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A time-scale representation of (acoustic) signals, motivated by
the structure of the mammalian auditory system, is presented. Draw-
ing from the theory of irregular sampling and frames, a theoretical
framework is developed in which an iterative algorithm for recon-
struction is constructed. Numerical examples are included which
illustrate the validity of such a representation as a new and effective
method to deal with speech compression problems. © 1993 Academic
Press, lnc.

1. INTRODUCTION

We construct and implement a wavelet auditory model
(WAM). The front end of the construction follows the for-
mulation of the auditory system as found in Yang et al. [39].
The major distinguishing feature of the WAM construction
is our irregular sampling component for decoding auditory
patterns. This component was first described in [6], along
with a mathematical analysis of non-linear operations in au-
ditory systems. The implementation of WAM is made from
the point of view of developing a useful speech processing
tool. The main application in this paper deals with data
compression, and there are ongoing experiments and forth-
coming work on noise suppression. Further applications and
developments related to the computer implementation herein
are found in [37].

In Section 2, we introduce the wavelet transform and some
other mathematical preliminaries. Section 3 provides the
physical basis for our approach, using current ideas concern-
ing auditory models, and introduces WAM data, indicating
the way we shall use irregular sampling. The material on
auditory models is based on [1, 11, 14, 18-20, 25, 26, 29,
33, 34, 39, 40]. Section 4 is divided into two parts. In the
first part, we give a mathematical model for the causal mam-
malian cochlear filter bank used in WAM. The analysis de-
pends on a constructive proof of the Paley—Wiener logarith-
mic integral theorem, as well as the construction of some
special functions. In the second part, we discretize WAM
data, analogously to the approach in [39], and then show
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that our discretization is compatible with ideas associated
with wavelet frames. The theory of frames and our approach
to irregular sampling [7, 9] are the subjects of Section 5.
Further, with this background, we quantify the wavelet frame
properties of WAM data by estimating frame bounds. These
are important for establishing reconstruction formulas.

All of the aforementioned material leads us to WAM im-
plementation in Section 6, and our approach and application
to compression in Section 7. The WAM implementation in
Section 6 is based on properties of frames, which, in the
context of our irregular sampling approach, lead to a recon-
struction algorithm; in fact, the theoretical basis for this al-
gorithm is in terms of local frames [36]. In Section 7, we
describe our compression method in terms of WAM data and
a distribution function, which leads to a natural thresholding.
Using this method, we describe an experiment to ensure pre-
scribed bit rates. We conduct the experiment with TIMIT
speech data and synthesized signals. Finally, we present an
analysis and evaluation of our results.

The paper closes with three appendixes. Appendix A and
Appendix B are mathematical, dealing with nonlinearities in
WAM and cochlear filter design, respectively. Appendix C
shows results of WAM processing for a number of additional
data.

2. PRELIMINARIES

L*(R) is the space of complex-valued finite energy signals
defined on the real line R. The norm of an element € L*(R)
is

I£k= [ 1rola <,

where integration is over R, and the inner product of f, g
€ LA(R)is(f, g) = [ f(+)g(¢)dt. The Fourier transform of
fELX(R)is f(y) = [ f(t)e™*ds, for y € R(=R),
where convergence of the integral to f is in the L 2-sense.
For s > 0, the L?-dilation operator D; is defined by D, g(¢)
= s'g(st). for g € L*R). As such, (D,g)(v)
=s"Y28(s7'y) = Ds-1§(7y). For u € R, the translation op-
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erator 7, is defined by 7.g(#) = g(¢ ~ u) for g € LA(R).
As such, (7.g) (v) = e *"7g(y). The convolution of f, g
e L*(R) is defined by

frg() = ff(l — u)g(u)du = ff(u)g(t — u)du.

f #g is an absolutely convergent Fourier transform.

For a fixed g € L*(R), the wavelet transform of f
& L*(R) is the function

Wef(2, s) = We(z, 5) = (fxD:g)(?) (2.1)

defined on the time-scale plane t € R, s > 0. There are
modifications of this definition, and there are seminal devel-
opments of wavelet theory by Daubechies [13], Mallat, and
Meyer [27].

By a straightforward calculation, we obtain

Wg(t: s) = <f: 0!,5)) (22)
where f, g € L*(R),
8,s(u) = 7.D:g(u), (23)

and g is the involution of g defined as g(u) = g(—u). If the
* derivative 8,g is an element of L*(R), we define Wy, f anal-
ogously to the definition of W,f in (2.1). In this case, if
We . f converges uniformly on time intervals, for each fixed
scale s > 0, and if a mild ‘‘smoothness’’ condition is satis-
fied, then

OW,(t,s) = sWp (2, 5). (2.4)
These hypotheses for the validity of (2.4) can be weakened;
and (2.4) is true generally for the causal filters g and signals
f under consideration here.

Notationally, we follow standard notation in mathematical
analysis, e.g., [35]. In particular, besides L*(R), we use
other L?(R) spaces and their corresponding norms denoted
by || -ll,. L* [—Q, Q] is the space of finite energy signals
defined on the interval [—£2, Q]; and PW, is the Paley—
Wiener space, defined as

PWo = {f& L*(R): supp f< [, O},

where supp f is the support of f. I2(Z) is the space of finite
energy sequences. Finally, we write

eﬁ[(,y) = e—2‘rri!‘y'
3. WAVELET AUDITORY MODEL (WAM)

In the human auditory system, an acoustic signal f, pro-
duces a pattern of displacements W of the basilar membrane

at different locations for different frequencies [20]. Dis-
placements for high frequencies occur at the basal end; for
low frequencies they occur at the wider apical end inside the
spiral. The signal f, causes a traveling wave on the basilar
membrane; the basilar membrane responds to frequencies be-
tween 200 and 20,000 Hz. For comparison, telephone speech
bandwidth deals with the range 300—4000 Hz. The cochlea
analyzes sound in terms of these traveling waves, much like
a parallel bank of linear time-invariant ‘‘cochlear’” filters, in
this case, a bank with 30,000 channels. This cochlear analysis
is complex and subtle, and there are unanswered questions
[1] and reservations [25]. Our model does not attempt to
quantify the unsettled issues in cochlear micromechanics. On
the other hand, present knowledge of cochlear encoding is
sufficient for constructing successful models in a variety of
applications, e.g., [11, 18]. In our model, the impulse re-
sponses of the aforementioned cochlear filters along the
length of the cochlea are related by dilation, and, conse-
quently, their transfer functions are invariant except for a
frequency translation along the approximately logarithmic
axis of the cochlea [33, 34]. This suggests that the initial
processing occurring in the cochlea may be modeled as the
wavelet transform W, f, (¢, s) = W,(¢, s), where g is a fixed
causal impulse response and {D,g : s > 0} is the bank of
cochlear impulse responses. Thus, as the first step in the con-
struction of WAM, we follow the development in [39], and
identify the displacements W, due to the stimulus f,, with
the output of the cochlear filter bank having the impulse re-
sponses {D;g}; i.e., we set W = W,f. (¢, 5) = W,(¢, s).
Specifically, we fix a; > 1 and set s, = af form € Z, the
set of integers. As such, in WAM the signal f,, first produces
a discrete pattern of displacements,

W.(t,s.), meld, (3.1)
for points (¢, s,) in the time-scale plane. For mammalian
models, a typical value for a, is 1/a, = 0.9445, e.g., [39].
From our point of view, the value of a, is an adaptive param-
eter which should be chosen to optimize results for specific
problems.

The shape of § is critical for the effectiveness of the au-
ditory process, ¢.g., Section 4. It is well known that these
filters have asymmetrical ‘‘shark-fin’” shaped amplitudes in
the frequency domain [1, 29]. In particular, the rate of decay
(roll-off) of the filter with respect to distance from its char-
acteristic frequency (CF) is much higher on the high fre-
quency side than on the low frequency side. The high fre-
quency edges of the cochlear filters act as abrupt ‘‘scale de-
limiters.”” Thus, a sinusoidal stimulus creates a response
which propagates up to the appropriate scale and dies out
beyond it.

The auditory system does not receive a wavelet transform
W, directly, but rather a substantially modified version of it.
In fact, in the next step of the auditory process, the output of
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each cochlear filter is effectively high-passed by the velocity
coupling between the cochlear membrane and the cilia of the
hair cell transducers that initiate the electrical nervous activ-
ity by a shearing action on the tectorial membrane. Thus, the
mechanical motion of the basilar membrane is converted to
a receptor potential in the inner hair cells. It is reasonable to
approximate this stage by a time derivative, obtaining the
output 9,W, (¢, s).

At the next step in the auditory process, an instantaneous
sigmoidal non-linearity R is applied, followed by a low pass
filter with impulse response #. These operations model the
threshold and saturation that occur in the hair cell channels,
and the leakage of electrical current through the membranes
of these cells [28, 34]. The cochlear output

Cir(t,s) = (ReOW, (-, s))xh(2), (3.2)
where ‘“o”” is composition and convolution is with respect to
time, is a planar auditory nerve pattern sent to the brain along
the scale-ordered array of auditory channels (¢, -). Typically,
the composition by R can be represented by functions

Ty

1+ e?’

Ri(y) =

parameterized by 7. Obviously, limr.. Ry = H, the Heavi-
side function. Approximations to the Heaviside function are
reasonable since the nerve fibers.from the inner hair cells to
the auditory nervous system fire at positive rates, and since
this action cannot process above a certain limit, i.e., the afore-
mentioned saturation. For computational convenience in
WAM, we take R to be H and set A = 6, the Dirac é-measure,
even though 6 does not give rise to a low pass filter. Thus,
C.x(t, s) in (3.2) is replaced by the cochlear output,
C(t,s) = HOW,(t,s). (3.3)
The auditory nerve patterns determined by the cochlear
output are now processed by the brain in ways that are not
completely understood. One such processing model is the
lateral inhibitory network (LIN), e.g., [28], and it will be a
component of WAM. This network has been studied with a
view to extracting spectral patterns of acoustic stimuli [28,
34]. Scientifically, it reasonably reflects proximate scaling
channel behavior, and, mathematically, it is relatively simple.
Essentially, LIN detects edges and other discontinuities of
C(t, s) along the scaling s-axis of the cochlea. Thus, it can
be viewed as a scaling derivative d;; and so the operation of
LIN on the cochlear output gives rise to the data §,C, which
can be written as

8.C(t, 5) = (620, W,(t, $))0:.0W,(t,5),  (3.4)

since & is the distributional derivative of H. Notationally, we
let

Fo(fe) = {(1,5) : OW,(2, 5) = 0}
Formally, the factor §°0,W, (¢, s) in (3.4) can be written as

1

Vs > 0, —_—
) |atth(t7 S)|

§°0We(u,s) = >

(6s)EL(f«

5,(u),
(3.5)

where 6, is the Dirac §-measure supported by the point {#}.
The calculation establishing (3.5) is in Appendix A. Real-
istically, f4 is band-limited so that for each fixed s > O,
O0:W,(t, s) is an analytic function. Thus, the sum in (3.5) is
countable. Further, by definition of the Dirac §-measure,
(3.4) and (3.5) combine to yield

1

Vs> 0, 0Cw )= 3 omi

(ts)ET(fx)

X 0,0W,(t, 5)6,(u). (3.6)
The relation between the curvature terms in (3.6) and nor-
malizations is discussed in [ 6] . For the purpose of the present
work, the critical aspect of (3.6) is that data 9,C processed
by the ‘‘brain’’ depend orly on those values of 0,0,W, at
(t, ) € T'o(fy) for a given scale s > 0.

Because of the discrete pattern of displacements defined

in (3.1) and the analyticity mentioned above, we define
T(fe) = {(tun> Sm) : OWs (b ) = 0}; (3.7)
and, because of the observation about (3.6), we define WAM
data as
A(fs) = {8:0W, (2, 5): (1, 5) €T (f)}.  (3.8)

At this point, a given signal f, has been processed to pro-
duce the discrete irregularly spaced planar set I'(fy) taking
values A(f4). The final component of WAM is the synthesis
of f, from A(f,) in terms of irregular sampling reconstruc-
tion formulas, e.g., Section 5. In this context, it is natural to
compress WAM data in such reconstruction procedures, and
this is the subject matter of Section 7. WAM is depicted in
Fig. 1.

Because of the role of I'(f,.) in WAM and, recent work by
Mallat et al., it should be pointed out that the wavelet extrema
are not the essential data for WAM reconstruction. Further,
even the zero set I'( f ) arises in a nonstandard way, dictated
by a physically compelling non-linear operation in the au-
ditory process; viz. (3.4)—(3.6) and Appendix A.
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FIG. 1. Schematic of WAM processing.

4, MATHEMATICAL MODELING

4.1, Cochlear Filter Design

As indicated in Section 3, the shape of |g]| is critical for
the effectiveness of the auditory process, and generally £ has
an asymmetrical ‘‘shark-fin’’ shaped amplitude with faster
rate of decay on the high frequency side than on the low
frequency side.

We begin the construction of |g| on R as follows. Take
F(y) = mylya(v), where 15 is the characteristic function
of S. Let p = 0 be compactly supported and have the property
that f p(y)dvy = 1. For example, we could take p = nlgipm].

It is convenient to deal with smooth functions. As such, we
can define p as

ole — [v1?)

PV =1 (4.1
)= Tote = INPax )
where (y) = ¢™*7 on [0, ) and vanishes otherwise. This
v, as well as p, is infinitely differentiable, and supp p < [ —¢, €].
We now consider the non-negative function
A, =Fxp (42)
for some such p; cf. Example 4.3. A, has compact support
and has the desired shape, and A, is smooth if p is smooth.
In general, mammalian auditory filters cannot be expected
to have zero phase (e.g., the filters in [29] have approxi-
mately linear phase), and, clearly, zero phase compactly sup-
ported filters cannot be causal filters. On the other hand, all
realizable systems, such as our filter bank with ‘‘shark-fin™’
shaped amplitudes, are necessarily causal. In particular, the

cochlear filter bank cannot characterize (reconstruct) future
utterances in terms of known (present) speech signals. As
such, we design causal filters § € L2(R), i.e., supp g < [0,
o), for which ¢ has the required ‘‘shark-fin’’ shaped ampli-
tude consistent with mammalian auditory models. Our point
of view is that such filters provide a realistic mathematical
model for the cochlear filters described in Section 3, and are
therefore the proper filters for optimizing the reconstruction
process inherent in WAM.

The starting point for the design of such causal filters is
the Paley—Wiener logarithmic integral theorem [31,
Theorem XII]:

THEOREM 4.1. Let A € L*(R)\ {0} be non-negative
on R. A(y) = |g(y)| ae for some causal filter g
€ L%(R) if and only if

[log A(y)]

dy < oo,
l-i-'y2 Y

(4.3)

Let A € L*(R) satisfy (4.3), and define

lJ‘ xlog A(M\)

—— 5 d\
7r x2+(y—)\)2d

d(x,y) =

Clearly, ¢ is harmonic in the half-plane x > 0. If 4 is a
conjugate harmonic function of ¢, then it is unique up to an
additive constant; and we construct a particular 8 in (4.7).
The functions ¢ and # satisfy the Cauchy-Riemann equa-
tions, and K(z) = @¢(x, y) + if(x, v), z = x + iy, is an
analytic function in the half-plane x > 0.

We let

1
1+ 92

p(r) ==

and consider the L -dilations (by 1/x),

l x

Pix(y) =p(x,v) = x> 0.

T x4+ y?’

Thus, lim,.op:,, = 6 distributionally, in fact, in the (M,
C,) topology, where Cj is the space of continuous functions
vanishing at e and M, is the space of bounded Radon mea-
sures on R; see, e.g., [5].

By the definition of ¢ we have

O(x +17) = pucx(log A)(), x>0, (44)

T

and because of the approximate identity p, ., a classical cal-
culation yields

xl_ig}r d(x +iy)=logA(y) ae; (4.5)
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see, e.g., [21, 30, 35].
The harmonic function

-1
k(x,y)=— Y x>0,

= 7rx2+72’

(4.6)

is a conjugate harmonic function of p and so the Cauchy—
Riemann equations, 8,0 = 0,k and 0,p = —0O,«k, are valid
in the half plane x > 0. Using (4.3), the equations

00 = (O,p)xlog A
and
x >0,

0,¢ = (0,p)xlog A,

follow from (4.4), where ‘“=,”’ designates convolution in
the second variable of p. Thus, we define

= kxlogA, x> 0. (4.7)

The function
G(z) = X9, z=x+1iy,
is analytic in the half-plane x > 0, and provides the solution

- asserted in Theorem 4.1 in the following sense. By (4.5), we
formally compute

G(iy) = A(y)e® ae, (4.8)
and note, by (4.7), that
11 A
60, v) = — = [ 28AQ) 4y (4.9)
s

¥ — A

is formally the Hilbert transform # (—log A) of —log A ; see
e.g., Appendix B. It turns out that condition (4.3) allows us
to assert the existence of a causal filter g € L?(R) for which
£(v) = G(iy) a.e. The actual filter design is a consequence
of (4.8) and (4.9), and is formulated in the following result.

Tueorem 4.2,  Let A € L*(R)\ {0} be non-negative on
R, and assume condition (4.3). Then the function

—iJ log A

§ = Ae (4.10)
is a causal filter in L*(R); i.e, g € L*(R) and supp g
c [0, ).

The formal calculations preceding Theorem 4.2 are justi-
fied in Appendix B.

ExamprLE 4.3. The cochlear filters for WAM use Theo-
rem 4.2 and A, = F*p defined in (4.2) in the following way.
Let d(y) = e~ 70" 17D and pick v, so that d’ () < O for
all y = y4. Then we define A as

AL0) _
A(y) =4 A7), v €(0,9),

A (2)

md(y—ﬂ+y*), yZQ.

Clearly, A € L?(R) and (4.3) is valid. Thus, the causal coch-
lear filter £ can be defined by (4.10) in Theorem 4.1.

See also Fig. 2.

4.2. Discretization

We begin by choosing g as in Example 4.3, and recall from
Section 2 that 6, = 7,D,g and W (t, s) = (fx, 0.,). We
have

6:8th(t07 SO) = lim '}; (&(f*: eto,so> - at<f*> 9t0,sg—h>)-
B0

(4.11)

Letting (£, Sw) € I'(fy) and h = s5,, — 5,1 In (4.11) we
have the approximation

1
-1 -

T T T T L T T
t 1

r T T " j j ! !
o1 9
0.08 — :
0.06 — =
0.04 — .
0.02 ~ 3
of S S —— —————erm—— -

0 2 4 ' 8 8
{(3.g)} vs. Frequeney (Kliz)

..,Tﬁ
]
]

d\g vs. Time (ms)

FIG. 2. Causal filter response; dg and |(9g)].
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asath(tm,n: Sm)
" ath(tm,ny Sm) - ath(tm,n: Sm—l)

Sm = Sm—1
—OW Aty S ~ S 1Wae(bns Son—
— ¢ S(:"s" 1) — 1 62( - 1) , (412)
Sm — Sp—1 Sm T Sm-1

where we have used the fact that (¢, ,, s.) € I'(f,) and Eq.
(2.4). Using (4.12) and writing the approximation there as
an equality, we have

0.0t 50) = 7 (7o, Do (00)) € A(S).
(4.13)

Because of (4.13) and the frame-theoretic point of view of
Section 5, we define

U = ag — 1 Tt,,,,,,Dsmﬂ(ag) (414)
and the mapping
L:H-1*(Z?%)
fr= A ) 3 (4.15)

where H is a Hilbert subspace of L2(R) containing the class
of acoustic signals to be analyzed.

Each function ¢,,, corresponds to an element (2, ,, Sn)
€ I'(f4). In particular, {¥,,,} depends on a given acoustic
signal f, . This is not amenable to a global theory of frames,
but such a theory is not essential for our purposes. Also, we
can rewrite each ¢,, , as

1
ao_l

(4.16)

¢m,n = DSm_lTSmgllm,.(agN')'

5. FRAMES AND IRREGULAR SAMPLING

Let # be a Hilbert space contained in L*(R), and with
porm |- - || = |- - -||; induced from L?(R).

DerINITION 5.1, (2) A sequence {6,} c & is a frame for
H if there exist frame bounds A, B > 0 such that
Vie#, Alfl*<Y Kf, 0212 <BIfI? (51)
where summation is over Z. The theory of frames is due to
Duffin and Schaeffer [16]; cf. [13, 15, 22, 38].

(b) The frame operator of the frame {6,} is the function
S: X —> K defined as Sf = Z (f, 6,)6,.

The following result exhibits some fundamental properties
of frames; e.g., [8, 12, 16].

THEOREM 5.2. (a) If {6,} c & is a frame with frame
bounds A, B, then S is a topological isomorphism with inverse
S71 {878,} is a frame with frame bounds B~" and A7},
and '

VieX, f=3{f5.00,=>(f 0576, (52)
in#.

D) IfF{0,y c H, let L: F v~ I’(Z) be defined as Lf =
{{f, 0,0}, cf (4.15). If {6,} is a frame then S = L *L, where
L* is the adjoint of L.

() {6.} c & is a frame for # with frame bounds A and
B if and only if the mapping L is a well-defined topological
isomorphism onto a closed subspace of I*(Z). In this case,
L7 <A77,

LIl < BY? and

where L™ is defined on the range L(¥ ).

The theory of frames allows us to prove irregular sam-
pling theorems of the following form; e.g., [7, 9].

THEOREM 5.3.  Suppose Q > 0 and Q, > Q, and let {t,}
€ R have the property that {e_, } is a frame for H
= L?[—Qy, Q] with frame operator S. Further, let § €
L?(R) have the properties that § € L*(R), supp 8 < [,
], and 8 = 1 on [—Q, Q]. Then
f=2c(f)r,0 inL*(R),

Vfe PW,, (5.3)

where

c(f) = <S_1(f1[—91,91])7 e_).

The characterization of sequences {¢,} which generate
frames for L*[— €, Q] of the form {e_, } is due to Jaffard
[24], and their role in sampling theory is explained in
[7, 8].

ExampLE 5.4. Let # = L*(R) and let ¢ € L*(R). The
wavelet system {0, ,: (m, n) € Z*} is defined by

Vm,n € Z, 0,,(t) =2"29(2"t — n).

We can consider wavelet systems {6, , } which are wave-
let frames, in which case (5.1) is satisfied for {4,,}, or
wavelet orthonormal bases, which are special cases of wave-
let frames.

Orthogonal wavelet systems have the fundamental vanish-
ing moment property; see, €.g., [4, 27]. In fact, it is elemen-
tary to prove that if the elements of a wavelet system {8, }
are mutually orthogonal, and 6, § € L' N L?, then 8(0) = 0;
cf. [8, Sect. 5.12].
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ExampLE 5.5. (a) In light of the relationship between
(4.14) and the dilation translation structure of wavelet sys-
terns, it is relevant that the “‘wavelet”” ¢y = 0g of (4.14) can
satisfy the vanishing moment property of Example 5.4. In
fact, we can prove the following result for the causal filter &
defined in Section 4: if g, 0g € L*(R) and if 0g(t) exists for
each t € R then (9g)(0) = 0; see, e.g., [5, p. 151].

(b) The following calculation illustrates to what extent
{¥n},defined in (4.14), can be considered a wavelet frame
for some sufficiently robust Hilbert space # < L*(R); cf.
the beginning of Section 6 and the critical observation in
Section 4 that ¢, , depends on f.

We first compute

1 A A
> Wmun = Ds—l 6~ s €4 2.
S )l = o3 3 1D, (08, 0|
Then, in the spirit of the frame hypothesis of Theorem 5.3,
we assume that for eachm € Z, {—e_,, :n € Z} is a frame
for # = L[ -, Q] with frame bounds A,,, B,,. Thus,

S AnlfD,(OD1 < (a0 = 1)2 T 3 () |?
< 3 BullfDe1,(90)1%.

Consequently, if we suppose that

0<A<— A, < _p
(a— 1)

m In$B<w7
(ao—1)2

for some A, B, then by a simple calculation and Plancherel’s
theorem, we have

A(inf, 3 [ Dar (08) IDIFIP = 3 S, ) |?

< B Y Dy, (38) (M PLIfIP. (5.4)

The inequalities in (5.4) lead to frame properties of {¢,, .}
if

G(y) =3 |Ds,(88) (M) (5.5)

is bounded above and bounded below away from 0. In any
case, the function in (5.5) must be quantified to obtain ef-
fective frame decompositions by means of Theorem 5.2; and
it should be noted that a, plays a role in (5.5) which mani-
fests itself in our numerical work. See Fig. 3.

6. WAM IMPLEMENTATION

The basic idea of WAM can now be formulated by com-
bining the calculation of Section 4.2 with Theorems 5.2 and
5.3. First, WAM data have the form

gg T ; e s mu i S
0.4 E E
02E | E
§ NEPEEN I ! L :
0 2 4 8 8

G, |(3g)"f vs. Frequency (KHz)

FIG. 3. The function G generated by (9g).

asath(tm,n; Sm) = <f7 lpm,n) (61)
because of (4.13) and (4.14). Second, if { ¢, , } were a frame
for # , with frame operator S and L defined by (4.15), then
Ve #, f=ST'L*Lf), (6.2)
by Theorem 5.2. In particular, f can be reconstructed by
knowledge of the discrete WAM data Lf. Third, in light of
the irregular sampling theorem, Theorem 5.3, a frame hy-
pothesis on {¢,,,} € & and Eqgs. (5.2) vield the ‘“irregular
sampling frame decomposition formula,”’
VieX, f=Y cuui, (D5, 08). (6.3)
Notwithstanding the difficulties of justifying frame proper-
ties of {,,,} for a sufficiently large space # (as indicated
at the end of Section 4.2 and in Example 5.5(b)), Egs. (5.3)
and (3.8)—(6.3) motivate the WAM implementation we now
present. In fact, recalling that {¥,.,} depends on f,, we
really only need to obtain (6.2) and/or (6.3) iteratively for
f = fs; and it is not unreasonable to suppose that # , how-
ever small, at least contains the acoustic signal f,, which was
used to generate {¢,,,}.
Assuming the frame setup of the previous paragraph, and
letting A, B be frame bounds for {¢,, ,}, we have

2 B—-A
I— S| = <
“ A+ B H A+B "

so that by the Neumann expansion,

R p— il— 2 Y (6.4)
A+B 2 A+B )’ ’

where [ is the identity operator; see, e.g., [7, Algorithm 50;
8, Sect. 6.6]. Applying (6.4) to Sf, vields

fx= 2 (I = NS)(NS) [, (6.5)

where A = 2/(A + B).

PropoSITION 6.1.
WAM data as

The signal f, may be recovered from
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fa=N3 L*(I = NLL*)'Lfy,

j=0
where Lf, is WAM data defined by (4.13)—(4.15), and
where L*c = 2 Cp b for ¢ = {Cnn}.

Proof. Since (Lf, ¢) = (f,L*c) and
(Lf, €)= Cunlfs Ymn) =, D Conllimn)s

we obtain the formula for L*c.
Because of (6.5) and the fact that S = L*L, it is sufficient

to prove that

A i L*(I — NLL*)/Lf, = i (I = NL*LY/(AL*L) f.

j=0 Jj=0

(6.6)
The j = 0 terms are clearly the same in (6.6). Assume that

AL*(I = NLL*)/Lfy = (I — AL*LY/(AL*L) f4. (6.7)

Then, using (6.7), we compute

NL*(I — NLL*)/*'Lf,
= NL*(I — NLL*)/Lfy — NL*(I — ANLL*)'N\LL*Lf,
= N(I = NL*L)Y/L*Lf, — N(I = A\L*L)/L*L(AL*Lf)
= N(I = AL*L)/(] — \L*L)L*Lf,
= N(I = \L*L)/*'L*Lf,,

and the result follows by induction. [

ALGORITHM 6.2. Suppose we are given WAM data ¢,
= Lf,, and set f, = 0. We define

h,= L*c,,
Cos1 = ¢, — NLA,,
f;z+l = fn + hn*

An elementary induction argument shows that

Vn, foun = L*(é (I = NLL*) )¢

j=0
Consequently, by Proposition 6.1, we have

lim \f, = fy.

As such, since ¢y = Lf, is WAM data, we use Algorithm 6.2
to reconstruct f, from Lf,. .

7. COMPRESSION

We apply our WAM processing to the area of speech
compression. For speech compression problems, the goal is
to represent speech signals in a way which minimizes storage
and transmission bandwidth requirements under the con-
straint that sufficiently high ‘‘quality’’ approximations of the
original speech signal can be recovered from the represen-
tation. The meaning of the ‘‘quality’’ of a reconstruction is
a criterion which is difficult to specify precisely. In vague
terms we would like our representation to preserve pertinent
perceptual information in the speech signal, e.g., timbre,
emotional state of the speaker, inflections, etc. Intelligibility
is a less stringent criterion by which we shall judge our re-
constructions. In this case, we require only that listeners be
able to determine the textual content of the original speech
signal purely from audition of the reconstruction.

In the following, we detail a speech compression scheme
based on the WAM representation in the context of a voice
communication system. As such, we assume inherent con-
straints on signal bandwidth and allowable bit rates due to
realistic device limitations.

7.1. Approach

In this section we describe the general method and setup
by which we use our WAM processing to achieve compres-
sion for speech signals. ‘

Let f, be an acoustic signal on the interval I of duration
| 1] and let L be the WAM discretization operator such that

Lfs = A(fe) = {{fas ¥mn)}

is the set of WAM coefficients; cf. (4.15) and (3.8). Recall

- that the elements of the WAM system {¢,, , } are of the form

Ymn = Ttm,,D:m-l(ag):

ao‘—l

e.g., (4.14).

It is the WAM coefficients which must be transmitted. For
transmission in digital form, it is necessary that the WAM
coefficients be quantized. The quantization strategy which
we employ is one which maps positive values uniformly
along some interval. This uniform mapping corresponds to
representing each coefficient with a fixed number of bits. The
fixed number of bits which we allocate for the representation
of each coefficient is denoted by b, (bits/coef). The quan-
tization function @, is defined as
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0, x =<0,
Q,.(x) = [1 2bc] , x€(0,M), (7.1)
M
. 26 — 1, x=M,
where
M = ||Lfylls = sup {[{fs, ¥ns|} (7.2)

and where [x] is the largest integer less than or equal to x.
Note that we have chosen to neglect the negative coefficients.

We specify the inherent constraint on the amount of in-
formation which we can transmit per unit time as a maximum
allowable bit rate of b, bps (bits per second). For conve-
nience, we do not fix this quantity explicitly. Instead, we
specify a corresponding coefficient rate c,, and vary the bit
allocation b. to meet the information rate constraint b,,
through the simple relation b, = c¢.b.. With the coefficient
rate fixed and specified, the maximum number of coefficients
n, that we are able to transmit for the function f, of duration
| 1] is

n.=c|I|.

Thus, given the acoustic signal f, of duration || and a
fixed coefficient rate, the maximum number of coefficients
with which f, may be represented, while still satisfying the
information rate constraint, is given by n.. With respect to
WAM data, this maximum number of coefficients #. can fur-
ther be related to a value for a threshold 6. To see this, we
introduce the distribution function,

N(8) = card As(fy) = card{{fy, ¥n,) = 6}, (7.3)
for 6 € [0, M]. It should be noted that we could define the
distribution function on [ —M, M] (or even some larger in-
terval); however, this is unnecessary, since we have chosen
to neglect the negative coefficients. The distribution function
\: [0, M] — N is monotonically decreasing and continuous
from the left. We may associate with A an ‘‘inverse’” A\~
defined as

A (n) = inf{x € [0, M]: \M(x) < n},
where n € N. If a threshold value § is chosen as
6= A" (ne),
then the WAM thresholded data As(fx) have a cardinality
card AN"?(n,) < n.. Consequently, the total bit requirement

for representing the acoustic signal f, of duration |I| in b,
bits/coefficient is no greater than n.b, bits. This, in turn,

guarantees that the WAM encoding of the signal f, is com-
patible with the bit rate constraint; i.e.,

b. card Ay, y < b,[1].

7.2. Performance Evaluation
7.2.1. Experiment

We have implemented our WAM processing in software
and applied it to a variety of test signals including both syn-
thesized and real speech data. The real speech data are signals
taken from the extensive TIMIT data base and specifically
includes words taken from the sentence ‘‘She had your dark
suit in greasy wash water all year,”” as spoken by one male
and one female speaker. Synthesized signals include single
and multicomponent sine waves, chirps, and more general
frequency/amplitude modulated signals. In this section we
detail the processing and WAM output for an example signal
taken from this set. The example signal we present here is a
female saying the word ‘‘water.”” Complete results of WAM
processing for the remaining signals of the test set can be
viewed in Appendix C.

For evaluation purposes we fix a coefficient rate at c,
= 4800 coefficients per second (coef/sec), and vary the
number of bits b, with which each coefficient is represented.
Specifically, we take values of b, = 1, 2, 4. Since these quan-
tities are related to the overall bit rate b, by the relation b, =
¢.b., the corresponding bit rates are b, = 4.8, 9.6, 19.2 Kbps.
For each value of b,, reconstructions are computed via Al-
gorithm 6.2 based on the thresholded WAM data A~y
Recall that the set A,-y,, is completely determined from the
signal f,., the specified coefficient rate ¢,, and the coefficient
bit allocation b,, as described in Section 7.1.

Our experiment can be summarized as follows. Fix c,
= 4800 coef/sec. For each f, in our test set and for each
value of b., we perform the following steps:

(i) Compute the WAM representation of f:

A(f*) = {<f*7 ¢m,n>}'

(ii) Determine the maximum number of coefficients .
with which f, can be represented and still meet the coeffi-
cient rate constraint,

n.= Cr' II(f*)la
where |I(fy)] is the duration of f,.
(iii) Compute the distribution function A.

(iv) Threshold the WAM .representation A(fg) by §
= A"'(n.), yielding the truncated representation

D) = (e Ymn) =5}
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FIG. 4. Female spoken ‘‘water’” and its thresholded WAM representa-
tion.

(v) Quantize the thresholded WAM representation, yield-
ing the sequence

Co.(As(fx))-

(vi) Generate a reconstruction of f using Algorithm 6.2,
where the initial data are

Co = ch(Aé(f*))'

In the following we explain in detail this procedure for a
particular example signal, and, where applicable, we com-
pute values for parameters and show pictures of the resulting
processing. Recall that the particular signal on which we have
chosen to illustrate this process is the acoustic signal

“‘water’’ as spoken by a female.

Figure 4 depicts the acoustic signal “water as spoken by

a female and its associated (thresholded) WAM representa-
tion. In this figure, the time signal is superimposed at the top
of time-scale plane for easy reference. Each “‘x’” in the fig-
ure, corresponding to a point in the time-scale p]ane (2, 5),
represents a particular coefficient in the WAM representation
of f. From this figure it can be seen that the duration of the
word “‘water’’ is roughly 310 ms. For a fixed coefficient rate
of ¢, = 4.8 coef/ms, this translates into a maximum allowable
number of coefficients n. = ¢,| I| =~ 4.8-(310) = 1488. The
N coefficient distribution for the female spoken ‘‘water’” is
shown in Fig. 5. From this graph it is easy to read off an
appropriate threshold value of § = A 7!(n,) = 0.4 (actually
0.367). Now we can say precisely that what is depicted in
Fig. 4 corresponds to elements of the WAM thresholded data
As(fs), where f is the female spoken word “‘water’” and &
~ 0.4. Thus, in this figure there are roughly 1488 (actually
1490) x’s.

Since it comes from the set As( f4), each ““x’’ in the time-
scale plane of Fig. 4 has an associated coefﬁc1ent which has
a particular positive value greater than the threshold 6. For
digital communication these values are then quantized ac-
cording to the function O, given in (7.1). To perform the

T

"
1000 E
; ]

100 &

-1 0 1

FIG. 5. X distribution of female spoken *‘water.”’

quantization, the value M in (7.2) and the value of b, must
be known. M is signal dependent and may be read from the
\ distribution of the signal as M = A7!(0). For the particular
spoken word ‘‘water’” the A\ distribution of Fig. 5 reflects a
value for M of about 1.65. As an experimental parameter, b,
is varied through the values 1, 2, and 4 bits per coefficient.

Once the thresholded coefficients have been quantized ac-
cording to O, , they are passed through Algorithm 6.2 for
reconstruction. Figure 6 displays the time-signal reconstruc-
tions obtained from a single iteration, i.¢., f;, of the algorithm
for the three values of b, = 1, 2, and 4. Similarly, Fig. 7
displays the magnitudes of the Fourier transforms of the same
reconstructions.

7.2.2. Compression Ratios

When dealing with data and schemes for data compression
it is natural to introduce a measure of compression. In rough
terms, a ‘‘compression ratio’” measures the relative decrease
in complexity of data in a raw form as compared to the com-
plexity of its new compressed form.

For speech it is customary to deal directly with bit rates
instead of compression ratios. This is because the bandwidth
of speech is a fixed constant which, for some practical pur-
poses, may be taken to be 2 = 4000 Hz. Consider the ‘‘raw”’
form of an analog speech signal f, to be a sampled version

4
2

-8

A

WM ik el ww.—wmmmww

100 200 300
4 bit/coef

fe's s
I

Tadulydol)

Lt

st — st

2 bit/coel 200 200
e ——
- 1 bit/coef 200 300

FIG. 6. Time domain reconstructions of female spoken ‘‘water’” as the
bit allocation per coefficient b, varies (1, 2, and 4 bits per coefficient).
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FIG. 7. Frequency domain reconstructions of female spoken ‘‘water”’
as the bit allocation per coefficient b, varies (1, 2, and 4 bits per coefficient).

with 8 bits per sample and a uniform sampling period of T
=1/(2Q) = 1/8000 seconds. In this case the required ‘‘raw’’
bit rate is 64 Kbps. Since the hypotheses of the classical
sampling theorem are satisfied, it is possible to reconstruct
(modulo slight errors due to quantizatjon ) the original speech
signal f.. Any representation which allows for recovery of
the original speech signal f,. and requires a bit rate less than
64 Kbps is a compressed version of f,. Consequently, a
compression ratio of 10:1 is achieved by a particular speech
compression scheme if that scheme yields a bit rate of 6.4
Kbps.

Many speech compression schemes have been introduced
which have a required bit rate of less than 64 Kbps. The
development of frequency channel vocoders by Dudley (in
1928) was a major early effort in compression. Linear pre-
dictive coding (LPC) was introduced by Atal and Schroeder
[2, 3]. LPC10 and its variants deal effectively with low bit
rates (2.4 Kbps) for certain quality criterion. Codebook
excited linear predictive coding (CELP), discrete cosine
transform (DCT) coders, and various subband coding
schemes produce intelligible and good quality reconstruc-
tions with bit rates in the range of 4 to 16 Kbps.

For comparison, recall that our experiments deal with
WAM representations which require bit rates in the range of
4.8 to 19.2 Kbps. It should be noted that this range is by no
means the limit of WAM compression, and we expect WAM
compression to be able to achieve good quality reconstruc-
tions at much lower bit rates.

7.2.3. Analysis

Examining the results of our experiment we can make the
following observations:

(i) In general, reconstructions are ‘“good’” for all values
of b, = 1, 2, or 4, We use the term ‘‘good’’ in the sense that

both the time and frequency magnitude reconstructions are
judged to be close to their original counterparts. Moreover,
all reconstructions are intelligible.

(ii) Frequency magnitude reconstructions degrade less se-
verely than time reconstructions as b, varies from 4 to 1 bit
per coefficient.

(iii) Strong frequency components (peaks) are replicated
faithfully.

All of the observations suggest that the proposed WAM
speech compression scheme is a promising one. In particular,
observations (ii) and (iii) are in accord with the notion that
the ear is coding only perceptually relevant features [17, 32].
Specifically, we can interpret these observations to indicate
that the WAM representation and compression scheme pre-
serve frequency magnitude information with greater accu-
racy than phase information.

The results of the experiment also indicate that the WAM
representation is highly robust to quantization effects. Allo-
cating just a single bit per coefficient (b, = 1) still allows
for good quality reconstructions. It is here that we see one
benefit of non-orthogonal highly redundant systems. Since
the WAM system {¢,,,} generated by a particular acoustic
signal f is highly linearly dependent, the operator L* has a
large kernel. Modeling quantization as coefficient noise, we
have & = O, (c) =~ ¢ + w, where w is some random noise
with appropriate statistics. Now L*¢ = L*c¢ + L*w, and
since the kernel of L * is large, much of the noise (since it is
random) occurs in the kernel; thus L*& ~ L *¢. This type of
argument for coefficient noise robustness is developed
in [15].

7.3. Discussion

There are other variables, trade-offs, and issues for eval-
uating the WAM compression scheme. We list some of them
here.

¢ Besides coefficient quantization, time quantization must
also be addressed. Each WAM coefficient is associated with
an element in the WAM system {4, }; see, e.g., (4.14).
Since the sequence {t,, .} is signal dependent, the reconstruc-
tion process (receiver ) must have knowledge of these values.
In our reconstructions we have assumed complete knowledge
of the sequence {¢,,}.

* Some synthesized examples do not seem to reconstruct
in time as well as some TIMIT speech data. In particular,
frequency modulated signals seem to present some difficulty
for time reconstructions, e.g., the fm echo signal in Appendix
C. On the other hand, frequency magnitude reconstruction is
still good for such signals.

e There is a slight trade-off between reconstruction ac-
curacy and algorithm speed, i.e., the number of iterations
used in the reconstruction Algorithm 6.2. All the reconstruc-
tions presented in this paper are the result of a single iteration
of Algorithm 6.2. From our experiment, it is evident, then,
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<

that one iteration already provides ‘‘good’’ reconstruction.
This observation can be related to the fact that the function
G of (5.5) is almost constant along the frequency band of
interest. '

* Essentially, we have circumvented the issue of window-
ing of the signal by taking the window to be of a length equal
to the duration of the signal. In practice, windowing plays a
finer role; e.g., in narrowband speech compression systems
going back to Dudley, (in 1939) speech coders divide the
speech signal into intervals of duration 10 to 25 ms.

¢ The dilation parameter a, effectively changes the fre-
quency support of each filter in the filter bank {(D508)}.
In particular, increasing the value of g, decreases the band-
width of each filter in the bank. A decrease in bandwidth
necessarily implies that a particular filter will respond to a
smaller band in frequency. Thus, keeping fthe same, an in-
crease in the value of a, will cause the bands of activity in
the original a, representation to become compressed along
the s-axis in the new increased g, representation. Thus, with
6 fixed, larger g, lead to smaller WAM data sets. On the other
hand, larger values of a, cause the function G of (5.5) to
have greater variations from constant value. This condition
necessarily implies a spread between possible frame bounds,
i.e., movement away from tightness. This, in turn, can be
related to a slowing of the rate of convergence of the recon-
struction Algorithm 6.2.

We conclude this section with a list of some of the key
features of the WAM speech compression process which has
been developed here.

Quantization Robustness. The WAM reconstruction Al-
gorithm 6.2 exhibits a high degree of robustness to quan-
tization of coefficients. This property makes the WAM
compression scheme well suited for communication.

Embedded Compressed Representations. An appealing
property of our WAM compression is that the compressed
representations As form a decreasing continuum of sets with
respect to the threshold parameter 6. In other words, if §,
< 6, then Ag, € Ay, Thus, the compression is hierarchical in
the sense that representations with small information content
A;s, are embedded in ones with higher information con-
tent A&, .

Robust Compression. It has been experimentally ob-
served that as the WAM representation is compressed
through the application of smaller thresholds &, reconstruc-
tions based on initializing Algorithm 6.2 with the data A;
degrade in a robust way. Because the compressed represen-
tations are naturally embedded (see above), the increase of
the threshold 6 from 6, to 6, (8, < ;) corresponds to the
removal of some elements of As . This in turn corresponds
to removing the least significant components of the recon-
struction based on A, . This ensures that a small change in §
will not lead to a catastrophic change in the reconstruction.

Information Limit Transmission. An interesting inherent
feature of the WAM compression scheme and representation
is that, in a communication setting, all of the available band-
width can be used for the transmission of information about
the underlying signal. Suppose a fixed information transmis-
sion rate limit, e.g., the bit rate constraint b,. Further, suppose
that a threshold of 6 = 0 yields a finite WAM representation
Ao(f4) from which it is possible to reconstruct perfectly the
original signal f. Clearly, the cardinality of the representa-
tion Ao(fy) depends on the information content of the un-
derlying signal f, . For example, if f, = 0 then card A; = 0
for all values of 6. For signals with low enough information
content, i.e., b.-card Ay < b,- |I(f4)], the information rate
constraint poses no problem. For more complex signals,
though, a threshold of 0 does not suffice to meet the infor-
mation constraint. Suppose we have such a signal. In this
case, an appropriate threshold must be found via the distri-
bution function in (7.3). Since the thresholded representa-
tions are embedded (see above), the WAM compression
scheme can be viewed as a method to remove the least sig-
nificant coefficients from the set A; to meet the information
rate constraint. Removing the least significant coefficients
insures that the least amount of information will be lost. The
significance of this is that (i) the WAM compression scheme
yields the best thresholded representation that meets the in-
formation constraint; and (ii) if the information constraint b,
were increased, the new WAM compressed representation
would contain the old WAM compressed representation. This
is a consequence of the fact that the information constraint
b, can be related directly to the threshold § by the relation

bc Card A5/| I(f*)l = bn

and that card A; is a decreasing function of é. If b; < b, are
two information rate constraints, the two corresponding
thresholded representations generated by the WAM compres-
sion scheme will be A; and As,, and 6; = 6, so that Ay
¢ A;,. Consequently, over different signals (or pieces of sig-
nals) it is always possible to transmit at a rate up to the
information limit &, by adjusting the threshold é.

Perceptually Significant Reconstruction. In all of our ex-
periments the frequency magnitude of reconstructions
closely matches that of the frequency magnitude of the orig-
inal signal while phase differences are more severe. This ob-
servation suggests that the WAM representation is preserving
frequency magnitude information more precisely than phase
information.

8. CONCLUSION

We have presented the construction and implementation
of a wavelet auditory model (WAM). From the WAM model
comes a theoretical representation of acoustic signals based
on irregular sampling and the theory of frames. From this
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representation, we have developed an algorithm for the re-
construction of signals from their WAM representations. Fur-
ther, we have developed a scheme for the compression of
speech signals based on thresholded versions of the WAM
represeptation. This scheme has been applied to many ex-
amples, including both real speech data and synthetic signals.
Results for WAM compression are discussed in Section 7.

APPENDIX A. COCHLEAR SAMPLING

Let R be an instantaneous sigmoidal non-linear operator.
In the high gain limit and with natiral mathematical hy-
potheses, we verify that the derivative, R'(0,W,(u, s)), is
the sum of the Dirac é-measures centered at the extrema of
the wavelet transform W, and scaled by the values of the
curvature of W, around these points. This statement is ex-
pressed mathematically by Eq. (3.5).

Suppose limr—.Ry = H, distributionally, where Ry is de-
fined as in Section 3 or by some other reasonable approxi-
mant of H. Suppose, further, that ¢ is a strictly monotonic
continuously differentiable function on R, and that ¢(#,) = 0.
Then, if ¢ is a smooth compactly supported function, we
have

(Ried) () = [ Ri@) O weya

1 1
) T @y ™

= J.R}(u)\lf(u)du,

where the left hand expression is defined by the first integral,
where we made the substitution u = ¢(¢), and where U(u)
is defined as (¢ (1)) |’ (¢ (u))| 1. Since H' = §, dis-
tributionally, we see that

lim (Rje$)(#) = ¥(0). (A1)

- [ Rwyucs

Because ¢(25) = 0, we have

B 1 _ 1
\II(O) - l,[l(to) |(¢)’(t0)| - <|¢’(10)| 6’0)(170)’ (A2)

where é,, is the Dirac 6-measure at #, and where the right
hand side denotes the distributional operation of the measure
(1/]¢' (o)) 6, on the test function .

Since (A.1) and (A.2) are valid for a sufficiently large
class of test functions, and since

(8¢)(¥) = lim (R3od)(4),

we conclude that
1

§op = ————6,,.
RPTTSTR

(A3)

If s > 0 is a fixed scale, and if ¢(¢) is defined as O, W, (¢, s)
and has a sequence of zeros, then (A.3) allows us to obtain
(3.5) assuming there is strict monotonicity in neighborhoods
of the zeros.

APPENDIX B. CAUSALITY

The principal value distribution P(y) = pv(1/vy)is a first
order (Schwartz) distribution well defined as

P($) = lim 27 4y
0 Viylze Y

for continuously differentiable compactly supported test
functions ¢ on R. It is easy to prove that the distributional
derivative of the Heaviside function H is

1

AG) =35m0 (3 ) + 3600

The Hilbert transform #K of K is
1 1
7K = Koo () ), (B.1)

and # is well defined on R. If f = K = K, + iK, and
supp f< [0, =), it is an elementary but important fact that

K, = #K, and K, = —-XK,.

Now suppose that G(x + iy) = e?*"e®™") js analytic
in the half-plane x > 0, where A € L?(R) is non-negative,

#(x,v) = [ 1og A1),

1 x
du, (N =————F———=dM\,
IJ"/() ﬂxz_l_(,y_)\)z A
and
log A(y)|
————dy < o,
f1+72 v=®

We show, a la Paley—Wiener, that G € H? of the right half-
plane; i.e., that

supf |G(x + iy)|*dy < . (B.2)

x>0
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Since the exponential function is convex we can combine
Jensen’s inequality, e K < f e®dy, for the positive measure
= 1, ., and Holder’s inequality to compute

1G(x + i)l
“2([rra) ([ =)o)

Thus, |G| is uniformly bounded on any half-plane x = x;
> 0 and tends to zero uniformly in y as x — o. Further, by
Jensen’s inequality, Holder’s inequality, and Fubini’s theo-
rem, we compute

[ 166+ iy
<[ =0

= f%fﬁ f‘?&zw“ fxz + (;C e
1

=;f (f%m)dx:fﬂx)?dm

and (B.2) is obtained.

For this situation, we can invoke the (first) classical Paley—
Wiener theorem [30, p. 20; 31, p. 8] to infer that there is a
causal function g € L*(R) for which g = G(iy) a.e.

2

d\| dy

dvdy
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