

root = 1.8955

There are many options that can be used with fzero. The function function
fzero is discussed further in Chapter 7. See also the on line help.

A second important routine that we shall use is a numerical integrator. If f(x)
is given on the interval [a, b], the call quad8(f,a,b) makes a numerical estimate of
∫ b
a f(x)dx. Again, when f is defined in an mfile, we must use single quotes in the

call. We shall discuss this numerical integrator more in Chapter 9. Information
is available on line with help quad8.

2.4 Script mfiles

Chapter2 Basic MATLAB: mfiles 25

Script mfiles are used to collect a sequence of commands that constitute a
program. When we enter the name of the script mfile on the command line, the
program will be executed. Here are two examples.

Example 2.2

Suppose that we wish to plot the functions fn(x) = xn exp(−nx) on the interval
[0, 20] for n = 1, . . . , 10 on the same graph. We could do this by using the plot

command and hold on over and over again on the command line. However a
better way, which allows us to reproduce the graphs any time, is to write a short
program, call it graphs.m, which performs this sequence of repeated operations.
We shall use the notion of a for loop. Here is the script.

x = 0:.1:20;

for n = 1:10

plot(x, x.^n.*exp(-n*x))

hold on

end

hold off

The command end is needed to close the loop. To run this script, enter the
command graphs on the command line. Do not enter the command graphs.m.

Example 2.3

In this example, we shall use the root finder fzero to find the four roots of
the equation f(x) = e−x − sin(x) = 0 that lie in the interval [0, 10]. Here is a
script that allows us to enter estimates for the four roots at run time, and then
calculates the roots.

f = inline(’exp(x) - sin(x)’)

x = linspace(0, 10, 101);

plot(x, f(x), x, 0*x, ’g’)

est = input(’enter the 4 estimates

as a four vector [*,*,*,*] ’)

for n = 1:4

root = fzero(f, est(n))

end

In plotting the graph, we also plotted the function identically equal to zero. This
puts an x axis in green in the figure and makes it easier to see where the roots
are located. After plotting the graph, the program waits for the user to enter four
numbers in the form of a vector [a, b, c, d].

Entering Comments

26 Chapter 2 Basic MATLAB: mfiles

In a function mfile or a script mfile which involves several steps, it is very
helpful for you, or for another reader, to identify the steps with comment lines. A
comment line begins with the percent sign,%. When a script or function mfile is
executed, the comment lines are ignored. For an example of the use of comment
lines, see the script mfile myexp.m in section 2.5.

Workspace An important difference between script mfiles and function mfiles is
in the way
the workspace is used. In a script mfile, all definitions of variables and calculations
are made in a workspace which is accessible from the command line. In Example
2.3, the vector x can be viewed immediately after running the script simply by
entering x on the command line.

By contrast, in a function mfile, the variables are not accessible from the
command line. A function mfile has its own work space independent from the
command line workspace. This arrangement allows one to use variable names in
a function mfile that are the same as in other function mfiles with no question
of confusion. For example, practically every function mfile using functions of one
variable calls that variable x.

2.5 MATLAB documents

Saving your work

You may have to stop a MATLAB session before you have finished a project
and you would like to keep the work you have done so far. The mfiles will be kept
in your directory for your future use. But there may be expressions created on
the command line that you wish to keep. This can be done with the command
save. For example, suppose you have entered some large matrices A,B,C and a
symbolic expression f = a*x^2 + b*x +c in the course of a computation. In the
next session, you do not wish to reenter these matrices or to retype the symbolic
expressions. Instead you can save them to a file, e.g. hotstuff, with the command
save hotstuff. This will save the values of all the variables you have used.
If you only want to save the values of A,B,C, we can refine the command to
save hotstuff A B C. At your next session, to retrieve these variables, use the
command load hotstuff.

Saving figures

To save a figure so that you can do further work on it, put the commands
that generated the figure in an mfile, e.g., fig1.m. When you enter fig1 on the
command line, the figure will be generated.

To print out a figure, click on the ”file” button on the upper left of the figure
window and select print. You can also type print on the command line. This

Chapter2 Basic MATLAB: mfiles 27

should print out the figure if you are working on a stand-alone machine connected
to a printer. If you are working in a network of machines, you may need additional
instructions. Ask your system manager for help.

To prepare a figure to be included in another document, give the figure a name,
e.g., Fig1, and use the command print -deps Fig1. This will save the figure in
the form of a Encapsulated Postscript file, Fig1.eps, that should be stored in your
current working directory. The figure can also be printed out if your machine or
system can print out postscript files. For a list of printing options, enter help

print.

Preparing MATLAB documents

It is important to be able to present your MATLAB work in a well organized,
readable manner. Here are some instructions to help you do this. We illustrate
with an example. Suppose problem 1 in some assignment asks you to sum the
power series for ex with 5 terms, compare with the MATLAB function exp(x),
and plot the results on the interval [−2, 2]. This would be done with a script
mfile, which we shall call myexp.m. It would consist of the following sequence of
commands.

% define the vector of points where the function is to be

% computed and plotted.

x = -2:.2:2;

% the first term in the approx. is set equal to 1.

term = ones(size(x));

y = term;

% add up the terms and store the result in the vector y

for n = 1:4

term = term.*(x/n);

y = y + term;

end

% display the results as column vectors

[x’, y’, exp(x)’, (y-exp(x))’]

maxerror = max(abs(y - exp(x)))

plot(x,y,x,exp(x), ’--’)

Now when you enter the command myexp, you will produce four columns of num-
bers on the screen, the number “maxerror” on the screen, and a graph in a figure
window. To record this program to be turned in, together with the output, we use

28 Chapter 2 Basic MATLAB: mfiles

the diary commands. The command diary file name prepares all the following
output, together with any keyboard commands, to be put in a text file that can be
edited. The command diary off after running the program will actually write
into the file. In our case, we would enter the commands

>> diary problem1

>> myexp

>> diary off

The file problem1 contains the numerical screen output, but not the graph. It
looks like this.

>> myexp

ans =

-2.0000 0.3333 0.1353 0.1980

-1.8000 0.2854 0.1653 0.1201

-1.6000 0.2704 0.2019 0.0685

. . . .

. . . .

. . . .

1.6000 4.8357 4.9530 -0.1173

1.8000 5.8294 6.0496 -0.2202

2.0000 7.0000 7.3891 -0.3891

maxerror =

0.3891

>> diary off

Notice that the commands of the program itself are not put into the file problem1.
To include the program commands as well, use the command type in the sequence

>> diary problem1

>> type myexp

>> myexp

>> diary off

The command type reproduces the code of any MATLAB mfile on the screen.
By editing the file problem1, it is now possible to add labels at the tops of the

columns, and to add interpretive comments about the results of the calculations.
Comments about the graphs can also be added here, with reference to Figure 1,

Chapter2 Basic MATLAB: mfiles 29

Figure 2, etc. Here is the file problem1, after editing, with the program inserted
at the beginning, and a second page for the graph.

Problem 1

This is the program "myexp" used to compute a 5 term

approximation to the exponential function on the interval [-2,2].

x = -2:.2: 2;

term = ones(size(x));

y = term;

for n = 1:4

term = term.*(x/n);

y = y+term;

end

[x’, y’, exp(x)’, (y-exp(x))’]

maxerror = max(abs(y-exp(x)))

plot(x,y,x,exp(x), ’--’)

title(’Figure 1. 5 term approx,

and true exp(x) (dashed line)’)

The values of the approximation are put in the vector y, and

compared with the MATLAB exponential. Here are the results.

x y exp(x) error = y - exp(x)

-2.0000 0.3333 0.1353 0.1980

-1.8000 0.2854 0.1653 0.1201

-1.6000 0.2704 0.2019 0.0685

. . . .

. . . .

. . . .

1.6000 4.8357 4.9530 -0.1173

1.8000 5.8294 6.0496 -0.2202

2.0000 7.0000 7.3891 -0.3891

maxerror =

0.3891

Comments: As we can see from Figure 1 (attached), the

5 term approximation does quite well in the interval [-1, 1].

30 Chapter 2 Basic MATLAB: mfiles

In fact, from the table, we can see the maximum error over

this interval is .0099.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

1

2

3

4

5

6

7

8
Figure 1. 5 term approx, and true exp(x) (dashed line)

Figure 2: Figure produced by the script mfile myexp.

The diary command in Windows

If you are working on a PC with Windows (is there anything else?), put the
diary into a file with the extension txt. For example

diary myexp.txt

A file with the extension txt can be immediately viewed and edited with the
Notepad editor.

