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Comments:

These notes are intended to merely augment and not completely reproduce the recorded
lectures. I think it’s can be a little tough to see what he’s writing, so I think this will
be helpful. Professor Benedetto gives significant informative exposition during his lec-
tures (which I appreciate). I have to apologize, but I have largely left this out. This is
not out of disrespect, but it’s hard to do it much justice without pictures (which I’m not
drawing here), and my notes on this are poor (I’m just listening). I think this is much
better understood through the videos, anyways.

A note on errors: I’d like these to be professional quality, but I’m producing these notes
for my own purposes. I have handwriting like a three year old, but I like to keep my lec-
ture notes. I have absolutely no doubt that this document is riddled with typesetting er-
rors. I welcome your help in finding them. Please email thomas.mccullough@gmail.com,
and I’ll happily fix them. This will help me, and hopefully you too.

I have tried to stick with his notation. I apologize for the places that I’ve failed, this is
not out of disrespect, just simply my bad habits. I have taken liberty on occasion. In
particular, theorems quoted for the result with no proof given I have called propositions,
and I have pulled some things I call lemmas out of the proofs to streamline. Any other
places that I have taken liberty I explicitly mention. I have cited several things in ”Real
and Complex Analysis” by Walter Rudin [7], which is the only real analysis book that I
have. These things can no doubt be found in any decent analysis book, so consult what
you’ve got.
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Lecture on 02 September 2008

I was not in attendance, I apologize.

3



Lecture on 09 September 2008

HW# is 7-9 from the new homework set and 7-12 from the old homework set.

Proposition 1 (Poisson Summation Formula).

T ·
∑
n∈Z

f (t + nT ) =
∑
n∈Z

f̂ (n/T )e2πint/T

Proof. Proof omitted here. See [2, pgs. 505-523] for a proof. �

Example 2. It is the case that ∃ f ∈ L1(R), f continuous, f (n) = 0, ∀n ∈ Z, f̂ (n) =

0 ∀n , 0 and f̂ (0) = 1.

Proof. No proof of this claim will be provided. This example is intended to illustrate
that the statement in Proposition 1 doesn’t hold universally. The conditions under
which it does hold have remained unstated, but there clearly are some. �

For clear notation in what follows, define

PWΩ
def
=

{
f ∈ L2(R) | supp( f̂ ) ⊂ [−Ω,Ω]

}
and τus(t) def

= s(t − u)

where PW stands for Paley-Weiner.

Theorem 3 (Classical Sampling Theorem). Let T,Ω be positive real numbers such
that 0 < 2TΩ ≤ 1. Let s ∈ PW1/2T with ŝ(γ) = 1 for γ ∈ [−Ω,Ω], ŝ(γ) = 0 for
γ < [−1/2T, 1/2T ], and ŝ ∈ L∞(R̂). Then,

∀ f ∈ PWΩ, f = T ·
∑
n∈Z

f (nT )τnT s

in the L2 norm.

Proof. Note that by the Plancherel Theorem [7, p. 186], we have:

‖ f − T ·
∑
|n|≤N

f (nT )τnT s ‖L2(R) = ‖ f̂ (γ) − T ·
∑
|n|≤N

f (nT ) · e−2πinTγ · ŝ(γ) ‖L2(R̂)

= ‖ f̂ (γ) − T ·
∑
|n|≤N

f (nT ) · e−2πinTγ · ŝ(γ) ‖
L2( ̂[− 1

2T ,
1

2T ])

(1)
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Define G ∈ L2(T1/T ), where T1/T
def
= R/((1/T )R), by

G(γ) =

 f̂ (γ), |γ| < Ω

0, Ω ≤ γ < 1/2T

Then, by [7, p. 186], the Fourier series of G is given by∑
|n|≤N

Ǧ[n] · e−2πinTγ

where

Ǧ =

∫
T1/T

G(γ) · e2πinTγdγ = T
∫ Ω

−Ω

f̂ (γ)e2πinTγdγ = T f (nT )

Then, continuing our calculation

(1) = ‖ f̂ −
∑
|n|≤N

Ǧ(n) · e−2πinTγ · ŝ ‖
L2( ̂[− 1

2T ,
1

2T ])

= ‖ f̂ −G ‖
L2( ̂[− 1

2T ,
1

2T ])
+ ‖G − S N(G) · ŝ ‖

L2( ̂[− 1
2T ,

1
2T ])

The first term goes to zero, again by [7, p. 186], so we are left with

‖G − S N(G) · ŝ ‖
L2( ̂[− 1

2T ,
1

2T ])
= ‖ ŝ(G − S N(G)) ‖

L2( ̂[− 1
2T ,

1
2T ])

≤ ‖ ŝ ‖L∞(R̂) · ‖G − S N(G) ‖
L2( ̂[− 1

2T ,
1

2T ])

where the last inequality is Hölder’s. This last term again goes to 0 by [7, p. 186]. That
completes the proof. �

Example 4. Let 2TΩ = 1 and sΩ(t) = d2πΩ(t) = sin(2πΩt)/πt. Recall that the inverse
Fourier transform of [−Ω,Ω] is sΩ.

Example 5. Set ϕ(t) = sΩ(t)/
√

2Ω. Let V0 = span{τnTϕ}. This leads directly to an
MRA, which will be discussed later. Let ψ(t) = (1/

√
2Ω) ·

(
s2Ω(t) − sΩ(t)

)
. This is

known as the Shannon dyadic wavelet.

Now, for some applications of PSF (1):

1. T
∑
δnT =

∑
e2πitn/T - engineering notation for dirac delta function (distribution)

2. Classical Sampling Theorem and relations to Locally Compact Abelian Groups

3. Euler-MacLaurin Formula: T ·
∑∞

0 f (nT ) =
∫ ∞

0 f (t)dt + error terms

4. Jacobi Formula: ϑ(t) =
∑

e−πn2t.

(a) ∀t > 0, ϑ(t) = 1
√

t
· ϑ

( 1
t
)

(b) Diffusion Equations

(c) Statistical Mechanics
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(d) Automorphic forms & Elliptic functions

(e) Deligne’s proof of the Ramanajan conjecture

(f) Selberg trace formula is CST in number theoretic, non-abelian setting.

Given Zn = Z/nZ. Define the Fourier transform of f : Zn → C as F : Zn → C where

F[n] =
∑
m∈Zn

f (m)e−2πimn/N

Theorem 6 (Inversion Formula). Given f and F as stated, then

f (m) =
1
N

∑
n∈Zn

F(n)e2πimn/N

Proof. This shakes out immediately from the fact that

N∑
n=0

e2πin/N = 0.

�

Theorem 7 (Discrete Fourier Transform). Let Ω > 0, N ∈ 2N, and T s.t. 2ΩT = 1.
If f ∈ PWΩ, then consider the dilation fT as a function fT : Z → C (in addition to
being a continuous complex valued function on R), by m 7→ fT [m]. Define WN = e2πi/N

for notational purposes. Assume that fT ∈ `1(Z) and suppose that f̂ is continuous on
[−Ω,Ω]. Then, ∀n ∈ (−N/2,N/2), we have

f̂
(

2Ωn
N

)
= f̂

( n
NT

)
=

N−1∑
m=0

( fT )o[m] ·Wmn
N , where ( fT )o

N = T
∑
k∈Z

f
(
(m + kN) · T

)
Proof. By the CST (3), we have that

f = T
∑

f (mT ) · τmT d2πΩ =⇒ f̂ = T
∑

f (mT ) · e−mT · 1[−Ω,Ω]

where er(γ) = e2πirγ.

If n ∈ (−N/2,N/2), then

f̂
(

2Ωn
N

)
= T

∑
f (mT ) · e−2πimT2Ωn/N (2TΩ = 1)

= T
∑

m

mN+N−1∑
p=mN

f (pT )e−2πipn/N

= T
∑

m

N−1∑
j=0

f
(
( j + mN)T

)
· e−2πi( jm/N+mN)

Rearranging the sum completes the proof. �
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Now, for some historical motivation for wavelets.

Definition: Let g ∈ L2(R), and a, b > 0. The Gabor or Weyl-Heisenberg system of
Coherent States is the sequence {gm,n | (m, n) ∈ Z × Z}. Where

gm,n(t) = e2πitmb · g(t − na) = emb(t) · τnag(t).

Note that ĝm,n(γ) = τmb(e−na · ĝ)(γ). This arises as a tool in Quantum Mechanics.

Definition: Let ψ ∈ L2(R). The Dyadic Wavelet or Affine System for ψ is the sequence
{ψm,n | (m, n) ∈ Z × Z}, where

ψm,n(t) = 2m/2 · ψ
(
2m · t − n

)
=⇒ ψ̂m,n(γ) = 2−m/2 · e−n · ψ̂(γ · 2−m)

This arises in conjunction with the so called Affine Group, the group of affine transfor-
mations of R.

Some wavelets references: for a mathematical treatment see [5], for an applied math
treatment see [3], for an engineering treatment see [4].

Wavelets were developed independently in numerous disparate fields, from distinct ef-
forts and without significant cross fertilization until relatively recently.

In mathematics, this work was motivated by work in algebraic bases for function
spaces, the study of Fourier tranforms/series, and splines. Significant work was per-
formed by Haar (1909) in his PhD thesis, Franklin (1927), and Stromburg (1970’s),
Littlewood-Paley theory, and the Calderón formula.

In physics, the work was motivated by the above Gabor systems, in the work of Von
Neumann (1920’s or 1930’s), Heisenberg, and Weyl.

In engineering, the work was motivated by STFT (Short Time Fourier Transform),
speech processing (1970’s), two aspects of multi-resolution analysis - Quadratic Mir-
ror Filters (1970’s) and Image Processing (pyramidal schemes), the radar-ambiguity
function (1953), and Walsh functions (primordial wavelet packets).

Proposition 8 (Alberto Calderón). ∃ψ such that ∀ f ∈ L2(R)

f (t) =

∫
R

ψ1/u ∗ ψ1/u ∗ f
du
u

Proof. For a proof, see [1, 2.2.2 (c.)]. It will not be proved here. To see what ψ must
be like, let’s take the Fourier transform. Note that

f̂ (γ) = f̂ (γ) ·
∫
R

[
ψ̂(uγ)

]2 du
u

=⇒

∫
R

[
ψ̂(uγ)

]2 du
u

= 1 (almost everywhere)

The establishes the continuous wavelet transform. �
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Proposition 9 (Ingrid Daubechies). Given r ≥ 1, then ∃ψ ∈ C(r)
c (R) such that {ψm,n} is

an orthonormal basis for L2(R).

Proof. No proof given. This establishes a wavelet basis of arbitrary smoothness for
L2(R). This is an important extension to Haar’s work, which established a non-smooth
(step function, in fact) wavelet basis for L2(R). �
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Lecture on 16 September 2008

HW# is 34 from the old homework, ’X’, ’Y’ from the new homework. Look to the
instructions.
The next step in the evolution of wavelet theory was Multi-Resolution Analysis (MRA).

Definition: (Intuitive) Set

fM =
∑
m≤M

∑
n∈Z

〈 f , ψm,n〉 · ψm,n

Assume that ψ satisfies suppψ ⊆ [−1/2, 1/2]. Then, suppψm,n ⊆ Im,n
def
= [n2−m −

2−(m+1), n2−m + 2−(m+1)]. Note that

fM+1 = fM + 〈 f , ψM+1,n, ·〉ψM+1,n

In other words, fM+1 deblurs fM by adding details at a finer scale, on intervals of length
2−(m+2). This is the essence of MRA.

Definition: (Formal) This was probably first formalized by Y. Meyer. The pair {V j} j∈Z, ϕ
is an MRA of L2(R) if

1. each V j is a closed subspace (of L2(R).

2. V j ⊆ V j+1 for each j ∈ Z.

3.
⋃

V j = L2(R) and
⋂

V j = 0 (the zero function).

4. f (t) ∈ V j ⇐⇒ f (2t) ∈ V j+1.

5. f ∈ V0 ⇐⇒ ∀k ∈ Z, τk f ∈ V0.

6. ϕ ∈ V0 and {τkϕ}k∈Z for an orthonormal basis (ONB) for V0.

For example, ϕ = 1[0,1) and V0 = span{τkϕ}, this is the Haar system.
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Proposition 10. Given an MRA {V j}, ϕ of L2(R), then there exists an explicitly con-
structible ψ s.t. {ψm,n} is an ONB for L2(R).

Outline of Meyer’s Algorithm: W j is defined s.t. V j ⊕W j = V j+1.

1. ∃ψ ∈ W0 s.t. {τkψ} is an ONB for W0 and {ψm,n} form an ONB for L2(R).

2. ∃h0[n] s.t.

ϕ(t) =
√

2 ·
∑

h0[n] · ϕ(2t − n) =⇒
√

2 · ϕ̂(2γ) = H0(γ) · ϕ̂(γ).

Where H0(γ) =
∑

h0[n] · e−2πinγ. Then,

ψ(t) =
√

2 ·
∑

h1[n] · ϕ(2t − n) =⇒
√

2 · ψ̂(2γ) = −e−2πiγ · H0(γ + 1/2) · ϕ̂(γ)

where h1[n] = (−1)n · h0[−n + 1]. So, |H0(γ)|2 + |H0(γ + 1/2)|2 = 2.

Proposition 11 (Heisenberg Uncertainty Principle). If f ∈ L2(R), t0 ∈ R, γ0 ∈ R̂, then

‖ f ‖2L2(R) ≤ 4π · ‖ (t − t0) · f (t) ‖L2(R) · ‖ (γ − γ0) · f̂ (γ) ‖L2(R̂)

There are a series of Fourier uncertainty principles spawned by this idea.

This gives rise to two extreme cases:

• Suppose that f ∈ L2
loc(R) so that f is L2(I) for any finite interval I, and a ∈

[−3/2,−1/2). Suppose that f (t) is asymptotic to |t|a. then, f ∈ L2(R) and
∫
|t|2 ·

| f (t)|2dt = ∞.

• Suppose that f = 1[−T,T ] so that f̂ = d2πT and
∫
|γ|2 · | f̂ (γ)|2dγ = ∞.

Example 12. Suppose that

g(t) =

√
2s
π
· e−s(t−t0)2

· e2πitγ0 =⇒

σ2t = 4π‖ (t − t0) · g(t) ‖2L2(R) = π/s

σ2s = 4π‖ (γ − γ0) · ĝ(γ) ‖2
L2(R̂)

= s/π.

In this example, we get equality in the uncertainly principle. Apparently, this is an
iff situation. If we view the uncertainty principle as a product of variances, then this
situation for g seems to maximize the effectiveness of the process. This approach
was an important part of Gabor’s contribution - ”the best utilization of the information
area”. He wanted to decompose every signal into a collection of gaussians, to minimize
the uncertantity. That is, write

f (t) =
∑

m,n∈Z

cm,n ·

√
2s
π
· e−s(t−nσ2t)2

· e2πimσ2γ

As it turns out, this doesn’t quite work. It was a significant contribution to the field,
because it stimulated a lot of ideas.
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Proposition 13 (Balian - Low Theorem). Given a, b > 0 with ab = 1. Let f ∈ L2(R),
and fm,n(t) = e2πimbt · f (t − na). If { fm,n} is an ONB for L2(R), then∫

R

|t · f (t)|2dt = ∞ or
∫
R̂

|γ · f̂ (γ)|2dγ = ∞

It is clear that Gabor’s idea is incompatible with this fact.

Example 14 (Morlet Wavelet). Let ψ(t) = e−π·t
2
·
(
e2πitγ0 − e−πγ

2
0
)

and ψm,n(t) = 2m/2 ·

ψ
(
2m · t − n

)
be the dyadic system of dialates and translates.

These are best characterized by a picture, but the real idea is the ”same number of
cycles for low, medium, and high frequencies”. See [6].

Proposition 15 (Gabor Decomposition). This notation is a bit stiff. Suppose that
T,Ω > 0, 2TΩ ≤ 1, and g ∈ PW 1/2T with ĝ ∈ L∞(R̂), ĝ = 1 on [−Ω,Ω]. If
2TΩ < 1, then there are other conditions incompletely stated... (ĝ continuous, ĝ > 0
on [−1/2T, 1/2T ], maybe more?). Set

G(γ) =
∑
|ĝ(γ − mb)|2 s(t) = (ĝ/G)̌ (t)

Then, ∀ f ∈ L2(R),
f = T ·

∑
〈 f̂ , entτmbĝ〉 · τ−mT (embs)

Then, by theorem 3,
∀ f ∈ PWΩ, f = T

∑
f (nT )τmT s

Theorem 16 (Shannon Wavelet Decomposition). Let Ω > 0,

ϕ = (1/
√

2Ω) · d2πΩ

ψ = (1/
√

2Ω) · (d2π(2Ω) − d2πΩ) so
√

2Ω · ψ̂ = 1[−2Ω,−Ω) + 1(Ω,2Ω]
√

2Ω · ψ̂m,0(γ) = 2−m/2 ·
√

2Ω · ψ̂
( γ
2m

)
Let f ∈ L2(R), f̂ = F (notational convenience), Ω > 0, ϕ and ψ as above. Then,

f =
√

2Ω · f ∗ ϕ +

∞∑
m=0

∑
n∈Z

dm,nψm,n/(4Ω) =⇒

f =
∑
m∈Z

∑
n∈Z

dm,n · ψm,n/(4Ω) in the L2(R) norm.

dm,n =
1

√
2Ω · 2(m/2+1)

·

∫ 2m+1Ω

−2m+1Ω

F(γ) ·
(
1[−2mΩ,−2mΩ) + 1(2mΩ,2m+1Ω]

)
(γ) · e2πinγ/(2m+2Ω)dγ

Proof.

F(γ) =
√

2Ω ·

F(γ) · ϕ̂(γ) +

∞∑
m=0

F(γ) · ψ̂
( γ
2m

) =
√

2Ω ·
∑
m∈Z

F(γ) · ψ̂
( γ
2m

)
.
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Set Fm(γ) =
√

2Ω · F(γ) · ψ̂(γ/2m), and fm = F̌m. Then, ∀m ∈ Z, fm ∈ PW2m+1Ω and
supp Fm ⊆ [−2m+1Ω,−2mΩ) ∪ (2mΩ, 2m+1Ω].

Then, we can consider Fm as a 2m+2Ω periodic function on R̂ with
√

2Ω · F(γ) · ψ̂
( γ
2m

)
on [−2m+1Ω, 2m+1Ω]

S (Fm)(γ) =
∑
m∈Z

cm,n · e−2πimγ/(2m+2Ω) (Fourier series)

From the basic facts of Fourier series, we know that

fm(t) =

∫ 2m+1Ω

−2m+1Ω

Fm(γ)e2πitγdγ

=
√

2Ω ·
∑
m∈Z

cm,n ·

∫ 2m+1Ω

−2m+1Ω

ψ̂
( γ
2m

)
· e2πi(t−m/(2m+2Ω))γdγ︸                                       ︷︷                                       ︸
ψm,n/(4Ω)

in L2(R) norm.

But, remember that

f =
∑
m∈Z

fm =
∑
m∈Z

∑
n∈Z

√
2Ω · cm,n · ψm,n/(4Ω)

�

Note:

• {ψm,n/(4Ω)} is not orthogonal in L2(R), even though{
1

2m/2 ·
√

2Ω
· e−2πi(n/(2m+2Ω))γ

}
is an ONB for L2(T2m+2Ω).

• {ψm,n/(2Ω)} is an orthonormal sequence in L2(R). Therefore, if we show

∀ f ∈ L2(R),
∑

m,n∈Z

|〈 f , ψm,n/(2Ω)〉|
2 = ‖ f ‖2L2(R),

then we can conclude that {ψm,n/(2Ω)} is an ONB for L2(R).

Definition: Let H be a separable Hilbert space, {en}n∈Z ⊂ H is a frame for H if
∃A, B > 0 s.t.

∀x ∈ H, A‖x‖2 ≤
∑
n∈Z

|〈x, en〉|
2 ≤ B‖x‖2

If A = B, then it is called a tight frame.

The Shannon Wavelet Decomposition 16 asserts that {ψm,n/(4Ω)} is a tight wavelet frame
with A = B.
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Proposition 17. If {en} is a frame for H, then

∀x ∈ H, x =
∑
〈x, S −1en〉 · en, where Sx =

∑
〈x, en〉 · en

It turns out that Sx defines a topological isomorphism (I think this is directly from open
mapping?).
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Class on 23 September 2008

HW#11, 12, 20, 21, 39 and new problem Z

Definition: Let K ⊆ R̂ be called τ congruent to [−1/2, 1/2)d iff ∃{K j} a disjoint
(except on sets of measure 0) set of Lebesgue measurable subsets of R̂d, and ∃{k j} ⊆ Z

d

s.t. {K j} is a partition of K and {K j + k j} is a partition of [−1/2, 1/2)d.

Example 18. Let K = [−1,−1/2) ∪ [1/2, 1) ⊆ R̂.

1. K is τ congruent to [−1/2, 1/2). Let K− = [−1,−1/2) and K+ = [1/2, 1). Then,
(K− + 1) ∪ (K+ − 1) = [−1/2, 1/2). This example is relevant to the artwork of
M.C. Escher.

2. {2mK}m∈Z is a partition of R̂.

3. Let ψ̂ = 1[−1,−1/2) + 1[1/2,1) = 1K . Note that if f ∈ L2(R), and m, n ∈ Z, then∫
R̂

ψ̂m,n · f̂ dλ =

∫ −1/2

−1
(̂2mλ) · e2πinλdλ +

∫ 1

1/2
f̂ (2mλ) · e2πinλdλ

=

∫ 1/2

0
f̂ (2m(γ − 1))e2πinγdγ +

∫ 0

−1/2
f̂ (2m(γ + 1)) · e2πinγdγ

=

∫ 1/2

−1/2
e2πinγ ·

(
f̂ (2m(γ − 1))1K− (γ − 1) + f̂ (2m(γ + 1))1K+

(γ + 1)
)
dγ

This example will reappear in later work, and is instrumental throughout this lecture.

I took the liberty of introducing this as a lemma. It was presented in lecture as part of
a theorem.

Lemma 19. If K ⊆ R̂d is Lebesgue measurable s.t.

1. K is τ congruent to [−1/2, 1/2)d.

2. {2mK} is a partition (tiling) of R̂d.

14
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3. |K| = 1.

Let ψ̂ = 1K . Then, ∀ f ∈ L2(Rd), we have∑
m∈Z
n∈Zd

|〈 f , ψm,n〉|
2 = ‖ f ‖2L2(Rd)

Proof. Obviously, our example works for d = 1, but it isn’t clear that this even works
for higher dimensions (it does). No matter for now, suppose we had such a set. Then,
note∑
m∈Z
n∈Zd

|〈 f , ψm,n〉|
2 =

∑
m∈Z
n∈Zd

2md
∣∣∣∣∣∫

R̂d
f̂ (γ) · 2−md · e2πi(n2−m)·γ · ψ̂(2−mγ)dγ

∣∣∣∣∣2 by Parseval’s theorem

=
∑
m∈Z
n∈Zd

2−md
∣∣∣∣∣∫

R̂d
f̂ (2mλ) · e2πin·λ · ψ̂(λ)2mddγ

∣∣∣∣∣2

=
∑
m∈Z
n∈Zd

2md
∣∣∣∣∣∫

K
f̂ (2mλ) · e2πin·λdλ

∣∣∣∣∣2

=
∑
m∈Z
n∈Zd

2md

∣∣∣∣∣∣
∫

[−1/2,1/2)d
e2πin·λ

∑
j

f̂ (2m(γ − k j)) · 1K− j(γ − k j)

︸                                      ︷︷                                      ︸
Gm(γ)

dγ

∣∣∣∣∣∣2

=
∑
m∈Z

2md
(∫

[−1/2,1/2)d

∣∣∣∣Gm(γ)
∣∣∣∣2dγ

)
by Parseval’s theorem

=
∑
m∈Z

2md
∫

K

∣∣∣ f̂ (2mλ)
∣∣∣2dλ

=
∑
m∈Z

∫
2mK

∣∣∣ f̂ (γ)
∣∣∣2dγ

= ‖ f̂ ‖2
L2(R̂d)

by Property 2 of K

= ‖ f ‖2L2(Rd) by Plancherel

�

Theorem 20. Let K = [−1,−1/2) ∪ [1/2, 1) and ψ̂ = 1K . Then, {ψm,n} is an ONB for
L2(R).

Proof. The set {ψm,n} is orthonormal (asserted last class, and an immediate conse-
quence of the Plancherel theorem). To conclude that it is a basis, it remains to show
that

∀ f ∈ L2(R),
∑
|〈 f , ψm,n〉|

2 = ‖ f ‖2L2(R)

This follows immediately from the previous lemma. �
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Theorem 21. Let K ⊆ R̂d be a Lebesgue measurable set s.t.

1. |K| = 1.

2. {2mK} is a partition (tiling) of R̂d.

3. K is τ congruent to [−1/2, 1/2)d.

Set ψ = 1̌K . Then, {ψm,n} forms an ONB for L2(Rd).

Proof. As in the previous, this follows from Plancherel and the lemma. �

Definition: Let Im,n = {x ∈ R | 2−mn ≤ x < 2−m(n + 1)}. This is called a dyadic
interval. Note that Im+1,2n is the lower half of Im,n and Im+1,2n+1 is the upper half.

I have taken liberties with this result, to pick the low hanging fruit for the fact that the
Haar wavelets form an orthogonal system.

Lemma 22. Let Im,n and Ip,q be dyadic intervals and assume WLOG that m ≤ p. Then,
exactly one of the following holds:

1. Im,n = Ip,q ⇐⇒ m = p and n = q.

2. Im,n ∩ Ip,q = ∅.

3. m < p and Ip,q ⊆ Im+1,2n ⊂ Im,n.

4. m < p and Ip,q ⊆ Im+1,2n+1 ⊂ Im,n.

Proof. Suppose not, for a contradiction. The first two cases are trivial, so it suffices to
assume that m < p. Then, it must be the case that

q
2p <

n
2m =

2n
2m+1 <

q + 1
2p or

q
2p <

2n + 1
2m+1 <

q + 1
2p or

q
2p <

n + 1
2m =

2n + 2
2m+1 <

q + 1
2p

These all reduce to the case of M ≤ p, and

q
2p <

N
2M <

q + 1
2p

But, note that p − M ≥ 0, so N · 2p−M is an integer, and

q < N · 2p−M < q + 1

Then, we have found an integer strictly between q and q + 1, so we have reached the
desired contradiction. Note that the actual conclusion of this is that Ip,q is in one half
of Im,n. �
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Theorem 23. Let ψ = 1[0,1/2 − 1[1/2,1) be the Haar function. Then,

1. ∀m, n ∈ Z, suppψm,n = Im,n.

2. {ψm,n}m,n∈Z is orthonormal.

Proof. Part (1.) Note that x ∈ suppψm,n ⇐⇒ 2mx − n ∈ [0, 1) ⇐⇒ 2mx ∈
[n, n + 1) ⇐⇒ x ∈ [2−mn, 2−m(n + 1)) = Im,n.

Part (2.) Consider 〈ψm,n, ψp,q〉. From the previous lemma, there are only four cases.
Case (1.) m = p and n = q, and (by definition of ψ) we have 〈ψm,n, ψp,q〉 = ‖ψm,n ‖L2(R) =

1.
Case (2.) Obviously, 〈ψm,n, ψp,q〉 = 0, because suppψm,n ∩ suppψp,q = ∅.
Cases (3.) and (4.) From the lemma, we can conclude that ψm,n is constant (±1) on
suppψp,q. �

Theorem 24. Let ψ be the Haar function. Then, {ψm,n} is an ONB for L2(R).

Proof. That it is an orthonormal system was just shown. Now, it suffices to show that

∀ f ∈ L2(R), f =
∑
〈 f , ψm,n〉ψm,n in L2(R) norm.

This will be done as follows: Given ε > 0 and g ∈ L2(R).
First, show that ∃N ∈ N, ∃gN ∈ L2(R) s.t. supp gN ⊆ [−2N , 2N] and

‖ g − gN ‖L2(R) < ε/3.

Second, show that ∃M ∈ N and ∃ f ∈ L2(R) s.t. supp f ⊆ [−2N , 2N], f is constant on
intervals Im,n, and

‖ gN − f ‖L2(R) < ε/3.

Lastly (and most difficult), ∃{cm,n ∈ C | m, n ∈ F1 × F2 F j ⊆ Z finite} s.t.

‖ f −
∑

cm,nψm,n ‖L2(R) < ε/3.

This outline will be completed in two weeks. �
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