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ABSTRACT products ofU by characteristic functions. The rationale for

Constant amplitude zero autocorrelation (off the dc Compog:AZACs is stated, including its role in effective matched fil-
ring. The CAZACs we have constructed, and whose soft-

nent) waveforms are constructed. These are called CAZA(t,e )
. ) ; ware [10] we have made available, have the property &hat
waveforms. In thel-dimensional case they consist§fvec-

tors, whereV is given, andV is generally greater thah The Is not square-free, an_d we gve a typical example.
. . . . Sectior] B deals with a pristine form of the Doppler effect,
constructions are algebraic and have been implemented in

X and we construct a statistic in order to compute frequency
user friendly software. They have the added feature that theé’hifting and, therefore, target speed. This statistic is not only

r nnin for altdimensional signals. A h, an . "
are aspa g set for aild mensiona: signais. As such, a d elementary to explain and useful and accurate, it is also based
for N large, they are numerically stable in the presence of ma: R : ) .
o . ! . ._0on some intriguing arithmetic complexity. We state a funda-
chine imperfections and they give good signal reconStrUC“OPnental theoretical result as well as examoles
in the presence of various noises. The one dimensional case We give some basic results from thg théory of frames
provides effective thresholding to compute doppler shifts. in Sectior[ 4 as a prelude to our multifunction vector-valued
frame waveform problem. This problem is inspired by the fact
1. INTRODUCTION that CAZAC waveforms can be generalized as vector-valued
) ) functions defined o0, 1,..., K — 1} and taking values in
We shall analyze a certain class of unimodular low correlathe ynit spheres?—! of d-dimensional Euclidean spad.

tion waveforms, and indicate the role they play in a multi-For applications in which numerical stability and resilience
function environment associated with the theory of frames. Ifg machine error are important, we také > d. We were
fact, the specific waveforms with which we deal are of finitegso motivated to pose the multifunction vector-valued frame

length and have 0-autocorrelation off of the dc- componentyayeform problem because of our formulation of the notion
Such waveforms are referred to as CAZAC waveforms, viz.of generalized matched filtering.

Constant Amplitude Zero Autocorrelation. There is an ex-
tensive literature on CAZACs because of the importance of
such waveforms in communications and coding theory, e.g.,
[, 2,[3,[4,/5)6]. Our own interest is based on the impor-l_etem(n) — =T andZ = 0,1,...,K—1}. Letu, v :
tance of waveform design in several aspects of modern rad%rK R ’
[7.18,9] .

2. CAZAC WAVEFORMS

— C be K-periodic waveforms. Therosscorrelatiorof

- u andv is
Generally, there are distinct CAZAC waveforms of any
given lengthK, and different constructions of CAZACs may 1 K= _
yield different applicability. We begin in Secti¢fh 2 by defin- Cu(m) = K u(m + k)v(k)
k=0

ing the autocorrelation and crosscorrelation of signals of fi-

nite length K, as well as the ambiguity function of a given form =0,1,..., K — 1.
waveform of finite length. It is noted that the usual notion  Theautocorrelationof « is its crosscorelation with itself:
of the ambiguity function on the real lin& is the analogue A, (m) = C, . (m).

of our discrete definition. Then, properties of CAZACs are  The ambiguity functionof u, A : Zg x Zx — C, is
recorded including the important fact thats CAZAC ifand  defined as

only if its discrete Fourier transforil is CAZAC. In partic- K1

ular, CAZAC vyaveforms are broadband, and the be_st finite Au(G, k) = Cune, (4) = 1 Z u(m +j)u(m)e2ﬂ;<mk.
energy approximants by waveforms of smaller bandwidth are K

m=0




Itis natural to refer tod as the ambiguity function of, since  C,,, is L?(R) crosscorrelation, and the maximum system re-

in the usual setting on the real lifie the analogue ambiguity sponse is given by thmatched filterat(y)e =277, In the

function is digital case, CAZACs arise since travel time depends on cross-
B VT T amit(od3) correlati_on peak, apd sharp peaks obviate distortion and inter-
Au(t,y) = /A Ulw = 5)U(w+ J)e 2dw ference in the received waveform.
® There is a fundament&oppler tolerance problemcon-
_ / u(s + t)u(s)e2™ 7 ds, str_uct a statistic to determine an unknovyn Doppler fr(_equency
R shift. We also want to solve this for multiple frequencies.

In order to address this problem we have the following

whereU is the Fourier transform ofi : R — C, RisR
result [11].

considered as the spectral domain, and IRenorm (finite
energy) ofu is designated byfu,.

A K-periodic waveformu is a constant amplitude zero Theorem 1 Let& = M x N x IV and letk =0,1,..., K —

1. The quantity|Cy, 4, (-)| is N-periodic as a function of

autocorrelation wavefor{CAZAC) if [u(m)| = 1lom = k, i.e., there are at mos different graphs of C\, 4., (-)].
0,1,...,K — 1, and itsautocorrelationA,, (m) is 0 form = Also, givent, |C! () = 0forall j # (—k) mod MN
1,...,K — 1 (see Fig.[]1). There are different constructions 9 r [uuer )1 = J '

of different CAZAC waveforms resulting in different behav- Further, Zfzol |Cotsuer, () = 1.
ior vis a vis Doppler, additive noises, and approximation by
bandlimited waveforms.

Properties of CAZAC waveforms

Remarks The Doppler statistidC,, ., (j)| is excellent
and provable for detecting deodorized Doppler frequency shift
[11] (see FigDZ). Also, if one graphs onlje A(j, k) =
e u CAZAC = u is broadband (full bandwidth). Re Cy e, (j) then the statistic sometimes fails. Further, we
) point out that there are unresolved “arithmetic” complexities
e uCA <= DFT ofuis ZAC off dc. (DFT ofu can  \yhich are affected by waveform structure and length: and that
have zeros) our noise analysis is ongoing.

e u CAZAC <= DFT of u is CAZAC.

. 4. FRAMES AND MULTIFUNCTION PROBLEM
Rationale for CAZAC waveforms

CA allows transmission at peak power. In particular, thegjyen F = R¢ or H = C%, N > d. {z,}N_, C His afinite

system does not have to deal with the suprise of greater thagit norm tight frame (FUN-TFJf each||z,,|| = 1 and, for
expected amplitude. Further, distortion amplitude variationgach;: ¢ H,

can be detected usin@A. In fact, with CA, amplitude varia- a &

tions during transmission due to additive noise can be theo- T= Z(a:, T )T
retically eliminated at the receiver without distorting the mes- n=1

sage.

A sequencez, })_, C H is anA-tight frameif {z,}_;
Example of CAZAC Waveform K = 75 : N

. =00 L
u(z) = (1,1,1,1,1,1,2755 2715, €275 27005 25 spang] andAl|z|? = > (@, z,)|* for eachs € H.

e :3 11 213 -1 -2 -3 -4
62W1ﬁ7€2ﬂ23,€2ﬂ-1ﬁ,62ﬂ1ﬁ, 1’ 627”3,627”3,627”3 , 627”3,

1, ezm‘%’eQwi%762wig7€2wi%§’62m§’62m§762m’ e2m‘§’ Recent applicatior?s (1)f FUN-TFs
e2mis 1 e2mid p2mit oomif oomid g comids oomifd FUN-TFs are surprisingly applicable. They have arisen
2mit (2mifs o2miy o2mitd o2mil o2mifd o2miff in dealing with the robust transmission of data over erasure
i Q2mig o2mif o2milk | o2mif p2mif o2mi2 o2mif channels such as the interrietl[12,[13, 14], and in both multiple
2 Q2MITE 2mif o2mify 2mifd | 2mif o2miz antenna code design for wireless communication's [15] as well
2 2midd | o2mitd 2mifl 2mild o2mifd 2wz as multiple description coding [15, 11[7,118]. There are also
e2mifd p2midd p2mifl eQm‘%})). recent applications of FUN-TFs in quantum detection; A
guantization, and Grassmanian “min-max” waveforms, e.g.,
[19].

3. ADOPPLER STATISTIC .
Rationale for frames

In classical elementary matched filtering, an electromagnetic Frames give redundant signal representation to compen-
waveformu is emitted (with carrier) from a radar. The ideal Sat€ for machine imperfections, to ensure numerical stability,
reflected signal from a target ist) = au(t — fo), a > 0  andto minimize the effects of noise.

fixed; andt, is to be computed. The timfg is proportional Examples of FUN-TFs

to target distance. If, in factj(t) = au(t — to) for somety,

i e Orthonormal bases, the vertices of Platonic solids, and
en

kissing numbers (from sphere packing and error cor-
Coulto) = SUp |Co,u(B)]- recting codes) arEUN-TFs



e (DFT FUN-TFsS)N x d submatrices of th& x N DFT
matrix areFUN-TFsfor C?. These play a major role in
finite frameXA-quantization. The vectors

1
Ty = =

£ (

imLl im?2 im2 im & imL
2mimyg ’ 627”7”8 , eQTrmL8 , 627”‘"L8 2mimyg )7

e ,e

m=1,...,8,

form a FUN-TF forR®.
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The frame force

Theframe forceF" : S9! x §9-1\ D — R is defined as
F(a,b) = (a,b)(a — b), whereS?~! is the unit sphere iiR?.
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Fig. 2. Doppler statistic for CAZAC withK' = 75; (a) - (e)
graphs oflC,, e, ()| for k = 1,...,5, respectively.
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