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Outline and collaborators

1. CAZAC waveforms
2. Frames
3. Matched filtering and related problems
4. Quantum detection
5. Analytic methods to construct CAZAC waveforms

Collaborators: Matt Fickus (frame force), Andrew Kebo
(quantum detection), Joseph Ryan and Jeff Donatelli
(software).
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CAZAC Waveforms

Constant Amplitude Zero Autocorrelation (CAZAC)
Waveforms

A K-periodic waveform u : ZK = {0, 1, . . . , K − 1} → C is
CAZAC if |u(m)| = 1, m = 0, 1, . . . , K − 1, and the autocorrelation

Au(m) =
1

K

K−1∑
k=0

u(m + k)u(k) is 0 for m = 1, . . . , K − 1.

The crosscorrelation of u, v : ZK → C is

Cu,v(m) =
1

K

K−1∑
k=0

u(m + k)ν(k) for m = 0, 1, . . . , K − 1.
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Properties of CAZAC waveforms

u CAZAC ⇒ u is broadband (full bandwidth).
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bandlimited waveforms.
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Properties of CAZAC waveforms

u CAZAC ⇒ u is broadband (full bandwidth).

There are different constructions of different CAZAC
waveforms resulting in different behavior vis à vis
Doppler, additive noises, and approximation by
bandlimited waveforms.

u CA ⇐⇒ DFT of u is ZAC off dc. (DFT of u can have
zeros)

u CAZAC ⇐⇒ DFT of u is CAZAC.

User friendly software:
http://www.math.umd.edu/∼jjb/cazac
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Rationale for CAZAC waveforms

CA allows transmission at peak power. (The system
does not have to deal with the suprise of greater than
expected amplitude.)
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Distortion amplitude variations can be detected using
CA. (With CA amplitude variations during transmission
due to additive noise can be theoretically eliminated at
the receiver without distorting message.)
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Rationale for CAZAC waveforms

CA allows transmission at peak power. (The system
does not have to deal with the suprise of greater than
expected amplitude.)

Distortion amplitude variations can be detected using
CA. (With CA amplitude variations during transmission
due to additive noise can be theoretically eliminated at
the receiver without distorting message.)

A sharp unique peak in Au is important because of
distortion and interference in received waveforms, e.g.,
in radar and communications–more later.
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Examples of CAZAC Waveforms

K = 75 : u(x) =

(1, 1, 1, 1, 1, 1, e2πi 1
15 , e2πi 2

15 , e2πi 1
5 , e2πi 4

15 , e2πi 1
3 , e2πi 7

15 , e2πi 3
5 ,

e2πi 11
15 , e2πi 13

15 , 1, e2πi 1
5 , e2πi 2

5 , e2πi 3
5 , e2πi 4

5 , 1, e2πi 4
15 , e2πi 8

15 , e2πi 4
5 ,

e2πi 16
15 , e2πi 1

3 , e2πi 2
3 , e2πi, e2πi 4

3 , e2πi 5
3 , 1, e2πi 2

5 , e2πi 4
5 , e2πi 6

5 ,

e2πi 8
5 , 1, e2πi 7

15 , e2πi 14
15 , e2πi 7

5 , e2πi 28
15 , e2πi 1

3 , e2πi 13
15 , e2πi 7

5 , e2πi 29
15 ,

e2πi 37
15 , 1, e2πi 3

5 , e2πi 6
5 , e2πi 9

5 , e2πi 12
5 , 1, e2πi 2

3 , e2πi 4
3 , e2πi·2, e2πi 8

3 ,

e2πi 1
3 , e2πi 16

15 , e2πi 9
5 , e2πi 38

15 , e2πi 49
15 , 1, e2πi 4

5 , e2πi 8
5 , e2πi 12

5 , e2πi 16
5 ,

1, e2πi 13
15 , e2πi 26

15 , e2πi 13
5 , e2πi 52

15 , e2πi 1
3 , e2πi 19

15 , e2πi 11
5 , e2πi 47

15 , e2πi 61
15 )
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Autocorrelation of CAZAC K = 75
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Finite ambiguity function

Given K-periodic waveform, u : ZK → C let em(n) = e
−2πimn

K .

The ambiguity function of u, A : ZK ×ZK → K is defined as

Au(j, k) = Cu,uek(j) =
1

K

K−1∑
m=0

u(m + j)u(m)e
2πimk

K .
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Finite ambiguity function

Given K-periodic waveform, u : ZK → C let em(n) = e
−2πimn

K .

The ambiguity function of u, A : ZK ×ZK → K is defined as

Au(j, k) = Cu,uek(j) =
1

K

K−1∑
m=0

u(m + j)u(m)e
2πimk

K .

Analogue ambiguity function for u ↔ U , ‖u‖2 = 1, on R:

Au(t, γ) =

∫
bR

U(ω −
γ

2
)U(ω +

γ

2
)e2πit(ω+ γ

2
)dω

=

∫
u(s + t)u(s)e2πisγds.
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Finite ambiguity function and Doppler

Standard Doppler tolerance problems:

How well does Au(·, k) behave as k varies from 0?
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Is the behavior robust in the sense of being close to
Au(·) if k is close to 0?
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Finite ambiguity function and Doppler

Standard Doppler tolerance problems:

How well does Au(·, k) behave as k varies from 0?

Is the behavior robust in the sense of being close to
Au(·) if k is close to 0?

Standard Doppler frequency shift problem: Construct a
statistic to determine unknown Doppler frequency shift.
Do this for multiple frequencies.
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Finite ambiguity function and Doppler

Standard Doppler tolerance problems:

How well does Au(·, k) behave as k varies from 0?

Is the behavior robust in the sense of being close to
Au(·) if k is close to 0?

Standard Doppler frequency shift problem: Construct a
statistic to determine unknown Doppler frequency shift.
Do this for multiple frequencies.

Provide rigorous justification for CAZAC simulations
associated with the Doppler tolerance question and
frequency shift problem.
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Remarks

The Doppler statistic |Cu,uek(j)| is excellent and provable
for detecting deodorized Doppler frequency shift.
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then the statistic sometimes fails.
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then the statistic sometimes fails.

There are unresolved “arithmetic” complexities which
are affected by waveform structure and length.
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Remarks

The Doppler statistic |Cu,uek(j)| is excellent and provable
for detecting deodorized Doppler frequency shift.

If one graphs only

Re A(j, k) = Re Cu,uek(j)

then the statistic sometimes fails.

There are unresolved “arithmetic” complexities which
are affected by waveform structure and length.

Noise analysis is ongoing.
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Doppler Statistic
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Doppler Statistic
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Frames

Redundant signal representation

Given H = Rd or H = C
d, N ≥ d. {xn}

N
n=1 ⊆ H is a finite

unit norm tight frame (FUN-TF) if each ‖xn‖ = 1 and, for each
x ∈ H,

x =
d

N

N∑
n=1

〈x, xn〉xn.
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Frames

Redundant signal representation

Given H = Rd or H = C
d, N ≥ d. {xn}

N
n=1 ⊆ H is a finite

unit norm tight frame (FUN-TF) if each ‖xn‖ = 1 and, for each
x ∈ H,

x =
d

N

N∑
n=1

〈x, xn〉xn.

{xn}
N
n=1 ⊆ H is an A-tight frame if {xn}

N
n=1 spans H and

A‖x‖2 =
N∑

n=1

|〈x, xn〉|
2 for each x ∈ H.
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Recent applications of FUN-TFs

Robust transmission of data over erasure channels
such as the internet [Casazza, Goyal, Kelner,
Kovačević]
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Recent applications of FUN-TFs

Robust transmission of data over erasure channels
such as the internet [Casazza, Goyal, Kelner,
Kovačević]

Multiple antenna code design for wireless
communications [Hochwald, Marzetta,T. Richardson,
Sweldens, Urbanke]

Multiple description coding [Goyal, Heath, Kovačević,
Strohmer,Vetterli]
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Properties and examples of FUN-TFs

Frames give redundant signal representation to
compensate for hardware errors, to ensure numerical
stability, and to minimize the effects of noise.
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Properties and examples of FUN-TFs

Frames give redundant signal representation to
compensate for hardware errors, to ensure numerical
stability, and to minimize the effects of noise.

Thus, if certain types of noises are known to exist, then
the FUN-TFs are constructed using this information.
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Properties and examples of FUN-TFs

Frames give redundant signal representation to
compensate for hardware errors, to ensure numerical
stability, and to minimize the effects of noise.

Thus, if certain types of noises are known to exist, then
the FUN-TFs are constructed using this information.

Orthonormal bases, vertices of Platonic solids, kissing
numbers (sphere packing and error correcting codes)
are FUN-TFs.
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DFT FUN-TFs

N × d submatrices of the N × N DFT matrix are
FUN-TFs for C

d. These play a major role in finite frame
Σ∆-quantization.
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DFT FUN-TFs

N × d submatrices of the N × N DFT matrix are
FUN-TFs for C

d. These play a major role in finite frame
Σ∆-quantization.

“Sigma-Delta” Super Audio CDs - but not all authorities
are fans.
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Frame force

The frame force: F : Sd−1 × Sd−1 \ D → R
d is defined as

F (a, b) = 〈a, b〉(a − b), Sd−1 is the unit sphere in R
d.

F is a (central) conservative force field.
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Frame force

The frame force: F : Sd−1 × Sd−1 \ D → R
d is defined as

F (a, b) = 〈a, b〉(a − b), Sd−1 is the unit sphere in R
d.

F is a (central) conservative force field.

Total potential energy for the frame force of {xn}
N
n=1

⊆ Sd−1 :

P =

N∑
m=1

N∑
n=1

|〈xm, xn〉|
2
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Frame force

The frame force: F : Sd−1 × Sd−1 \ D → R
d is defined as

F (a, b) = 〈a, b〉(a − b), Sd−1 is the unit sphere in R
d.

F is a (central) conservative force field.

Total potential energy for the frame force of {xn}
N
n=1

⊆ Sd−1 :

P =

N∑
m=1

N∑
n=1

|〈xm, xn〉|
2

Let N ≥ d. The minimum value of P for the frame force F and N

variables is N

d
; and the minimizers of P are precisely all of the

FUN-TFs of N elements in Sd−1.
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Frame force

The frame force: F : Sd−1 × Sd−1 \ D → R
d is defined as

F (a, b) = 〈a, b〉(a − b), Sd−1 is the unit sphere in R
d.

F is a (central) conservative force field.

Total potential energy for the frame force of {xn}
N
n=1

⊆ Sd−1 :

P =

N∑
m=1

N∑
n=1

|〈xm, xn〉|
2

Let N ≥ d. The minimum value of P for the frame force F and N

variables is N

d
; and the minimizers of P are precisely all of the

FUN-TFs of N elements in Sd−1.

Compute these frames.
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Multifunction vector-valued frame waveforms

Problem: Construct, code, and implement (user-friendly)
N -periodic waveforms (N ≥ d)

u : ZN → Sd−1 ⊆ R
d (or C

d),

n → un = (un(1), un(2), . . . , un(d)), n = 0, 1, . . . , N − 1

which are FUN-TFs (for redundant signal representation)
and CAZAC (zero or low correlation off dc), i.e.,

x =
d

N

N−1∑
n=0

〈x, un〉un and Au(m) =
1

N

N−1∑
j=0

〈um+j , uj〉 = 0,

m = 1, . . . N − 1.
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Techniques for multifunction CAZAC waveforms

The following are recent applications of FUN-TFs.

Quantum detection [Bölkskei, Eldar, Forney,
Oppenheim, B]
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Techniques for multifunction CAZAC waveforms

The following are recent applications of FUN-TFs.

Quantum detection [Bölkskei, Eldar, Forney,
Oppenheim, B]

Σ∆-quantization (better linear reconstruction than MSE
of PCM) [Daubechies, Devore, Gunturk, Powell, N.
Thao, Yilmaz, B]

Grassmannian “min-max” waveforms [Calderbank,
Conway, Sloane, et al., Kolesar, B]

Grassmannian analysis gives another measure of the
crosscorrelation. A FUN frame {un}

N
n=1 ⊆ H is

Grassmannian if maxk 6=l |〈uk, ul〉| = inf maxk 6=l |〈xk, xl〉|,
where the infimum is over all FUN frames.
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Matched Filtering

Processing
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Natural problems associated with multifunction frame waveforms (1)

Implement FUN-TF Σ∆ A/D converters to take
advantage of proven improved error estimates for linear
reconstruction over PCM and comparable to MSE-PCM.
(MSE-PCM is based on Bennett’s white noise
assumption which is not always valid. With consistent
reconstruction, and its added numerical complexity,
MSE-PCM is comparable to FUN-TF MSE-Σ∆.)
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Natural problems associated with multifunction frame waveforms (2)

Distinguish multiple frequencies and times (ranges) in
the ambiguity function,

A(“t”, “γ”) =

∫
R̂

U(ω)(
∑

αjU(ω + γj)e
2πitjω)dω,

by means of multifunction frame waveforms.
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Natural problems associated with multifunction frame waveforms (3)

Compute optimal 1-tight frame CAZAC waveforms,
{en}

N
n=1, using quantum detection error:

Pe = min
{en}

(1 −
N∑

i=1

ρn|〈un, en〉|
2),

N∑
n=1

ρn = 1, ρn > 0,

where {un}
N
n=1 ⊆ Sd−1 is given. This is a multifunction

matched filtering.
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Classical elementary matched filtering

Electromagnetic waveform u : R (radar) → T (target)
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Classical elementary matched filtering

Electromagnetic waveform u : R (radar) → T (target)

Ideal reflected signal v(t) = au(t − t0), a > 0 fixed, where t0 is to be
computed.
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Classical elementary matched filtering

Electromagnetic waveform u : R (radar) → T (target)

Ideal reflected signal v(t) = au(t − t0), a > 0 fixed, where t0 is to be
computed.

t0 is proportional to target distance.
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Classical elementary matched filtering

Electromagnetic waveform u : R (radar) → T (target)

Ideal reflected signal v(t) = au(t − t0), a > 0 fixed, where t0 is to be
computed.

t0 is proportional to target distance.

If v(t) = au(t − t0) for some t0, then

Cv,u(t0) = sup
t

|Cv,u(t)|.

Cv,u is L2(R) crosscorrelation and maximum system response is given by
matched filter aû(γ)e−2πit0γ
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Classical elementary matched filtering

Electromagnetic waveform u : R (radar) → T (target)

Ideal reflected signal v(t) = au(t − t0), a > 0 fixed, where t0 is to be
computed.

t0 is proportional to target distance.

If v(t) = au(t − t0) for some t0, then

Cv,u(t0) = sup
t

|Cv,u(t)|.

Cv,u is L2(R) crosscorrelation and maximum system response is given by
matched filter aû(γ)e−2πit0γ

In digital case, CAZACs arise since travel time depends on crosscorrelation
peak, and sharp peaks obviate distortion and interference in received
waveform.
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Outline of multifunction matched filtering problem

QM formulates concept of measuring a dynamical
quantity (e.g., position of an electron in R

3) and the
probability p that the outcome is in U ⊆ R

3 .
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3 .

Positive operator-valued measure (POVM) gives rise to
p.
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Outline of multifunction matched filtering problem

QM formulates concept of measuring a dynamical
quantity (e.g., position of an electron in R

3) and the
probability p that the outcome is in U ⊆ R

3 .

Positive operator-valued measure (POVM) gives rise to
p.

In H = C
d, POVMs and 1-tight frames are equivalent.
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Outline of multifunction matched filtering problem

QM formulates concept of measuring a dynamical
quantity (e.g., position of an electron in R

3) and the
probability p that the outcome is in U ⊆ R

3 .

Positive operator-valued measure (POVM) gives rise to
p.

In H = C
d, POVMs and 1-tight frames are equivalent.

Given {un}
N
n=1 ⊆ Sd−1. Compute/construct a 1-tight

frame minimizer {en}
N
n=1 of quantum detection (QD)

error Pe.
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Outline of multifunction matched filtering algorithm

Transfer tight frames for C
d to ONBs in C

N (Naimark
point of view and esssential for computation).
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Outline of multifunction matched filtering algorithm

Transfer tight frames for C
d to ONBs in C

N (Naimark
point of view and esssential for computation).

Show that the QD error is a potential energy function of
frame force in C

N .
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Outline of multifunction matched filtering algorithm

Transfer tight frames for C
d to ONBs in C

N (Naimark
point of view and esssential for computation).

Show that the QD error is a potential energy function of
frame force in C

N .

Use the orthogonal group and the Euler-Lagrange
equation for the potential Pe to compute equations of
motion and a minimal energy solution {en}

N
n=1.
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Quantum Detection

Positive-operator-valued measures

Let B be a σ-algebra of sets of X. A positive operator-valued measure (POM) is a function
Π : B → L(H) such that

1. ∀U ∈ B, Π(U) is a positive self-adjoint operator,

2. Π(∅) = 0 (zero operator),

3. ∀ disjoint {Ui}∞i=1 ⊂ B and x, y ∈ H,

*

Π

 
∞[

i=1

Ui

!

x, y

+

=

∞X

i=1

〈Π(Ui)x, y〉,

4. Π(X) = I (identity operator).

A POM Π on B has the property that given any fixed x ∈ H, px(·) = 〈x, Π(·)x〉 is a
measure on B. (Probability if ‖x‖ = 1).
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Quantum Detection

Positive-operator-valued measures

Let B be a σ-algebra of sets of X. A positive operator-valued measure (POM) is a function
Π : B → L(H) such that

1. ∀U ∈ B, Π(U) is a positive self-adjoint operator,

2. Π(∅) = 0 (zero operator),

3. ∀ disjoint {Ui}∞i=1 ⊂ B and x, y ∈ H,

*

Π

 
∞[

i=1

Ui

!

x, y

+

=

∞X

i=1

〈Π(Ui)x, y〉,

4. Π(X) = I (identity operator).

A POM Π on B has the property that given any fixed x ∈ H, px(·) = 〈x, Π(·)x〉 is a
measure on B. (Probability if ‖x‖ = 1).

A dynamical quantity Q gives rise to a measurable space (X,B) and POM. When
measuring Q, px(U) is the probability that the outcome of the measurement is in U ∈ B.
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Example

Suppose we want to measure the position of an electron.

1
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Example

Suppose we want to measure the position of an electron.

The space of all possible positions is given by X = R
3.

1
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Example

Suppose we want to measure the position of an electron.

The space of all possible positions is given by X = R
3.

The Hilbert space is given by H = L2(R3).

1
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Example

Suppose we want to measure the position of an electron.

The space of all possible positions is given by X = R
3.

The Hilbert space is given by H = L2(R3).

The corresponding POM is defined for all U ∈ B by

Π(U) = 1U .
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Example

Suppose we want to measure the position of an electron.

The space of all possible positions is given by X = R
3.

The Hilbert space is given by H = L2(R3).

The corresponding POM is defined for all U ∈ B by

Π(U) = 1U .

Suppose the state of the electron is given by x ∈ H with unit norm. Then the
probability that the electron is found to be in the region U ∈ B is given by

p(U) = 〈x, Π(U)x〉 =

Z

U

|x(t)|2 dt.
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Parseval frames correspond to POMs

Let F = {en}N
n=1 be a Parseval frame for a d-dimensional Hilbert space H and let

X = ZN .
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Parseval frames correspond to POMs

Let F = {en}N
n=1 be a Parseval frame for a d-dimensional Hilbert space H and let

X = ZN .

For all x ∈ H and U ⊆ X define

Π(U)x =
X

i∈U

〈x, ei〉ei.
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Parseval frames correspond to POMs

Let F = {en}N
n=1 be a Parseval frame for a d-dimensional Hilbert space H and let

X = ZN .

For all x ∈ H and U ⊆ X define

Π(U)x =
X

i∈U

〈x, ei〉ei.

Clear that Π satisfies conditions (1)-(3) for a POM. Since F is Parseval, we have
condition (4) (Π(X)x =

P

i∈X〈x, ei〉ei = x). Thus Π defines a POM.
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Parseval frames correspond to POMs

Let F = {en}N
n=1 be a Parseval frame for a d-dimensional Hilbert space H and let

X = ZN .

For all x ∈ H and U ⊆ X define

Π(U)x =
X

i∈U

〈x, ei〉ei.

Clear that Π satisfies conditions (1)-(3) for a POM. Since F is Parseval, we have
condition (4) (Π(X)x =

P

i∈X〈x, ei〉ei = x). Thus Π defines a POM.

Conversely, let (X,B) be a measurable space with corresponding POM Π for a
d-dimensional Hilbert space H. If X is countable then there exists a subset K ⊆ Z, a
Parseval frame {ei}i∈K , and a disjoint partition {Bj}j∈X of K such that for all j ∈ X

and y ∈ H,

Π(j)y =
X

i∈Bj

〈y, ei〉ei.
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Quantum detection for finite frames

H a finite dimensional Hilbert space (corresponding to a physical system).
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Quantum detection for finite frames

H a finite dimensional Hilbert space (corresponding to a physical system).

Suppose that the state of the system is limited to be in one of a finite number of possible
unit normed states {xi}N

i=1 ⊂ H with corresponding probabilities {ρi}N
i=1 that sum to 1.
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Quantum detection for finite frames

H a finite dimensional Hilbert space (corresponding to a physical system).

Suppose that the state of the system is limited to be in one of a finite number of possible
unit normed states {xi}N

i=1 ⊂ H with corresponding probabilities {ρi}N
i=1 that sum to 1.

Our goal is to determine what state the system is in by performing a "good"
measurement. That is, we want to construct a POM with outcomes X = ZN such that if
the state of the system is xi for some 1 ≤ i ≤ N , then

pxi
(j) = 〈xi, Π(j)xi〉 ≈

8
<

:

1 if i = j

0 if i 6= j
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Quantum detection for finite frames

H a finite dimensional Hilbert space (corresponding to a physical system).

Suppose that the state of the system is limited to be in one of a finite number of possible
unit normed states {xi}N

i=1 ⊂ H with corresponding probabilities {ρi}N
i=1 that sum to 1.

Our goal is to determine what state the system is in by performing a "good"
measurement. That is, we want to construct a POM with outcomes X = ZN such that if
the state of the system is xi for some 1 ≤ i ≤ N , then

pxi
(j) = 〈xi, Π(j)xi〉 ≈

8
<

:

1 if i = j

0 if i 6= j

Since 〈xi, Π(i)xi〉 is the probability of a successful detection of the state xi, then the
probability of a detection error is given by

Pe = 1 −
NX

i=1

ρi〈xi, Π(i)xi〉.
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Quantum detection problem

If we construct our POM using Parseval frames, the error becomes

Pe = 1 −
NX

i=1

ρi〈xi, Π(i)xi〉

= 1 −
NX

i=1

ρi〈xi, 〈xi, ei〉ei〉

= 1 −
NX

i=1

ρi |〈xi, ei〉|
2
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Quantum detection problem

If we construct our POM using Parseval frames, the error becomes

Pe = 1 −
NX

i=1

ρi〈xi, Π(i)xi〉

= 1 −
NX

i=1

ρi〈xi, 〈xi, ei〉ei〉

= 1 −
NX

i=1

ρi |〈xi, ei〉|
2

Quantum detection problem: Given a unit normed set {xi}N
i=1 ⊂ H and positive weights

{ρi}N
i=1 that sum to 1. Construct a Parseval frame {ei}N

i=1 that minimizes

Pe = 1 −
NX

i=1

ρi |〈xi, ei〉|
2

over all N -element Parseval frames. ({ei}N
i=1 exists by a compactness argument.)

Waveform design and quantum detection matched filtering – p.31/45



Naimark theorem

Naimark Theorem Let H be a d-dimensional Hilbert space and let {ei}N
i=1 ⊂ H, N ≥ d, be

a Parseval frame for H. Then there exists an N -dimensional Hilbert space H′ and an
orthonormal basis {e′i}

N
i=1 ⊂ H′ such that H is a subspace of H′ and

∀i = 1, . . . , N, PHe′i = ei,

where PH is the orthogonal projection H′ → H.

Given {xi}N
i=1 ⊂ H and a Parseval frame {ei}N

i=1 ⊂ H. If {e′i}
N
i=1 is its corresonding

orthonormal basis for H′, then, for all i = 1, . . . , N , 〈xi, ei〉 = 〈xi, e
′

i〉.
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Naimark theorem

Naimark Theorem Let H be a d-dimensional Hilbert space and let {ei}N
i=1 ⊂ H, N ≥ d, be

a Parseval frame for H. Then there exists an N -dimensional Hilbert space H′ and an
orthonormal basis {e′i}

N
i=1 ⊂ H′ such that H is a subspace of H′ and

∀i = 1, . . . , N, PHe′i = ei,

where PH is the orthogonal projection H′ → H.

Given {xi}N
i=1 ⊂ H and a Parseval frame {ei}N

i=1 ⊂ H. If {e′i}
N
i=1 is its corresonding

orthonormal basis for H′, then, for all i = 1, . . . , N , 〈xi, ei〉 = 〈xi, e
′

i〉.

Minimizing Pe over all N -element Parseval frames for H is equivalent to minimizing Pe

over all N -element orthonormal bases for H′.
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Naimark theorem

Naimark Theorem Let H be a d-dimensional Hilbert space and let {ei}N
i=1 ⊂ H, N ≥ d, be

a Parseval frame for H. Then there exists an N -dimensional Hilbert space H′ and an
orthonormal basis {e′i}

N
i=1 ⊂ H′ such that H is a subspace of H′ and

∀i = 1, . . . , N, PHe′i = ei,

where PH is the orthogonal projection H′ → H.

Given {xi}N
i=1 ⊂ H and a Parseval frame {ei}N

i=1 ⊂ H. If {e′i}
N
i=1 is its corresonding

orthonormal basis for H′, then, for all i = 1, . . . , N , 〈xi, ei〉 = 〈xi, e
′

i〉.

Minimizing Pe over all N -element Parseval frames for H is equivalent to minimizing Pe

over all N -element orthonormal bases for H′.

Thus we simplify the problem by minimizing Pe over all N -element orthonormal sets in
H′.
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Quantum detection error as a potential

Treat the error term as a potential.

P = Pe =
NX

i=1

ρi(1− |〈xi, e
′

i〉|
2) =

NX

i=1

Pi.

where we have used the fact that
PN

i=1 ρi = 1 and each

Pi = ρi(1− |〈xi, e
′

i〉|
2).
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Quantum detection error as a potential

Treat the error term as a potential.

P = Pe =
NX

i=1

ρi(1− |〈xi, e
′

i〉|
2) =

NX

i=1

Pi.

where we have used the fact that
PN

i=1 ρi = 1 and each

Pi = ρi(1− |〈xi, e
′

i〉|
2).

For H′ = R
N , we have the relation,

‖e′i − xi‖
2 = 2 − 2〈xi, e

′

i〉

where we have used the fact that ‖e′i‖ = ‖xi‖ = 1. We can rewrite the potential Pi as

Pi = ρi

 

1 −

»

1 −
1

2
‖xi − e′i‖

2

–2
!

.
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A central force corresponds to quantum detection error

Given Pi, define the function pi : R → R by

pi(x) = ρi

 

1 −

»

1 −
1

2
x2

–2
!

.

Waveform design and quantum detection matched filtering – p.34/45



A central force corresponds to quantum detection error

Given Pi, define the function pi : R → R by

pi(x) = ρi

 

1 −

»

1 −
1

2
x2

–2
!

.

Thus Pi is a potential corresponding to a central force in the following way:

−xfi(x) = p′i(x) = 2ρi

„

1 −
1

2
x2

«

x

⇒ fi(x) = −2ρi

„

1 −
1

2
x2

«

.
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A central force corresponds to quantum detection error

Given Pi, define the function pi : R → R by

pi(x) = ρi

 

1 −

»

1 −
1

2
x2

–2
!

.

Thus Pi is a potential corresponding to a central force in the following way:

−xfi(x) = p′i(x) = 2ρi

„

1 −
1

2
x2

«

x

⇒ fi(x) = −2ρi

„

1 −
1

2
x2

«

.

Hence, the force Fi = −∇Pi is

Fi(xi, e
′

i) = fi(‖xi − e′i‖)(xi − e′i) = −2ρi〈xi, e
′

i〉(xi − e′i),

a multiple of the frame force! The total force is given by

F =
NX

i=1

Fi.
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A reformulation of the quantum detection problem

We reformulate the quantum detection problem in terms of frame force and the Naimark
Theorem.
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A reformulation of the quantum detection problem

We reformulate the quantum detection problem in terms of frame force and the Naimark
Theorem.

The given elements {xi}N
i=1 ⊂ H′ can be viewed as fixed points on the sphere

SN−1 ⊂ H′.

Waveform design and quantum detection matched filtering – p.35/45



A reformulation of the quantum detection problem

We reformulate the quantum detection problem in terms of frame force and the Naimark
Theorem.

The given elements {xi}N
i=1 ⊂ H′ can be viewed as fixed points on the sphere

SN−1 ⊂ H′.

The elements {e′i}
N
i=1 ⊂ H′ form an orthonormal set which move according to the

interaction between each xi and e′i by the frame force

Fi(xi, e
′

i) = −2ρi〈xi, e
′

i〉(e
′

i − xi).
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A reformulation of the quantum detection problem

We reformulate the quantum detection problem in terms of frame force and the Naimark
Theorem.

The given elements {xi}N
i=1 ⊂ H′ can be viewed as fixed points on the sphere

SN−1 ⊂ H′.

The elements {e′i}
N
i=1 ⊂ H′ form an orthonormal set which move according to the

interaction between each xi and e′i by the frame force

Fi(xi, e
′

i) = −2ρi〈xi, e
′

i〉(e
′

i − xi).

The equilibrium position of the points {e′i}
N
i=1 is the position where all the forces

produce no net motion. In this situation, the potential P is minimized.
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A reformulation of the quantum detection problem

We reformulate the quantum detection problem in terms of frame force and the Naimark
Theorem.

The given elements {xi}N
i=1 ⊂ H′ can be viewed as fixed points on the sphere

SN−1 ⊂ H′.

The elements {e′i}
N
i=1 ⊂ H′ form an orthonormal set which move according to the

interaction between each xi and e′i by the frame force

Fi(xi, e
′

i) = −2ρi〈xi, e
′

i〉(e
′

i − xi).

The equilibrium position of the points {e′i}
N
i=1 is the position where all the forces

produce no net motion. In this situation, the potential P is minimized.

For the remainder, let {e′i}
N
i=1 be an ONB for R

N that minimizes P . Recall that {e′i}
N
i=1

exists by compactness. The quantum detection problem is to construct or compute
{e′i}

N
i=1.
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A parameterization of O(N)

Consider the orthogonal group

O(N) = {Θ ∈ GL(N, R) : ΘτΘ = I}.
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A parameterization of O(N)

Consider the orthogonal group

O(N) = {Θ ∈ GL(N, R) : ΘτΘ = I}.

Since O(N) is an N(N − 1)/2-dimensional smooth manifold, we can locally
parameterize O(N) by N(N − 1)/2 variables, i.e., Θ = Θ(q1, . . . , qN(N−1)/2) for each
Θ ∈ O(N).

Hence, for all θ ∈ O(N) there is a surjective diffeomorphism bθ

O(N)

∪

bθ : Uθ −→ U ⊂ R
N(N−1)/2

for relatively compact neighborhoods Uθ ⊆ O(N) and U ⊆ R
N(N−1)/2, θ ∈ Uθ.
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A parameterization of ONBs

Let {wi}N
i=1 be the standard ONB for H′ = R

N : wi = (0, . . . , 0, 1
|{z}

ith

, 0, . . . , 0).
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A parameterization of ONBs

Let {wi}N
i=1 be the standard ONB for H′ = R

N : wi = (0, . . . , 0, 1
|{z}

ith

, 0, . . . , 0).

Since any two orthonormal sets are related by an orthogonal transformation, we can
smoothly parameterize an orthonormal set {ei}N

i=1 with N elements by N(N − 1)/2

variables, i.e.,

{ei(q1, . . . , qN(N−1)/2)}N
i=1 = {Θ(q1, . . . , qN(N−1)/2)wi}

N
i=1 ⊂ H′.

where for all Ψ ∈ O(N), Wi(Ψ) = Ψwi.

ei(~q) = ei(q1, . . . , qN(N−1)/2) = Wi ◦ b−1
θ (~q) = (b−1

θ (~q))wi ∈ R
N .

Waveform design and quantum detection matched filtering – p.37/45



Lagrangian dynamics onO(N)

We now convert the frame force F acting on the orthonormal set {ei}N
i=1 into a set of

equations governing the motion of the parameterization points
~q(t) = (q1(t), . . . , qN(N−1)/2(t)), see (1). We define the Lagrangian L and total energy
E defined for ~q(t) by:

L = T − Pe, E = T + Pe,

where

T =
1

2

N(N−1)/2
X

j=1

„
d

dt
qj(t)

«2

.
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Lagrangian dynamics onO(N)

We now convert the frame force F acting on the orthonormal set {ei}N
i=1 into a set of

equations governing the motion of the parameterization points
~q(t) = (q1(t), . . . , qN(N−1)/2(t)), see (1). We define the Lagrangian L and total energy
E defined for ~q(t) by:

L = T − Pe, E = T + Pe,

where

T =
1

2

N(N−1)/2
X

j=1

„
d

dt
qj(t)

«2

.

Using the Euler-Lagrange equations for the potential Pe

d

dt

„
∂L

∂q̇j

«

−
∂L

∂qj
= 0,

we obtain the equations of motion

(1)
d2

dt2
qj(t) = −2

NX

i=1

ρi〈xi, ei(~q(t))〉

fi

xi,
∂ei

∂qj
(~q(t))

fl

.
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Point of view

Choose ~q ′ ∈ R
N(N−1)/2 such that ei(~q

′) = e′i ∈ R
N for all i = 1, . . . , N .
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Point of view

Choose ~q ′ ∈ R
N(N−1)/2 such that ei(~q

′) = e′i ∈ R
N for all i = 1, . . . , N .

Define q̃ : R → R
N(N−1)/2 such that q̃(t) = ~q ′ (a constant function).
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Point of view

Choose ~q ′ ∈ R
N(N−1)/2 such that ei(~q

′) = e′i ∈ R
N for all i = 1, . . . , N .

Define q̃ : R → R
N(N−1)/2 such that q̃(t) = ~q ′ (a constant function).

Recall

(1)
d2

dt2
qj(t) = −2

NX

i=1

ρi〈xi, ei(~q(t))〉

fi

xi,
∂ei

∂qj
(~q(t))

fl

.

Remark The definition of q̃ and equation (1) introduce t into play for solving the quantum
detection problem.

Theorem Constant function q̃ : R → R
N(N−1)/2 is a minimum energy solution of (1).
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Results

It can be shown that

Theorem Denote by ~q(t) = (q1(t), . . . , qN(N−1)/2(t)) a solution of the equations of
motion that minimizes the energy E and denote by PH the orthogonal projection from
H′ into H. Then ~q(t) is a constant solution and the set of vectors

{PHei(~q(t))}
N
i=1 ⊂ H

is a Parseval frame for H that minimizes Pe.

Waveform design and quantum detection matched filtering – p.40/45



Results

It can be shown that

Theorem Denote by ~q(t) = (q1(t), . . . , qN(N−1)/2(t)) a solution of the equations of
motion that minimizes the energy E and denote by PH the orthogonal projection from
H′ into H. Then ~q(t) is a constant solution and the set of vectors

{PHei(~q(t))}
N
i=1 ⊂ H

is a Parseval frame for H that minimizes Pe.

Theorem A minimum energy solution is obtained in the SO(N) component of O(N).
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Results

It can be shown that

Theorem Denote by ~q(t) = (q1(t), . . . , qN(N−1)/2(t)) a solution of the equations of
motion that minimizes the energy E and denote by PH the orthogonal projection from
H′ into H. Then ~q(t) is a constant solution and the set of vectors

{PHei(~q(t))}
N
i=1 ⊂ H

is a Parseval frame for H that minimizes Pe.

Theorem A minimum energy solution is obtained in the SO(N) component of O(N).

So we need only consider parameterizing SO(N).
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Results

It can be shown that

Theorem Denote by ~q(t) = (q1(t), . . . , qN(N−1)/2(t)) a solution of the equations of
motion that minimizes the energy E and denote by PH the orthogonal projection from
H′ into H. Then ~q(t) is a constant solution and the set of vectors

{PHei(~q(t))}
N
i=1 ⊂ H

is a Parseval frame for H that minimizes Pe.

Theorem A minimum energy solution is obtained in the SO(N) component of O(N).

So we need only consider parameterizing SO(N).

Theorem A minimum energy solution, a minimizer of Pe, satisfies the expression

NX

i=1

ρi〈xi, ei〉

fi

xi,
∂ei

∂qj

fl

= 0.
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Numerical problems

The use of Lagrangia provides a point of view for computing the TF minimizers of Pe.
(Some independent, direct calculations are possible (Kebo), but not feasible for large
values of d and N .)
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Numerical problems

The use of Lagrangia provides a point of view for computing the TF minimizers of Pe.
(Some independent, direct calculations are possible (Kebo), but not feasible for large
values of d and N .)

The minimum energy solution theorem opens the possibility of using numerical methods
to find the optimal orthonormal set. For example, a type of Newton’s method could be
used to find the zeros of the function

NX

i=1

ρi〈xi, ei〉

fi

xi,
∂ei

∂qj

fl

.
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Numerical problems

The use of Lagrangia provides a point of view for computing the TF minimizers of Pe.
(Some independent, direct calculations are possible (Kebo), but not feasible for large
values of d and N .)

The minimum energy solution theorem opens the possibility of using numerical methods
to find the optimal orthonormal set. For example, a type of Newton’s method could be
used to find the zeros of the function

NX

i=1

ρi〈xi, ei〉

fi

xi,
∂ei

∂qj

fl

.

With the parameterization of SO(N), the error Pe is a smooth function of the variables
(q1, . . . , qN(N−1)/2), that is,

Pe(q1, . . . , qN(N−1)/2) = 1 −
NX

i=1

ρi |〈xi, ei(q1, . . . , qN(N−1)/2)〉|2 .

A conjugate gradient method can be used to find the minimum values of Pe.
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Analytical methods

Problem: Let p = {pk}k∈Z be positive definite, i.e., for any
finite set F ⊆ Z and any {cj}j∈F ⊆ C:

∑
j,k∈F

cj c̄kp(j − k) ≥ 0

Suppose p = 0 on a given F ⊆ Z. When can we
construct unimodular u : Z → C such that:

p(k) = lim
N→∞

1

2N + 1

∑
|j|≤N

u(j + k)u(j)?
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Analytical methods

Problem: Let p = {pk}k∈Z be positive definite, i.e., for any
finite set F ⊆ Z and any {cj}j∈F ⊆ C:

∑
j,k∈F

cj c̄kp(j − k) ≥ 0

Suppose p = 0 on a given F ⊆ Z. When can we
construct unimodular u : Z → C such that:

p(k) = lim
N→∞

1

2N + 1

∑
|j|≤N

u(j + k)u(j)?

This is the same problem for Z that we have been
addressing for ZN in the one-dimensional CAZAC case.
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Techniques:

Iterative Generalized Harmonic Analysis (GHA of
Wiener)

Waveform design and quantum detection matched filtering – p.43/45



Techniques:

Iterative Generalized Harmonic Analysis (GHA of
Wiener)

Uniform distribution and discrepancy theory
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Techniques:

Iterative Generalized Harmonic Analysis (GHA of
Wiener)

Uniform distribution and discrepancy theory

Generalized Gauss polynomials with irrational factors:
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Techniques:

Iterative Generalized Harmonic Analysis (GHA of
Wiener)

Uniform distribution and discrepancy theory

Generalized Gauss polynomials with irrational factors:

e2πinαθ, integer α ≥ 2, and θ irrational
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Techniques:

Iterative Generalized Harmonic Analysis (GHA of
Wiener)

Uniform distribution and discrepancy theory

Generalized Gauss polynomials with irrational factors:

e2πinαθ, integer α ≥ 2, and θ irrational

Finite approximation and software as with algebraic
CAZACs.
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