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FROM A WAVELET AUDITORY MODEL TO
DEFINITIONS OF THE FOURIER TRANSFORM

JOHN J. BENEDETTO

ABSTRACT. A wavelet auditory model (WAM) is formulated. The implementation of WAM
for speech compression depends on an irregular sampling theorem and an analysis of time-scale
data. The time-scale plane for WAM is analogous to Gabor’s dissection of the information
plane by means of the uncertainty principle inequality. Generalizations of this inequality lead
to other dissections of the information plane; and their proofs depend on weighted Fourier
transform norm inequalities. These inequalities give rise to definitions of the Fourier transform
on weighted Lebesgue spaces; the definitions are sometimes necessarily different than the usual
one because of the behavior of the weights.
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1. INTRODUCTION

We shall take an excursion back to the future. Our starting point is an important
problem in speech data compression. Because of the success of the human auditory system,
we have formulated an auditory model based on previously studied auditory models along
with new components related to signal reconstruction, nonlinearities, and filter design. -
The compression algorithm we develop involves a hands-on irregular sampling formula
8.{1('1 trade-off issues related to the uncertainty principle. The concomitant problems are
difficult; and, for the sake of simplicity and structure, we shall raise the level of abstraction

and .ultimately deal with fairly sophisticated questions concerning the definition of the
Fourier transform.
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Our auditory model is really a wavelet auditory model (WAM). Its design and im-
plementation is the subject of Section 2. Section 3 is our brief transition from difficult
applications with WAM to the essential notions of sampling and uncertainty implicit in
these applications and that we shall discuss mathematically in the remaining sections.
Thus, the irregular sampling component of WAM motivates us to formulate a rather gen-
eral irregular sampling formula in Section 4. In Section 5 we analyze the mathematical
structure of uncertainty principle inequalities, and describe a weighted uncertainty rela-
tionship, where ultimately the weights can be thought of as filters. In the process, we see
the role of weighted Fourier transform norm inequalities for establishing uncertainty prin-
ciple inequalities. Finally, in Section 6, these weighted Fourier transform norm inequalities
lead us to some subtle questions about the definition of the Fourier transform. Our answer
to these questions about the venerable, classical workaday Fourier transform depend on
modern methods and recent ideas in harmonic analysis.

2. WAVELET AUDITORY MODEL

We shall use a model of the human auditory system and give a mathematical description
of it. OQur goal is to deal with compression problems in a new and effective way.

2.1. Setting. In the auditory system an acoustic signal f produces a pattern of dis-
placements W of the basilar membrane at different locations for different frequencies.
Displacements for high frequencies occur at the basal end; and for low frequencies they oc-
cur at the wider apical end inside the spiral, e.g., [G]. The signal f causes a traveling wave
on the basilar membrane; and the basilar membrane records frequency responses between
200 and 20,000 Hz. (Telephone speech bandwidth deals with the range 300-4000 Hz., and
modern speech research deals with the range 300-10,000 Hz.) The cochlea analyzes sound
in terms of these traveling waves much like a parallel bank of filters — in this case a band
with 30,000 channels. The impulse responses of these filters along the length of the cochlea
are related by dilation. Consequently, their transfer functions are invariant except for a
frequency translation along the approximately logarithmic axis of the cochlea, e.g., [S1].
The time-frequency information contained in the displacements has the form

(2.1) W(t,s) = (f * D,g)(t), teR,s >0,

where D,g(t) = s'/2g(st). W is the continuous wavelet transform of f, where g is the
impulse response for a “cochlear” filter. The Fourier transform of f is defined as

fn= [ 1w a,
where integration is over R, and v € R(= R). Clearly,

(D:9)*(7) = D,-1§(7).

The shape of § is critical for the effectiveness of the auditory model. Generally, g

should be a causal filter and § should be “shark-fin” shaped, e.g., [B1], [BT2]. The design
problems for such filters are dealt with in [BT1].
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The displacements W of (2.1) are the output of the cochlear filter bank {(D,¢)"}. In
the case of properly designed filters, the high frequency edges of the cochlear filters act as
abrupt "scale” delimiters. Thus, a sinusoidal stimulus will propogate up to the appropriate
scale and die out beyond it. The auditory system does not receive the wavelet transform
directly, but, rather, a substantially modified version of it. In fact, in the next step of the
human auditory process, the output of each cochlear filter is effectively high-passed by the
velocity coupling between the cochlear membrane and the cilia of the hair cell transducers
that initiate the electrical nervous activity by a shearing action on the tectorial membrane.
Thus, the mechanical motion of the basilar membrane is converted to a receptor potential
in the inner hair cells. It is reasonable to approximate this stage by a time derivative,
obtaining the output 3, W. Because of the structure of the cochlear filter bank, we choose
si=a* kel fora given a > 1. The extrema of the wavelet transform W(t,sr) become
the zero-crossings of the new function 8;W; and the output of auditory process at this
stage is

Vkel, Zi={t(n;sk): 0:W(t(n;sk),sk)=0}.

Next, instantaneous sigmoidal non-linearities are applied, e.g., [B1], [MY], [S2]; but for
the present discussion of compression it is not essential to analyze them, although they
involve some inherently interesting mathematical problems when dealing with representa-
tion.

The human auditory nerve patterns determined by W,8W, and Z; are now processed
by the brain in ways that are not completely understood. One processing model, the
lateral inhibitory network (LIN), has been closely studied with a view to extracting the
spectral pattern of the acoustic stimulus [MY], [YWS]; and we shall implement it in our
algorithm. Scientifically, it reasonably reflects proximate frequency channel behavior, and
mathematically it is realtively simple.

For a given acoustic signal f, constant a > 1, and properly designed causal filter g, we
generate Z; and the set

(2.2) {0:0:W (t(n; si), sk) : t(n; si) € I}
for each k € Z. The scaling partial 8, reflects LIN, e.g., [B1].

2.2. The WAM problem and solution. Let g be a properly designed finite energy
causal filter and let @ > 1. Suppose an unknown acoustic signal f has generated the set
(2.2), and that the receiver has knowledge of (2.2) or of some subset. WAM designates
“wavelet auditory model” and (2.2) is WAM data. Since WAM data is an irregular array
in the t — s plane it is natural for the receiver to reconstruct f by irregular sampling
formulas. This is our WAM problem; and our proposed solution was made in [B1] by
means of irregular sampling formulas we developed wilth Heller, e.g., [BH), [B2]. The fact
that the problem can be solved theoretically by means of such formulas leaves open the
problem of effective implementation. Thus, we want to solve the WAM problem at the
practical level of reconstructing real speech data by means of WAM data or “compressed”
subsets of WAM data. We now sketch this latter solution at a technical level between the
original theoretical program and the actual computer implementation, e.g., [BT1], [BT2).
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2.3. Discretization. WAM data (2.2) can be approximated by a factor or normalization
of

(2.3) O W (t(n; si), sk41) — O W (t(n; 81), 81 );

and the second derivative in (2.3) vanishes since ¢(n;sx) € Z;. Thus, we can approximate
and calculate as follows:

8,8, W (t(n; sk), sk) = O W (t(n; s8), 8k41)
(24) = 0u(f * Dsuy19)(E(n; 8)) = (f * 81 D4, 4, 9)(8(n; 5k))
= (f’ _Tt(n;ag)(atDu.;.;g))y
where (... ,...) is the usual inner product in a Hilbert space H considered as a subspace
of L?(R), and where § is the involution of g.

2.4. Frame decompositions. Because of the WAM problem and the form of WAM
data, the calculation (2.4) prompts us to consider frame properties of the functions

¢m,n(t) = Tt(n,am)(atDSm-Hg)(t)’

where m € Z, and for each m there are generally countably many n. In fact, it is reasonable
to take H as a Paley-Wiener space

PWq = {f € L*(R) : supp f C [-0,9]},

which guarantees at most countably many n for each m. We refer to [D], [HW], [B2] for
the theory of frames.

An easy calculation shows that
(25) ¢m,n(t) = 3m+1Dam+1 Tin(aig)(t))

where t, = #(njsm). It is natural to ask to what extent 85 is a “wavelet”. In fact, the
vanishing moment property,

/ Big(t)dt = 0,

which is critical for wavelets ¢, e.g., [Me), is valid if §,0:§ € L*(R), and 8,9 exists every-
where, e.g., [B3, page 151].

As far as calculating whether the translates and dilates {¥m,n} form a wavelet frame,
we calculate

(2.6) D bmnd? =30 N 21 l(Dam s AR e, )P,

m,n
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where e,(7) = ™7, It is important to note, and a priori not good information vis a vis
decompositions for large spaces, that {¢(n; sm)} is dependent on f. On the other hand, our
goal is only to reconstruct f. In any case, we assume that

(27) {C—t(n;cm) : n}

is a frame for H with frame bounds A, and By, for each fixed m € Z. Because of (2.6),
we see that {t);m n} is a frame for H if there are constants A and B so that

A< EAms::nqng.;&_‘(ag)A(’\)lz a.e.

and

Y BrstuialD,, (00 VP < B ace.

There are interesting mathematical questions to be answered centering around frame prop-

erties of (2.7) and estimating constants Am and By, cf., the more thorough calculation in
[BT1).

2.5. Iterative reconstruction method. We suppose {tm n} is a frame for H with
frame bounds A and B, and we define the topological isomorphism S : H — H as Sk =

2(h,¥m,n)¥m n, recalling that {);m ,} depends on f as well as the known filter g and
constant a > 1.

We define the Bessel map L : £2(Z%) — H as Lh = {(h,%m »)}, noting that S = L*L,
where L* is the adjoint of L.

It is well-known that if ||[Id — AS|| < 1 then

(2.8) h= f:(zd — AS)E(AS)A.

k=0
We can take A = 2/(A + B) since

B-A

2
JId—-—% _gq<c2=-4
I Sl 38 <

A1B 1.

An induction argument shows that

(2.9) A L*(Id— ALL*)*Lh = A > (Id = AL*L)*L*Lh.
k=0 k=0

Combining (2.8) and (2.9) we have

(2.10) h=AL* (i(]d - ,\LL*)") Lh.

k=0
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Now recall that for the WAM problem, being given WAM data (2.2) is equivalent to
knowing Lf. As such we set up the following iterative scheme to compute f when we are
given Lf.

Set fo =0and ¢ = Lf. Define h, = L*cp,cn41 = ¢pn — ALh,, and fo41 = fa+ hn. An
induction argument shows that

(2.11) Vn, fapr=1L" (z":(m - ALL*)*)co.

k=0

The right side of (2.11) is computable, and because of (2.10), we know that lim Af, = f.
Thus, fa41 in (2.11) is an approximation of f; and we have solved the WAM problem
at this level of implementation. These methods are fully developed in [BT1], [BT2], and
we have made applications to compression and signal identification (of signals in noise)
problems in these references.

3. WAM: SAMPLING AND UNCERTAINTY

The approximation (2.11) is really an irregular sampling formula, and it is natural to
seek effective irregular sampling formulas for other applications besides WAM. Thus, we
are lead to establishing a theory of irregular sampling.

Implementation of our sampling formulas can only be applicable if various trade-offs
can be successfully made. The trade-offs with which we are dealing in WAM concern
thresholding for compression problems, the size of the dilation constant a, and the band-
width and complexity of the filter g, e.g., [BT1], [BT2]. Such trade-offs are the germ of
the uncertainty principle; and we are lead to establishing a theory of uncertainty principle
inequalities.

At a computational level, there is also a relationship between sampling and uncertainty
intertwined in computing W. In this case, f and g must be sampled in such a way that
W can be computed with accuracy and speed. Accuracy is a function of proper sampling
and “robust” decomposition formulas. Requirements of speed can deter from accuracy
analogous to the model of the classical uncertainty principle inequality in terms of position
and momentum. This relationship between sampling and uncertainty is the subject of
[B2], which in turn was inspired by profound insights on the sub ject by Gabor [Ga).

4. SAMPLING

We begin by stating the classical sampling theorem:
4.1. Theorem. Let T,Q > 0 be constants for which 2T < 1. Then

B sin 27Q(t — nT
Vi€ FWa, f=T) SN =7 5

where the convergence is uniform on R and in L2(R).



WAVELET AUDITORY MODEL 7

4.2. Definition. Let {t, : n € Z} C R be a strictly increasing sequence for which
limy 400 tn = +00, and for which

4.1 3d >0 suchthat VYm#n,lt, —t,| > d

Sequences satisfying (4.1) are uniformly discrete. A uniformly discrete sequence {t,} is
uniformly dense with uniform density A > 0 if

3L >0 suchthat VYneZ,|t, - %| <L

A central result for the modern theory of irregular sampling is the remarkable Duffin-
Schaeffer theorem [DS]. :

4.3. Theorem. Let {t, : n € Z} C R be a uniformly dense sequence with uniform density
A. If 0 < 2Q < A then {e—¢,(7)} is a frame for L?[-Q, Q).

After 40 years, Theorem 4.3 is still difficult to prove. Among other notions and esti-
mates, its proof involves fundamental properties of entire functions of exponential type
associated with the work of Plancherel-Pélya and Boas.

Using the Duffin-Schaeffer theorem (Theorem 4.3) for one direction, Jaffard [J] has
provided the following characterization of frames {e_;,} for L?[-Q, ().

4.4. Theorem. Let {t,} C R be a strictly increasing sequence for which imp_,4o0 tp =
to0, and let I C R denote an interval.
a. The following two assertions are equivalent:
1. There is I C R for which {e_,,} is a frame for L2(I);
ii. The sequence {t,} is a disjoint union of a uniformly dense sequence with
uniform density A and a finite number of uniformly discrete sequences.

b. In the case assertion ii of part a holds, then {e_,, } is a frame for L2 (I) for each
I C R for which |I| < A.

The following general irregular sampling formula originated in [BH].

4.5. Theorem. Suppose @ > 0 and Q; > §, and let {tn} € R be a strictly increasing
sequence for which limy,— 40 t, = £00. Assume the sequence {t,} is a disjoint union of a
uniformly dense sequence with uniform density A > 2Q, and a finite number of uniformly
discrete sequences. Let s € L?(R) have the properties that § € L>(R), supps C [—€4, ],
and § =1 on [-9,9)].

a. The sequence {e_.,} is a frame for L2 [—Q1, Q1] with frame operator S.
b. Each f € PWy has the representation

f= ZCIITL]T;"S in L*(R),
where

csln] = (S7Y(f 1(,)); €=, )[-02, 0]
and

{esln]) € 2@).
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Proof. Part a is a restatement of Theorem 4.4. R
For part b, since {e—_y, } is a frame for L?[~;,,;] and supp f C [-Q, ], we have

(4.2) f=F1a)=D_(5""(FLay) e-t)-ar0je—ta in L2[—, ).

Equation (4.2) is a direct consequence of the frame decomposition form\.ﬂa, eg., B2,
Equation (2.3)], and the fact that S—!, being a positive operator, is self-adjoint. Using the
hypothesis, f € PWgq, we can rewrite (4.2) as

(4.3) . f=20f[ﬂ](f—t..1(nl)) in L*(R).

In fact,
) N
I1F =D eslnl(e—eaLian)liZ
-M
0 . N
= [ 1) =Y eslmle-tn ()P dy
L -M
N N
=If =) eslnle-tnl32-n, a4
-M

Next, we note that f = f3, and, hence,

N
I1f = erlnl(e—r, 3|2
-M
. N
= 1f5 =) eslnl(e-t.1(a,))sl2
-M

N
S ISIZMNF = erln)(e—en 1an)l2-
-M

Using this estimate, equation (4.3), and the hypotheses on s, we obtain
(4.4) : f= Zc,[n](e_;,j) in L%(R).

The proof is completed by taking the Fourier transform in equation (4.4). =

Theorem 4.5 is a sampling theorem in the conventional sense that the coefficients c;[n]
can be described in terms of values of f on the sampling set {¢,,}. However, because
a given sampling set is irregularly spaced in Theorem 4.5, we can not, in general, write

csln] = f(tn).
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5. UNCERTAINTY _
We begin by stating the classical uncertainty principle mequa.hty
5.1. Theorem. Let (ty,7) € R x R. Then

(5.1) VieSR), I3 S 4nli(t = to)fOl2lI(y = 1) (W),

and there is equality in (5.1) if and only if
f(t) = Ce2m't7oe—o(t-to)’

forC € C and s > 0.

The proof results from an elementary calculation involving integration by parts, Holder’s
inequality, and the Plancherel theorem, e.g., [B2]. There are weighted generalizations
of (5.1) and the main ingredients for their proofs are the same: integration by parts or
conceptually similar ideas such as generalizations of Hardy’s inequality, Holder’s inequality,
and weighted norm inequalities for the Fourier transform, of which the Plancherel theorem
is a special case. We now present one such generalization, cf., [B2] for others.

We shall deal with weighted spaces of the form

1/p
IZRY) = {f R = C: |fllp = ( [ s v(t)dt) < oo},

where v > 0 a.e.

5.2. Definition. The Hardy operator is the positive linear operator P; defined as

Pi)@) = [ / " by ta)dty - dta = [ o

for Borel measurable functions f on R*?. The dual Hardy operator P} is defined as

P}(f)(:):/:---/:f(tl,---,td)dt,--.dtds/ £t) dt,

(z,00)
where z > 0, i.e., each z; > 0 for z = (x1,:++ ,za).
Hardy'’s inequality (1920) is
(5.2) / P(f)t)Pt P dt < ( ) / f(t)?P dt, .

where p > 1 and f > 0(f # 0) is Borel measurable.
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5.3. Lemma. [He, Theorem 3.1). Given 1 < p < ¢ < oo and non-negative Borel mea-
surable functions u and v on X C R4, Suppose P : L?(X) — Li(X) is a positive linear

operator with canonical dual operator P’ : L:'_ or(X) = L:'_ .7, (X) defined by the duality

Jx P(f)(z)g(z)dz = [, f(z)P'(g)(z)dz. Assume there exist K1, K; > 0 such that

Vg€ LYW/ (X), for which g>0 and |lgllg/py <1,

there are non-negative functions,

’

fr € LY(X), h € LY, (X), f2 € L,

wr/eg

(X), ko € L., (X),

"'/lg
with the properties
(5.3) P(fi)< Kih1y and P'(fog9) < Kb,

and [ ’
o= fl—P/P h, and u= h;’!/}’ fzq/P'

Then P € L(LE(X), Li(X)), P' € L(LY_,,, (X),L2_,.,, (X)), and | P||, |P'|| < K}/" K}/ ]|
Setting

fi = v—p'/ppd(v—p’/p)—llp’
by = Py 1) 117
fa = uP/1P}(u)~P/(aP")
hy = Pa(u™? /P17
it is easy to verify (5.3) for any non-negative g € L(9/?)'(R+4), for which llgllca/py <1, as

long as (5.4), (5.5), and (5.6) are assumed. As a result Hernandez obtained the following
version of Hardy’s inequality on R+4.

5.4. Theorem [He, Section 4.2]. Given1 < p < q < oo and non-negative Borel measur-
able functions u and v on R*4. Assume there exist K, Cy(p), C2(p) > 0 such that

(5.4) sup ( /( L@ d:c) v ( /( . o(z)~?' /7 dz) o K,

Vz € RY4, Py(v=?'/r Py(vP'/?)=1/p)(g)
< Ci(p)Palv™ /)11,

(5.5)

and
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Vz € R, Pj(u(Pju)™"/*)(z),

(50) < Ca(p)?/e (Pju)! /2.

Then Py € L(LE(R*9), LY(R*?)), P} € L(LY_,,,,(R*%),L¥_, (R*4)), and ||Pd),|IP}]l <
KCi(p)'/? Ca(p)/. -
Let Q be the subgroup of the orthogonal group whose corresponding matrices with

respect to the standard basis are diagonal with +1 entries. Each element w € © can be
identified with an element (wy,--- ,wq) € {-1, 1}4, and wy = (w171, -+ ,wa7a). Thus,

[Fayan=% [ Fena,
wEeN R+4
and since

1/r 1/r!
Zay'bﬁ/"S(Zaw) (wa) ;

wenN weS
for 1 <r < oo and a,, b, > 0, we have the following regrouping lemma.

5.5. Lemma. Given1 < r < co and suppose F € L"(R?),G € L™ (R?). Then

> ([ wenra)” ([ e a)” <ietie,.

weN

5.6. Definition. S.a(R?) = {f € S(R?) : f(7) = 0 if some v; = 0} C S,(R?). Thus,
f € S(RY) is an element of S,,(R?) if f = 0 on the coordinate axes.

Combining Hardy’s inequality (Theorem 5.4) and the regrouping lemma (Lemma 5.5)
we obtain the following uncertainty principle inequality.

5.7. Theorem. Given 1 < r < oo and non-negative Borel measurable weights v and w.
Suppose u = w="'/", and assume that, for all w € Q, the weights u(wv) and v(w~) satisfy
conditions (5.4), (5.5), and (5.6) on R* for p = q = r' and constants K(w),Ci(p,w), and
Ca(p,w). If C = sup,,cq K(w)Ci(p,w)'/?' Cy(p,w)/? then

(5.7) Vf € Sea(R?), NSl < Cllfllrawll®r -+ Bafllor,v-
The right side of (5.7) will have the form of the right side of (5.1) in the case
(5.8) 181 -+ Gafllv,o < Clita -+~ taflluyu-

Thus, weighted Fourier transform norm inequalities such as (5.8) are critical for obtaining
generalizations of the classical uncertainty principle. As such we shall turn our attention
to such inequalities in the next section. ,

Theorem 5.7 seems burdened with laborious hypotheses. There are some attractive
corollaries. For example, we can take v = Lw(®)=|m-vl1<r<2 and prove —
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5.8. Corollary. If1 < r <2 then

Vf € Soa(R),  |IfIZ < (27r)¢ Ba(r)lita -+ taf llrllva -+ v f (M-
where By(r) = (r!/7(r')=2/7')4/2 js the Babenko (1961)-Beckner (1975) constant.

6. WEIGHTED FOURIER TRANSFORM NORM INEQUALITIES

A weighted Fourier transform norm inequality has the form

(6.1) VieX, |Ifllgu <Clfllpo

where v > 0 ae., p is a positive measure, X C L'(R?) n LE(RY), and X = L2(R?).
Conditions for establishing (6.1) are fairly well understood. For example, in 1982 Heinig
and I proved that if y = v > 0 a.e,, 1 < p < ¢ < 0o,u and v even, and 1/u and v increasing
on (0, 00), then (6.1) is valid for X = S(R) N L2(R) if and only if

'

1/s 1/q s , 1/p
sup (/ u(y) d'y) (/ v(t)"P' /P dt) < 00,
>0 0 0

cf., (H], [JS], [Mu] for related early results and [B2], [BL] for more recent developments.
In the case an inequality such as (6.1) is valid, there is a unique continuous linear map,

F: L’(R?) — LY (R?),
with the property that Ff = f for all f € X.

6.1 Question. Under what circumstances can we say that Ff = f?

This question is quantified and partially answered in [BL]. The remainder of this section
is taken from [BL], and we deal with one special case. Although [BL] develops a fairly
large theory, there are still many questions to be answered.

6.2 Theorem. Let u = p and v be locally integrable and positive a.e., let 1 < p,q < oo,
and assume (6.1) and LE(R?) C S'(R?). Suppose the following weak uncertainty inequality:

(6.2) Vg € SRY),  lllg ui-v llgllps,p1-s < 00.

If f € LE(R?) then Ff agrees with the ordinary Fourier transform f in the sense of
tempered distributions.

Proof. Let f € LE(R¢),lim||fn — fllpo = 0 for {fn} C X, and g € S(R?). Using (6.1) we

compute
(Ff = £.0) SUFSf = far i) + [(fa — F,3)]
< C”f” - f”l’;”(”g”q’,uhl' + ”g”p',vl-r' )$
and the proof is complete by (6.2). =

In the case of measures g, if (6.1) is valid and F is defined by a limiting argument, then
an essential part of the Question is to ask under what circumstances we can assert that

(6.3) V/e 'RONLLRY), Ff(v)=f(1) u ae.
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6.3 Definition. a. Let 1 < p,g < co. The Wiener amalgam space W(L?, £9)(R?) is the
Banach space of functions for which

e = (3 [, o a) ,,,),,, < oo,

n

where Q,, is the translate by n € Z¢ of the unit cube [0,1). '
b. A thorough treatment of the Question requires distinguishing whether or not vl“’de
Lj,.(R?). It turns out that if not only v!~?' € L} (R?) but further € W(L1,£=)(R9),
(L =)

loc .
then we have the continuous imbedding,

(6.4) Vpe[1,2], Li(R?)C W(L',&%)(RY).

In fact,

(Z </Q.. LA dt) 2)1/2 - (E (/Q" |F(®)w()P v(t)~1/? dt) 2)1/2
(S oreos” (| )"
sC (E ( /Q ,, |f(t)|"v(t)dt)2/P)I/ :

and the last term is finite since f € L2(R?) and 2/p>1.
Condition (6.4) allows us to deal with (6.3) in the following result.

6.4 Theorem. Given p € [1,2],1 < ¢ < 00,v > 0 a.e. and locally integrable, and u a
positive measure. Assume (6.1) and (6.4). Then (6.3) is valid if and only if there is a
constant C' such that

(6.5) Vf€X and VyeRY, 7 Fllg,u < C'lI fllp,v-

The proof that (6.5) is a necessary condition is elementary and does not require (6.4).
The sufficiency is more difficult to prove.
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