Waveform design and quantum detection matched filtering

John J. Benedetto

Norbert Wiener Center, Department of Mathematics

University of Maryland, College Park

http://www.norbertwiener.umd.edu

Norbert Wiener Center

Waveform design and quantum detection matched filtering - p.1/4

Outline and collaborators

- 1. CAZAC waveforms
- 2. Frames
- 3. Matched filtering and related problems
- 4. Quantum detection
- 5. Analytic methods to construct CAZAC waveforms

Collaborators: Matt Fickus (frame force), Andrew Kebo (quantum detection), Joseph Ryan and Jeff Donatelli (software).

CAZAC Waveforms

Constant Amplitude Zero Autocorrelation (CAZAC) Waveforms

A *K*-periodic waveform $u : \mathbb{Z}_K = \{0, 1, \dots, K-1\} \rightarrow \mathbb{C}$ is CAZAC if |u(m)| = 1, $m = 0, 1, \dots, K-1$, and the *autocorrelation*

$$A_u(m) = \frac{1}{K} \sum_{k=0}^{K-1} u(m+k)\overline{u}(k) \text{ is 0 for } m = 1, \dots, K-1.$$

The crosscorrelation of $u, v : \mathbb{Z}_K \to \mathbb{C}$ is

$$C_{u,v}(m) = \frac{1}{K} \sum_{k=0}^{K-1} u(m+k)\overline{\nu}(k)$$
 for $m = 0, 1, \dots, K-1$.

• $u \text{CAZAC} \Rightarrow u$ is broadband (full bandwidth).

- $u \text{CAZAC} \Rightarrow u$ is broadband (full bandwidth).
- There are different constructions of different CAZAC waveforms resulting in different behavior vis à vis Doppler, additive noises, and approximation by bandlimited waveforms.

- $u \text{CAZAC} \Rightarrow u$ is broadband (full bandwidth).
- There are different constructions of different CAZAC waveforms resulting in different behavior vis à vis Doppler, additive noises, and approximation by bandlimited waveforms.
- $u CA \iff DFT \text{ of } u \text{ is ZAC off dc. (DFT of } u \text{ can have zeros)}$

- $u \text{CAZAC} \Rightarrow u$ is broadband (full bandwidth).
- There are different constructions of different CAZAC waveforms resulting in different behavior vis à vis Doppler, additive noises, and approximation by bandlimited waveforms.
- $u CA \iff DFT \text{ of } u \text{ is ZAC off dc. (DFT of } u \text{ can have zeros)}$
- $u \text{ CAZAC} \iff \text{DFT of } u \text{ is CAZAC}.$

- $u \text{CAZAC} \Rightarrow u$ is broadband (full bandwidth).
- There are different constructions of different CAZAC waveforms resulting in different behavior vis à vis Doppler, additive noises, and approximation by bandlimited waveforms.
- $u CA \iff DFT \text{ of } u \text{ is ZAC off dc. (DFT of } u \text{ can have zeros)}$
- $u \text{ CAZAC} \iff \text{DFT of } u \text{ is CAZAC}.$
- User friendly software: http://www.math.umd.edu/~jjb/cazac

Rationale for CAZAC waveforms

CA allows transmission at peak power. (The system does not have to deal with the suprise of greater than expected amplitude.)

Rationale for CAZAC waveforms

- CA allows transmission at peak power. (The system does not have to deal with the suprise of greater than expected amplitude.)
- Distortion amplitude variations can be detected using CA. (With CA amplitude variations during transmission due to additive noise can be theoretically eliminated at the receiver without distorting message.)

Rationale for CAZAC waveforms

- CA allows transmission at peak power. (The system does not have to deal with the suprise of greater than expected amplitude.)
- Distortion amplitude variations can be detected using CA. (With CA amplitude variations during transmission due to additive noise can be theoretically eliminated at the receiver without distorting message.)
- A sharp unique peak in A_u is important because of distortion and interference in received waveforms, *e.g.*, in radar and communications–more later.

Examples of CAZAC Waveforms

$$\begin{split} &K = 75: u(x) = \\ &(1,1,1,1,1,1,e^{2\pi i \frac{1}{15}},e^{2\pi i \frac{2}{15}},e^{2\pi i \frac{1}{5}},e^{2\pi i \frac{4}{15}},e^{2\pi i \frac{1}{3}},e^{2\pi i \frac{7}{15}},e^{2\pi i \frac{3}{5}},\\ &e^{2\pi i \frac{11}{15}},e^{2\pi i \frac{13}{15}},1,e^{2\pi i \frac{1}{5}},e^{2\pi i \frac{2}{5}},e^{2\pi i \frac{3}{5}},e^{2\pi i \frac{4}{5}},1,e^{2\pi i \frac{4}{15}},e^{2\pi i \frac{8}{15}},e^{2\pi i \frac{4}{5}},\\ &e^{2\pi i \frac{16}{15}},e^{2\pi i \frac{1}{3}},e^{2\pi i \frac{2}{3}},e^{2\pi i},e^{2\pi i \frac{4}{3}},e^{2\pi i \frac{5}{3}},1,e^{2\pi i \frac{2}{5}},e^{2\pi i \frac{4}{5}},e^{2\pi i \frac{4}{5}},e^{2\pi i \frac{4}{5}},e^{2\pi i \frac{4}{5}},\\ &e^{2\pi i \frac{16}{15}},e^{2\pi i \frac{7}{15}},e^{2\pi i \frac{14}{15}},e^{2\pi i \frac{7}{5}},e^{2\pi i \frac{28}{15}},e^{2\pi i \frac{1}{3}},e^{2\pi i \frac{13}{15}},e^{2\pi i \frac{7}{5}},e^{2\pi i \frac{29}{15}},\\ &e^{2\pi i \frac{37}{15}},1,e^{2\pi i \frac{3}{5}},e^{2\pi i \frac{6}{5}},e^{2\pi i \frac{9}{5}},e^{2\pi i \frac{12}{5}},1,e^{2\pi i \frac{2}{3}},e^{2\pi i \frac{4}{3}},e^{2\pi i \cdot 2},e^{2\pi i \frac{8}{3}},\\ &e^{2\pi i \frac{3}{15}},e^{2\pi i \frac{16}{15}},e^{2\pi i \frac{38}{15}},e^{2\pi i \frac{49}{15}},1,e^{2\pi i \frac{4}{5}},e^{2\pi i \frac{4}{3}},e^{2\pi i \frac{12}{5}},e^{2\pi i \frac{16}{5}},\\ &1,e^{2\pi i \frac{13}{15}},e^{2\pi i \frac{26}{15}},e^{2\pi i \frac{13}{5}},e^{2\pi i \frac{13}{5}},e^{2\pi i \frac{13}{5}},e^{2\pi i \frac{49}{15}},1,e^{2\pi i \frac{49}{15}},e^{2\pi i \frac{19}{15}},e^{2\pi i \frac{47}{15}},e^{2\pi i \frac{47}{15}},e^{2\pi i \frac{61}{15}},\\ &1,e^{2\pi i \frac{13}{15}},e^{2\pi i \frac{26}{15}},e^{2\pi i \frac{13}{5}},e^{2\pi i \frac{52}{15}},e^{2\pi i \frac{13}{3}},e^{2\pi i \frac{19}{15}},e^{2\pi i \frac{19}{15}},e^{2\pi i \frac{47}{15}},e^{2\pi i \frac{61}{15}},\\ &1,e^{2\pi i \frac{13}{15}},e^{2\pi i \frac{26}{15}},e^{2\pi i \frac{13}{5}},e^{2\pi i \frac{52}{15}},e^{2\pi i \frac{19}{15}},e^{2\pi i \frac{19}{15}},e^{2\pi i \frac{47}{15}},e^{2\pi i \frac{61}{15}},\\ &1,e^{2\pi i \frac{13}{15}},e^{2\pi i \frac{26}{15}},e^{2\pi i \frac{13}{5}},e^{2\pi i \frac{52}{15}},e^{2\pi i \frac{19}{15}},e^{2\pi i \frac{19}{15}},e^{2\pi i \frac{47}{15}},e^{2\pi i \frac{61}{15}},\\ &1,e^{2\pi i \frac{13}{15}},e^{2\pi i \frac{26}{15}},e^{2\pi i \frac{13}{15}},e^{2\pi i \frac{52}{15}},e^{2\pi i \frac{19}{15}},e^{2\pi i \frac{19}{15}},e^{2\pi i \frac{47}{15}},e^{2\pi i \frac{61}{15}},\\ &1,e^{2\pi i \frac{13}{15}},e^{2\pi i \frac{13}{15}},e^{2\pi i \frac{13}{15}},e^{2\pi i \frac{13}{15}},e^{2\pi i \frac{61}{15}},\\ &1,e^{2\pi i \frac{13}{15}},e^{2\pi i \frac{13}{15}},e^{2\pi i \frac{13}{15}},e^{2\pi i \frac{13}{15}},e^{2\pi i \frac{13}{15}},e^{$$

Autocorrelation of CAZAC K = 75

Norbert Wiener Center

Waveform design and quantum detection matched filtering - p.7/4

Finite ambiguity function

Given *K*-periodic waveform, $u : \mathbb{Z}_K \to \mathbb{C}$ let $e_m(n) = e^{\frac{-2\pi i m n}{K}}$.

• The ambiguity function of u, $A : \mathbb{Z}_K \times \mathbb{Z}_K \to K$ is defined as

$$A_u(j,k) = C_{u,ue_k}(j) = \frac{1}{K} \sum_{m=0}^{K-1} u(m+j)\overline{u(m)}e^{\frac{2\pi imk}{K}}$$

Finite ambiguity function

Given *K*-periodic waveform, $u : \mathbb{Z}_K \to \mathbb{C}$ let $e_m(n) = e^{\frac{-2\pi i m n}{K}}$.

• The ambiguity function of u, $A : \mathbb{Z}_K \times \mathbb{Z}_K \to K$ is defined as

$$A_u(j,k) = C_{u,ue_k}(j) = \frac{1}{K} \sum_{m=0}^{K-1} u(m+j)\overline{u(m)}e^{\frac{2\pi imk}{K}}.$$

• Analogue ambiguity function for $u \leftrightarrow U$, $||u||_2 = 1$, on \mathbb{R} :

$$A_u(t,\gamma) = \int_{\widehat{\mathbb{R}}} U(\omega - \frac{\gamma}{2}) \overline{U(\omega + \frac{\gamma}{2})} e^{2\pi i t(\omega + \frac{\gamma}{2})} d\omega$$
$$= \int u(s+t) \overline{u(s)} e^{2\pi i s \gamma} ds.$$

Standard Doppler tolerance problems:

• How well does $A_u(\cdot, k)$ behave as k varies from 0?

Standard Doppler tolerance problems:

- How well does $A_u(\cdot, k)$ behave as k varies from 0?
- Is the behavior robust in the sense of being close to $A_u(\cdot)$ if k is close to 0?

Standard Doppler tolerance problems:

- How well does $A_u(\cdot, k)$ behave as k varies from 0?
- Is the behavior robust in the sense of being close to $A_u(\cdot)$ if k is close to 0?
- Standard Doppler frequency shift problem: Construct a statistic to determine unknown Doppler frequency shift. Do this for multiple frequencies.

Standard Doppler tolerance problems:

- How well does $A_u(\cdot, k)$ behave as k varies from 0?
- Is the behavior robust in the sense of being close to $A_u(\cdot)$ if k is close to 0?
- Standard Doppler frequency shift problem: Construct a statistic to determine unknown Doppler frequency shift.
 Do this for multiple frequencies.
- Provide rigorous justification for CAZAC simulations associated with the Doppler tolerance question and frequency shift problem.

• The Doppler statistic $|C_{u,ue_k}(j)|$ is excellent and provable for detecting deodorized Doppler frequency shift.

- The Doppler statistic $|C_{u,ue_k}(j)|$ is excellent and provable for detecting deodorized Doppler frequency shift.
- If one graphs only

 $Re A(j,k) = Re C_{u,ue_k}(j)$

then the statistic sometimes fails.

- The Doppler statistic $|C_{u,ue_k}(j)|$ is excellent and provable for detecting deodorized Doppler frequency shift.
- If one graphs only

$$Re A(j,k) = Re C_{u,ue_k}(j)$$

then the statistic sometimes fails.

There are unresolved "arithmetic" complexities which are affected by waveform structure and length.

- The Doppler statistic $|C_{u,ue_k}(j)|$ is excellent and provable for detecting deodorized Doppler frequency shift.
- If one graphs only

$$Re A(j,k) = Re C_{u,ue_k}(j)$$

then the statistic sometimes fails.

- There are unresolved "arithmetic" complexities which are affected by waveform structure and length.
- Noise analysis is ongoing.

Doppler Statistic

Doppler Statistic

 $\sum_{j=0}^{k-1} |C_{u,ue_k}(j)|^2 = 1$

Frames

Redundant signal representation

• Given $H = \mathbb{R}_d$ or $H = \mathbb{C}^d$, $N \ge d$. $\{x_n\}_{n=1}^N \subseteq H$ is a finite unit norm tight frame (FUN-TF) if each $||x_n|| = 1$ and, for each $x \in H$,

$$x = \frac{d}{N} \sum_{n=1}^{N} \langle x, x_n \rangle x_n.$$

Frames

Redundant signal representation

• Given $H = \mathbb{R}_d$ or $H = \mathbb{C}^d$, $N \ge d$. $\{x_n\}_{n=1}^N \subseteq H$ is a finite unit norm tight frame (FUN-TF) if each $||x_n|| = 1$ and, for each $x \in H$,

$$x = \frac{d}{N} \sum_{n=1}^{N} \langle x, x_n \rangle x_n.$$

• $\{x_n\}_{n=1}^N \subseteq H$ is an *A-tight frame* if $\{x_n\}_{n=1}^N$ spans *H* and $A\|x\|^2 = \sum_{n=1}^N |\langle x, x_n \rangle|^2$ for each $x \in H$.

Recent applications of FUN-TFs

Robust transmission of data over erasure channels such as the internet [Casazza, Goyal, Kelner, Kovačević]

Recent applications of FUN-TFs

- Robust transmission of data over erasure channels such as the internet [Casazza, Goyal, Kelner, Kovačević]
- Multiple antenna code design for wireless communications [Hochwald, Marzetta,T. Richardson, Sweldens, Urbanke]

Recent applications of FUN-TFs

- Robust transmission of data over erasure channels such as the internet [Casazza, Goyal, Kelner, Kovačević]
- Multiple antenna code design for wireless communications [Hochwald, Marzetta, T. Richardson, Sweldens, Urbanke]
- Multiple description coding [Goyal, Heath, Kovačević, Strohmer, Vetterli]

Properties and examples of FUN-TFs

Frames give redundant signal representation to compensate for hardware errors, to ensure numerical stability, and to minimize the effects of noise.

Properties and examples of FUN-TFs

- Frames give redundant signal representation to compensate for hardware errors, to ensure numerical stability, and to minimize the effects of noise.
- Thus, if certain types of noises are known to exist, then the FUN-TFs are constructed using this information.

Properties and examples of FUN-TFs

- Frames give redundant signal representation to compensate for hardware errors, to ensure numerical stability, and to minimize the effects of noise.
- Thus, if certain types of noises are known to exist, then the FUN-TFs are constructed using this information.
- Orthonormal bases, vertices of Platonic solids, kissing numbers (sphere packing and error correcting codes) are FUN-TFs.

DFT FUN-TFs

■ $N \times d$ submatrices of the $N \times N$ DFT matrix are FUN-TFs for \mathbb{C}^d . These play a major role in finite frame $\Sigma \Delta$ -quantization.

DFT FUN-TFs

• $N \times d$ submatrices of the $N \times N$ DFT matrix are FUN-TFs for \mathbb{C}^d . These play a major role in finite frame $\Sigma \Delta$ -quantization.

$$N = 8, d = 5 \qquad \frac{1}{\sqrt{5}} \begin{bmatrix} * & * & \cdot & * & * & * & \cdot \\ * & * & \cdot & * & * & * & * & \cdot \\ * & * & \cdot & * & * & * & * & \cdot \\ * & * & \cdot & * & * & * & * & \cdot \\ * & * & \cdot & * & * & * & * & \cdot \\ * & * & \cdot & * & * & * & * & \cdot \\ * & * & \cdot & * & * & * & * & \cdot \end{bmatrix}$$
$$x_m = \frac{1}{5} (e^{2\pi i \frac{m}{8}}, e^{2\pi i \frac{m^2}{8}}, e^{2\pi i \frac{m^5}{8}}, e^{2\pi i \frac{m^5}{8}}, e^{2\pi i \frac{m^5}{8}}, e^{2\pi i \frac{m^5}{8}}, e^{2\pi i \frac{m^5}{8}})$$
$$m = 1, \dots, 8.$$

Sigma-Delta Super Audio CDs - but not all authorities are fans.

Frame force

The frame force: $F: S^{d-1} \times S^{d-1} \setminus D \to \mathbb{R}^d$ is defined as $F(a,b) = \langle a,b \rangle (a-b), S^{d-1}$ is the unit sphere in \mathbb{R}^d .

 \checkmark F is a (central) conservative force field.
Frame force

The frame force: $F: S^{d-1} \times S^{d-1} \setminus D \to \mathbb{R}^d$ is defined as $F(a,b) = \langle a,b \rangle (a-b), S^{d-1}$ is the unit sphere in \mathbb{R}^d .

 \blacktriangleright F is a (central) conservative force field.

Total potential energy for the frame force of $\{x_n\}_{n=1}^N \subseteq S^{d-1}$:

$$P = \sum_{m=1}^{N} \sum_{n=1}^{N} |\langle x_m, x_n \rangle|^2$$

Frame force

The frame force: $F: S^{d-1} \times S^{d-1} \setminus D \to \mathbb{R}^d$ is defined as $F(a,b) = \langle a,b \rangle (a-b), S^{d-1}$ is the unit sphere in \mathbb{R}^d .

 \blacktriangleright F is a (central) conservative force field.

• Total potential energy for the frame force of $\{x_n\}_{n=1}^N \subseteq S^{d-1}$:

$$P = \sum_{m=1}^{N} \sum_{n=1}^{N} |\langle x_m, x_n \rangle|^2$$

Let N ≥ d. The minimum value of P for the frame force F and N variables is ^N/_d; and the minimizers of P are precisely all of the FUN-TFs of N elements in S^{d-1}.

Frame force

The frame force: $F: S^{d-1} \times S^{d-1} \setminus D \to \mathbb{R}^d$ is defined as $F(a,b) = \langle a,b \rangle (a-b)$, S^{d-1} is the unit sphere in \mathbb{R}^d .

 \checkmark F is a (central) conservative force field.

• Total potential energy for the frame force of $\{x_n\}_{n=1}^N \subseteq S^{d-1}$:

$$P = \sum_{m=1}^{N} \sum_{n=1}^{N} |\langle x_m, x_n \rangle|^2$$

- Let N ≥ d. The minimum value of P for the frame force F and N variables is ^N/_d; and the minimizers of P are precisely all of the FUN-TFs of N elements in S^{d-1}.
- Compute these frames.

Multifunction vector-valued frame waveforms

Problem: Construct, code, and implement (user-friendly) N-periodic waveforms $(N \ge d)$

$$u: \mathbb{Z}_N \to S^{d-1} \subseteq \mathbb{R}^d \text{ (or } \mathbb{C}^d),$$

 $n \to u_n = (u_n(1), u_n(2), \dots, u_n(d)), n = 0, 1, \dots, N-1$
which are FUN-TFs (for redundant signal representation)
and CAZAC (zero or low correlation off dc), i.e.,

$$x = \frac{d}{N} \sum_{n=0}^{N-1} \langle x, u_n \rangle u_n \text{ and } A_u(m) = \frac{1}{N} \sum_{j=0}^{N-1} \langle u_{m+j}, u_j \rangle = 0,$$

 $m=1,\ldots N-1.$

The following are recent applications of FUN-TFs.

Quantum detection [Bölkskei, Eldar, Forney, Oppenheim, B]

The following are recent applications of FUN-TFs.

- Quantum detection [Bölkskei, Eldar, Forney, Oppenheim, B]
- ∑∆-quantization (better linear reconstruction than MSE of PCM) [Daubechies, Devore, Gunturk, Powell, N. Thao, Yilmaz, B]

The following are recent applications of FUN-TFs.

- Quantum detection [Bölkskei, Eldar, Forney, Oppenheim, B]
- ∑∆-quantization (better linear reconstruction than MSE of PCM) [Daubechies, Devore, Gunturk, Powell, N. Thao, Yilmaz, B]
- Grassmannian "min-max" waveforms [Calderbank, Conway, Sloane, et al., Kolesar, B]

The following are recent applications of FUN-TFs.

- Quantum detection [Bölkskei, Eldar, Forney, Oppenheim, B]
- ∑∆-quantization (better linear reconstruction than MSE of PCM) [Daubechies, Devore, Gunturk, Powell, N. Thao, Yilmaz, B]
- Grassmannian "min-max" waveforms [Calderbank, Conway, Sloane, et al., Kolesar, B]
- Grassmannian analysis gives another measure of the crosscorrelation. A FUN frame $\{u_n\}_{n=1}^N \subseteq H$ is *Grassmannian* if $\max_{k \neq l} |\langle u_k, u_l \rangle| = \inf \max_{k \neq l} |\langle x_k, x_l \rangle|$, where the infimum is over all FUN frames.

Matched Filtering

Processing

Natural problems associated with multifunction frame waveforms (1)

 Implement FUN-TF ΣΔ A/D converters to take advantage of proven improved error estimates for linear reconstruction over PCM and comparable to MSE-PCM. (MSE-PCM is based on Bennett's white noise assumption which is not always valid. With consistent reconstruction, and its added numerical complexity, MSE-PCM is comparable to FUN-TF MSE-ΣΔ.)

Natural problems associated with multifunction frame waveforms (2)

Distinguish multiple frequencies and times (ranges) in the ambiguity function,

$$A("t", "\gamma") = \int_{\hat{R}} U(\omega) (\sum \alpha_j \overline{U(\omega + \gamma_j)} e^{2\pi i t_j \omega}) d\omega,$$

by means of multifunction frame waveforms.

Natural problems associated with multifunction frame waveforms (3)

• Compute optimal 1-tight frame CAZAC waveforms, $\{e_n\}_{n=1}^N$, using quantum detection error:

$$P_e = \min_{\{e_n\}} (1 - \sum_{i=1}^N \rho_n |\langle u_n, e_n \rangle|^2), \quad \sum_{n=1}^N \rho_n = 1, \rho_n > 0,$$

where $\{u_n\}_{n=1}^N \subseteq S^{d-1}$ is given. This is a multifunction matched filtering.

Electromagnetic waveform u : R (radar) $\rightarrow T$ (target)

- Electromagnetic waveform u: R (radar) $\rightarrow T$ (target)
- Ideal reflected signal $v(t) = a\overline{u(t t_0)}$, a > 0 fixed, where t_0 is to be computed.

- Electromagnetic waveform u: R (radar) $\rightarrow T$ (target)
- Ideal reflected signal $v(t) = a\overline{u(t-t_0)}$, a > 0 fixed, where t_0 is to be computed.
- \bullet t_0 is proportional to target distance.

- Electromagnetic waveform u: R (radar) $\rightarrow T$ (target)
- Ideal reflected signal $v(t) = a\overline{u(t-t_0)}$, a > 0 fixed, where t_0 is to be computed.
- \bullet t_0 is proportional to target distance.
- If $v(t) = a\overline{u(t-t_0)}$ for some t_0 , then

$$C_{v,u}(t_0) = \sup_t |C_{v,u}(t)|.$$

 $C_{v,u}$ is $L^2(\mathbb{R})$ crosscorrelation and maximum system response is given by matched filter $a\overline{\hat{u}(\gamma)}e^{-2\pi i t_0\gamma}$

- Electromagnetic waveform u: R (radar) $\rightarrow T$ (target)
- Ideal reflected signal $v(t) = a\overline{u(t-t_0)}$, a > 0 fixed, where t_0 is to be computed.
- \bullet t_0 is proportional to target distance.
- If $v(t) = a\overline{u(t-t_0)}$ for some t_0 , then

$$C_{v,u}(t_0) = \sup_t |C_{v,u}(t)|.$$

 $C_{v,u}$ is $L^2(\mathbb{R})$ crosscorrelation and maximum system response is given by matched filter $a\overline{\hat{u}(\gamma)}e^{-2\pi i t_0\gamma}$

In digital case, CAZACs arise since travel time depends on crosscorrelation peak, and sharp peaks obviate distortion and interference in received waveform.

• QM formulates concept of measuring a dynamical quantity (e.g., position of an electron in \mathbb{R}^3) and the probability p that the outcome is in $U \subseteq \mathbb{R}^3$.

- QM formulates concept of measuring a dynamical quantity (e.g., position of an electron in \mathbb{R}^3) and the probability p that the outcome is in $U \subseteq \mathbb{R}^3$.
- Positive operator-valued measure (POVM) gives rise to p.

- QM formulates concept of measuring a dynamical quantity (e.g., position of an electron in \mathbb{R}^3) and the probability p that the outcome is in $U \subseteq \mathbb{R}^3$.
- Positive operator-valued measure (POVM) gives rise to p.
- In $H = \mathbb{C}^d$, POVMs and 1-tight frames are equivalent.

- QM formulates concept of measuring a dynamical quantity (e.g., position of an electron in \mathbb{R}^3) and the probability p that the outcome is in $U \subseteq \mathbb{R}^3$.
- Positive operator-valued measure (POVM) gives rise to p.
- In $H = \mathbb{C}^d$, **POVMs** and 1-tight frames are equivalent.
- Given $\{u_n\}_{n=1}^N \subseteq S^{d-1}$. Compute/construct a 1-tight frame minimizer $\{e_n\}_{n=1}^N$ of quantum detection (QD) error P_e .

Outline of multifunction matched filtering algorithm

• Transfer tight frames for \mathbb{C}^d to ONBs in \mathbb{C}^N (Naimark point of view and essential for computation).

Outline of multifunction matched filtering algorithm

- Transfer tight frames for \mathbb{C}^d to ONBs in \mathbb{C}^N (Naimark point of view and essential for computation).
- Show that the QD error is a potential energy function of frame force in C^N.

Outline of multifunction matched filtering algorithm

- Transfer tight frames for \mathbb{C}^d to ONBs in \mathbb{C}^N (Naimark point of view and essential for computation).
- Show that the QD error is a potential energy function of frame force in C^N.
- Use the orthogonal group and the Euler-Lagrange equation for the potential P_e to *compute* equations of motion and a minimal energy solution $\{e_n\}_{n=1}^N$.

Quantum Detection

Positive-operator-valued measures

Let \mathcal{B} be a σ -algebra of sets of X. A *positive operator-valued measure* (POM) is a function $\Pi: \mathcal{B} \to \mathcal{L}(H)$ such that

- 1. $\forall U \in \mathcal{B}, \ \Pi(U)$ is a positive self-adjoint operator,
- 2. $\Pi(\emptyset) = 0$ (zero operator),
- 3. \forall disjoint $\{U_i\}_{i=1}^{\infty} \subset \mathcal{B}$ and $x, y \in H$,

$$\left\langle \Pi\left(\bigcup_{i=1}^{\infty}U_{i}\right)x,y\right\rangle = \sum_{i=1}^{\infty}\langle \Pi(U_{i})x,y\rangle,$$

- 4. $\Pi(X) = I$ (identity operator).
- A POM Π on \mathcal{B} has the property that given any fixed $x \in H$, $p_x(\cdot) = \langle x, \Pi(\cdot)x \rangle$ is a measure on \mathcal{B} . (Probability if ||x|| = 1).

Quantum Detection

Positive-operator-valued measures

Let \mathcal{B} be a σ -algebra of sets of X. A *positive operator-valued measure* (POM) is a function $\Pi: \mathcal{B} \to \mathcal{L}(H)$ such that

- 1. $\forall U \in \mathcal{B}, \ \Pi(U)$ is a positive self-adjoint operator,
- 2. $\Pi(\emptyset) = 0$ (zero operator),
- 3. \forall disjoint $\{U_i\}_{i=1}^{\infty} \subset \mathcal{B}$ and $x, y \in H$,

$$\left\langle \Pi\left(\bigcup_{i=1}^{\infty}U_{i}\right)x,y\right\rangle =\sum_{i=1}^{\infty}\langle\Pi(U_{i})x,y\rangle,$$

4. $\Pi(X) = I$ (identity operator).

A POM Π on \mathcal{B} has the property that given any fixed $x \in H$, $p_x(\cdot) = \langle x, \Pi(\cdot)x \rangle$ is a measure on \mathcal{B} . (Probability if ||x|| = 1).

A dynamical quantity Q gives rise to a measurable space (X, \mathcal{B}) and POM. When measuring Q, $p_x(U)$ is the probability that the outcome of the measurement is in $U \in \mathcal{B}$.

Suppose we want to measure the position of an electron.

- Suppose we want to measure the position of an electron.
- The space of all possible positions is given by $X = \mathbb{R}^3$.

- Suppose we want to measure the position of an electron.
- If the space of all possible positions is given by $X = \mathbb{R}^3$.
- The Hilbert space is given by $H = L^2(\mathbb{R}^3)$.

- Suppose we want to measure the position of an electron.
- The space of all possible positions is given by $X = \mathbb{R}^3$.
- The Hilbert space is given by $H = L^2(\mathbb{R}^3)$.

 $\Pi(U) = \mathbb{1}_U.$

- Suppose we want to measure the position of an electron.
- If the space of all possible positions is given by $X = \mathbb{R}^3$.
- The Hilbert space is given by $H = L^2(\mathbb{R}^3)$.
- Interpotential states of the second state of the second state of the second states of the

 $\Pi(U) = \mathbb{1}_U.$

Suppose the state of the electron is given by $x \in H$ with unit norm. Then the probability that the electron is found to be in the region $U \in \mathcal{B}$ is given by

$$p(U) = \langle x, \Pi(U)x \rangle = \int_U |x(t)|^2 dt.$$

▶ Let $F = \{e_n\}_{n=1}^N$ be a Parseval frame for a *d*-dimensional Hilbert space *H* and let $X = \mathbb{Z}_N$.

- ▶ Let $F = \{e_n\}_{n=1}^N$ be a Parseval frame for a *d*-dimensional Hilbert space *H* and let $X = \mathbb{Z}_N$.
- **•** For all $x \in H$ and $U \subseteq X$ define

$$\Pi(U)x = \sum_{i \in U} \langle x, e_i \rangle e_i.$$

- Let $F = \{e_n\}_{n=1}^N$ be a Parseval frame for a *d*-dimensional Hilbert space *H* and let $X = \mathbb{Z}_N$.
- **P** For all $x \in H$ and $U \subseteq X$ define

$$\Pi(U)x = \sum_{i \in U} \langle x, e_i \rangle e_i.$$

Clear that Π satisfies conditions (1)-(3) for a POM. Since *F* is Parseval, we have condition (4) ($\Pi(X)x = \sum_{i \in X} \langle x, e_i \rangle e_i = x$). Thus Π defines a POM.

- Let $F = \{e_n\}_{n=1}^N$ be a Parseval frame for a *d*-dimensional Hilbert space *H* and let $X = \mathbb{Z}_N$.
- **P** For all $x \in H$ and $U \subseteq X$ define

$$\Pi(U)x = \sum_{i \in U} \langle x, e_i \rangle e_i.$$

- Clear that Π satisfies conditions (1)-(3) for a POM. Since F is Parseval, we have condition (4) ($\Pi(X)x = \sum_{i \in X} \langle x, e_i \rangle e_i = x$). Thus Π defines a POM.
- Conversely, let (X, \mathcal{B}) be a measurable space with corresponding POM Π for a *d*-dimensional Hilbert space *H*. If *X* is countable then there exists a subset $K \subseteq \mathbb{Z}$, a Parseval frame $\{e_i\}_{i \in K}$, and a disjoint partition $\{B_j\}_{j \in X}$ of *K* such that for all $j \in X$ and $y \in H$,

$$\Pi(j)y = \sum_{i \in B_j} \langle y, e_i \rangle e_i.$$

Quantum detection for finite frames

H a finite dimensional Hilbert space (corresponding to a physical system).
Quantum detection for finite frames

- \blacksquare H a finite dimensional Hilbert space (corresponding to a physical system).
- Suppose that the state of the system is limited to be in one of a finite number of possible unit normed states $\{x_i\}_{i=1}^N \subset H$ with corresponding probabilities $\{\rho_i\}_{i=1}^N$ that sum to 1.

Quantum detection for finite frames

- \blacksquare H a finite dimensional Hilbert space (corresponding to a physical system).
- Suppose that the state of the system is limited to be in one of a finite number of possible unit normed states $\{x_i\}_{i=1}^N \subset H$ with corresponding probabilities $\{\rho_i\}_{i=1}^N$ that sum to 1.
- Our goal is to determine what state the system is in by performing a "good" measurement. That is, we want to construct a POM with outcomes $X = \mathbb{Z}_N$ such that if the state of the system is x_i for some $1 \le i \le N$, then

$$p_{x_i}(j) = \langle x_i, \Pi(j) x_i \rangle \approx \begin{cases} 1 & \text{ if } i = j \\ 0 & \text{ if } i \neq j \end{cases}$$

Quantum detection for finite frames

- \blacksquare H a finite dimensional Hilbert space (corresponding to a physical system).
- Suppose that the state of the system is limited to be in one of a finite number of possible unit normed states $\{x_i\}_{i=1}^N \subset H$ with corresponding probabilities $\{\rho_i\}_{i=1}^N$ that sum to 1.
- Our goal is to determine what state the system is in by performing a "good" measurement. That is, we want to construct a POM with outcomes $X = \mathbb{Z}_N$ such that if the state of the system is x_i for some $1 \le i \le N$, then

$$p_{x_i}(j) = \langle x_i, \Pi(j) x_i \rangle \approx \begin{cases} 1 & \text{ if } i = j \\ 0 & \text{ if } i \neq j \end{cases}$$

Since $\langle x_i, \Pi(i)x_i \rangle$ is the probability of a successful detection of the state x_i , then the probability of a detection error is given by

$$P_e = 1 - \sum_{i=1}^{N} \rho_i \langle x_i, \Pi(i) x_i \rangle.$$

Quantum detection problem

If we construct our POM using Parseval frames, the error becomes

$$P_e = 1 - \sum_{i=1}^{N} \rho_i \langle x_i, \Pi(i) x_i \rangle$$
$$= 1 - \sum_{i=1}^{N} \rho_i \langle x_i, \langle x_i, e_i \rangle e_i \rangle$$
$$= 1 - \sum_{i=1}^{N} \rho_i |\langle x_i, e_i \rangle|^2$$

Quantum detection problem

If we construct our POM using Parseval frames, the error becomes

$$P_e = 1 - \sum_{i=1}^{N} \rho_i \langle x_i, \Pi(i) x_i \rangle$$
$$= 1 - \sum_{i=1}^{N} \rho_i \langle x_i, \langle x_i, e_i \rangle e_i \rangle$$
$$= 1 - \sum_{i=1}^{N} \rho_i |\langle x_i, e_i \rangle|^2$$

Quantum detection problem: Given a unit normed set $\{x_i\}_{i=1}^N \subset H$ and positive weights $\{\rho_i\}_{i=1}^N$ that sum to 1. Construct a Parseval frame $\{e_i\}_{i=1}^N$ that minimizes

$$P_e = 1 - \sum_{i=1}^{N} \rho_i |\langle x_i, e_i \rangle|^2$$

over all N-element Parseval frames. ($\{e_i\}_{i=1}^N$ exists by a compactness argument.)

Naimark theorem

Naimark Theorem Let *H* be a *d*-dimensional Hilbert space and let $\{e_i\}_{i=1}^N \subset H, N \ge d$, be a Parseval frame for *H*. Then there exists an *N*-dimensional Hilbert space *H'* and an orthonormal basis $\{e'_i\}_{i=1}^N \subset H'$ such that *H* is a subspace of *H'* and

$$\forall i = 1, \dots, N, \ \mathcal{P}_H e'_i = e_i,$$

where \mathcal{P}_H is the orthogonal projection $H' \to H$.

Given $\{x_i\}_{i=1}^N \subset H$ and a Parseval frame $\{e_i\}_{i=1}^N \subset H$. If $\{e'_i\}_{i=1}^N$ is its corresonding orthonormal basis for H', then, for all i = 1, ..., N, $\langle x_i, e_i \rangle = \langle x_i, e'_i \rangle$.

Naimark theorem

Naimark Theorem Let *H* be a *d*-dimensional Hilbert space and let $\{e_i\}_{i=1}^N \subset H, N \ge d$, be a Parseval frame for *H*. Then there exists an *N*-dimensional Hilbert space *H'* and an orthonormal basis $\{e'_i\}_{i=1}^N \subset H'$ such that *H* is a subspace of *H'* and

$$\forall i = 1, \dots, N, \ \mathcal{P}_H e'_i = e_i,$$

where \mathcal{P}_H is the orthogonal projection $H' \to H$.

- Given $\{x_i\}_{i=1}^N \subset H$ and a Parseval frame $\{e_i\}_{i=1}^N \subset H$. If $\{e'_i\}_{i=1}^N$ is its corresonding orthonormal basis for H', then, for all i = 1, ..., N, $\langle x_i, e_i \rangle = \langle x_i, e'_i \rangle$.
- Minimizing P_e over all N-element Parseval frames for H is equivalent to minimizing P_e over all N-element orthonormal bases for H'.

Naimark theorem

Naimark Theorem Let *H* be a *d*-dimensional Hilbert space and let $\{e_i\}_{i=1}^N \subset H, N \geq d$, be a Parseval frame for *H*. Then there exists an *N*-dimensional Hilbert space *H'* and an orthonormal basis $\{e'_i\}_{i=1}^N \subset H'$ such that *H* is a subspace of *H'* and

$$\forall i = 1, \dots, N, \ \mathcal{P}_H e'_i = e_i$$

where \mathcal{P}_H is the orthogonal projection $H' \to H$.

- Given $\{x_i\}_{i=1}^N \subset H$ and a Parseval frame $\{e_i\}_{i=1}^N \subset H$. If $\{e'_i\}_{i=1}^N$ is its corresonding orthonormal basis for H', then, for all i = 1, ..., N, $\langle x_i, e_i \rangle = \langle x_i, e'_i \rangle$.
- Minimizing P_e over all N-element Parseval frames for H is equivalent to minimizing P_e over all N-element orthonormal bases for H'.
- Thus we simplify the problem by minimizing P_e over all *N*-element orthonormal sets in H'.

Quantum detection error as a potential

Treat the error term as a potential.

$$P = P_e = \sum_{i=1}^{N} \rho_i (1 - |\langle x_i, e'_i \rangle|^2) = \sum_{i=1}^{N} P_i.$$

where we have used the fact that $\sum_{i=1}^{N} \rho_i = 1$ and each

 $P_i = \rho_i (1 - |\langle x_i, e'_i \rangle|^2).$

Quantum detection error as a potential

Treat the error term as a potential.

$$P = P_e = \sum_{i=1}^{N} \rho_i (1 - |\langle x_i, e'_i \rangle|^2) = \sum_{i=1}^{N} P_i.$$

where we have used the fact that $\sum_{i=1}^{N} \rho_i = 1$ and each

$$P_i = \rho_i (1 - |\langle x_i, e'_i \rangle|^2).$$

For $H' = \mathbb{R}^N$, we have the relation,

$$||e'_i - x_i||^2 = 2 - 2\langle x_i, e'_i \rangle$$

where we have used the fact that $||e'_i|| = ||x_i|| = 1$. We can rewrite the potential P_i as

$$P_i = \rho_i \left(1 - \left[1 - \frac{1}{2} \| x_i - e'_i \|^2 \right]^2 \right).$$

A central force corresponds to quantum detection error

Given P_i , define the function $p_i: \mathbb{R} \to \mathbb{R}$ by

$$p_i(x) = \rho_i \left(1 - \left[1 - \frac{1}{2} x^2 \right]^2 \right).$$

A central force corresponds to quantum detection error

Given P_i , define the function $p_i:\mathbb{R}\to\mathbb{R}$ by

$$p_i(x) = \rho_i \left(1 - \left[1 - \frac{1}{2} x^2 \right]^2 \right).$$

Thus P_i is a potential corresponding to a central force in the following way:

$$-xf_i(x) = p'_i(x) = 2\rho_i \left(1 - \frac{1}{2}x^2\right) x$$
$$\Rightarrow \qquad f_i(x) = -2\rho_i \left(1 - \frac{1}{2}x^2\right).$$

A central force corresponds to quantum detection error

Given P_i , define the function $p_i : \mathbb{R} \to \mathbb{R}$ by

$$p_i(x) = \rho_i \left(1 - \left[1 - \frac{1}{2} x^2 \right]^2 \right).$$

Thus P_i is a potential corresponding to a central force in the following way:

$$-xf_i(x) = p'_i(x) = 2\rho_i \left(1 - \frac{1}{2}x^2\right) x$$
$$\Rightarrow \qquad f_i(x) = -2\rho_i \left(1 - \frac{1}{2}x^2\right).$$

Hence, the force $F_i = -\nabla P_i$ is

$$F_i(x_i, e'_i) = f_i(||x_i - e'_i||)(x_i - e'_i) = -2\rho_i \langle x_i, e'_i \rangle (x_i - e'_i),$$

a multiple of the frame force! The total force is given by

$$F = \sum_{i=1}^{N} F_i$$

We reformulate the quantum detection problem in terms of frame force and the Naimark Theorem.

- We reformulate the quantum detection problem in terms of frame force and the Naimark Theorem.
- The given elements $\{x_i\}_{i=1}^N \subset H'$ can be viewed as fixed points on the sphere $S^{N-1} \subset H'$.

- We reformulate the quantum detection problem in terms of frame force and the Naimark Theorem.
- The given elements $\{x_i\}_{i=1}^N \subset H'$ can be viewed as fixed points on the sphere $S^{N-1} \subset H'$.
- The elements $\{e'_i\}_{i=1}^N \subset H'$ form an orthonormal set which move according to the interaction between each x_i and e'_i by the frame force

$$F_i(x_i, e'_i) = -2\rho_i \langle x_i, e'_i \rangle (e'_i - x_i).$$

- We reformulate the quantum detection problem in terms of frame force and the Naimark Theorem.
- The given elements $\{x_i\}_{i=1}^N \subset H'$ can be viewed as fixed points on the sphere $S^{N-1} \subset H'$.
- The elements $\{e'_i\}_{i=1}^N \subset H'$ form an orthonormal set which move according to the interaction between each x_i and e'_i by the frame force

 $F_i(x_i, e'_i) = -2\rho_i \langle x_i, e'_i \rangle (e'_i - x_i).$

The equilibrium position of the points $\{e'_i\}_{i=1}^N$ is the position where all the forces produce no net motion. In this situation, the potential *P* is minimized.

- We reformulate the quantum detection problem in terms of frame force and the Naimark Theorem.
- The given elements $\{x_i\}_{i=1}^N \subset H'$ can be viewed as fixed points on the sphere $S^{N-1} \subset H'$.
- The elements $\{e'_i\}_{i=1}^N \subset H'$ form an orthonormal set which move according to the interaction between each x_i and e'_i by the frame force

 $F_i(x_i, e'_i) = -2\rho_i \langle x_i, e'_i \rangle (e'_i - x_i).$

- The equilibrium position of the points $\{e'_i\}_{i=1}^N$ is the position where all the forces produce no net motion. In this situation, the potential *P* is minimized.
- For the remainder, let $\{e'_i\}_{i=1}^N$ be an ONB for \mathbb{R}^N that minimizes P. Recall that $\{e'_i\}_{i=1}^N$ exists by compactness. The *quantum detection problem* is to construct or compute $\{e'_i\}_{i=1}^N$.

A parameterization of O(N)

Consider the orthogonal group

 $O(N) = \{ \Theta \in GL(N, \mathbb{R}) : \Theta^{\tau} \Theta = I \}.$

A parameterization of O(N)

Consider the orthogonal group

 $O(N) = \{ \Theta \in GL(N, \mathbb{R}) : \Theta^{\tau} \Theta = I \}.$

Since O(N) is an N(N-1)/2-dimensional smooth manifold, we can locally parameterize O(N) by N(N-1)/2 variables, i.e., $\Theta = \Theta(q_1, \ldots, q_{N(N-1)/2})$ for each $\Theta \in O(N)$.

Hence, for all $\theta \in O(N)$ there is a surjective diffeomorphism b_{θ}

for relatively compact neighborhoods $\mathcal{U}_{\theta} \subseteq O(N)$ and $\mathcal{U} \subseteq \mathbb{R}^{N(N-1)/2}$, $\theta \in \mathcal{U}_{\theta}$.

A parameterization of ONBs

• Let $\{w_i\}_{i=1}^N$ be the standard ONB for $H' = \mathbb{R}^N$: $w_i = (0, \dots, 0, \underbrace{1}_{i=1}, 0, \dots, 0)$.

A parameterization of ONBs

Let
$$\{w_i\}_{i=1}^N$$
 be the standard ONB for $H' = \mathbb{R}^N$: $w_i = (0, \dots, 0, \underbrace{1}_{i^{\text{th}}}, 0, \dots, 0)$.

Since any two orthonormal sets are related by an orthogonal transformation, we can smoothly parameterize an orthonormal set $\{e_i\}_{i=1}^N$ with N elements by N(N-1)/2 variables, i.e.,

$$\{e_i(q_1,\ldots,q_{N(N-1)/2})\}_{i=1}^N = \{\Theta(q_1,\ldots,q_{N(N-1)/2})w_i\}_{i=1}^N \subset H'.$$

where for all $\Psi \in O(N)$, $W_i(\Psi) = \Psi w_i$.

$$e_i(\vec{q}) = e_i(q_1, \dots, q_{N(N-1)/2}) = W_i \circ b_{\theta}^{-1}(\vec{q}) = (b_{\theta}^{-1}(\vec{q}))w_i \in \mathbb{R}^N.$$

Lagrangian dynamics on ${\cal O}(N)$

We now convert the frame force F acting on the orthonormal set $\{e_i\}_{i=1}^N$ into a set of equations governing the motion of the parameterization points $\vec{q}(t) = (q_1(t), \dots, q_{N(N-1)/2}(t))$, see (1). We define the Lagrangian L and total energy E defined for $\vec{q}(t)$ by:

$$L = T - P_e, \quad E = T + P_e,$$

where

$$T = \frac{1}{2} \sum_{j=1}^{N(N-1)/2} \left(\frac{d}{dt} q_j(t)\right)^2.$$

Lagrangian dynamics on O(N)

We now convert the frame force F acting on the orthonormal set $\{e_i\}_{i=1}^N$ into a set of equations governing the motion of the parameterization points $\vec{q}(t) = (q_1(t), \dots, q_{N(N-1)/2}(t))$, see (1). We define the Lagrangian L and total energy E defined for $\vec{q}(t)$ by:

$$L = T - P_e, \quad E = T + P_e,$$

where

$$T = \frac{1}{2} \sum_{j=1}^{N(N-1)/2} \left(\frac{d}{dt} q_j(t)\right)^2.$$

Using the Euler-Lagrange equations for the potential P_e

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}_j}\right) - \frac{\partial L}{\partial q_j} = 0,$$

we obtain the equations of motion

(1)
$$\frac{d^2}{dt^2}q_j(t) = -2\sum_{i=1}^N \rho_i \langle x_i, e_i(\vec{q}(t)) \rangle \left\langle x_i, \frac{\partial e_i}{\partial q_j}(\vec{q}(t)) \right\rangle.$$

Point of view

Choose $\vec{q}' \in \mathbb{R}^{N(N-1)/2}$ such that $e_i(\vec{q}') = e'_i \in \mathbb{R}^N$ for all i = 1, ..., N.

Point of view

Choose $\vec{q}' \in \mathbb{R}^{N(N-1)/2}$ such that $e_i(\vec{q}') = e'_i \in \mathbb{R}^N$ for all i = 1, ..., N.

Define $\tilde{q} : \mathbb{R} \to \mathbb{R}^{N(N-1)/2}$ such that $\tilde{q}(t) = \vec{q}'$ (a constant function).

Point of view

(1)
$$\frac{d^2}{dt^2}q_j(t) = -2\sum_{i=1}^N \rho_i \langle x_i, e_i(\vec{q}(t)) \rangle \left\langle x_i, \frac{\partial e_i}{\partial q_j}(\vec{q}(t)) \right\rangle.$$

Remark The definition of \tilde{q} and equation (1) introduce *t* into play for solving the quantum detection problem.

It can be shown that

Proof Theorem Denote by $\vec{q}(t) = (q_1(t), \dots, q_{N(N-1)/2}(t))$ a solution of the equations of motion that minimizes the energy *E* and denote by \mathcal{P}_H the orthogonal projection from *H'* into *H*. Then $\vec{q}(t)$ is a constant solution and the set of vectors

 $\{\mathcal{P}_H e_i(\vec{q}(t))\}_{i=1}^N \subset H$

is a Parseval frame for H that minimizes P_e .

It can be shown that

Proof Theorem Denote by $\vec{q}(t) = (q_1(t), \dots, q_{N(N-1)/2}(t))$ a solution of the equations of motion that minimizes the energy *E* and denote by \mathcal{P}_H the orthogonal projection from *H'* into *H*. Then $\vec{q}(t)$ is a constant solution and the set of vectors

$\{\mathcal{P}_H e_i(\vec{q}(t))\}_{i=1}^N \subset H$

is a Parseval frame for H that minimizes P_e .

Theorem A minimum energy solution is obtained in the SO(N) component of O(N).

It can be shown that

Proof Theorem Denote by $\vec{q}(t) = (q_1(t), \dots, q_{N(N-1)/2}(t))$ a solution of the equations of motion that minimizes the energy *E* and denote by \mathcal{P}_H the orthogonal projection from *H'* into *H*. Then $\vec{q}(t)$ is a constant solution and the set of vectors

$\{\mathcal{P}_H e_i(\vec{q}(t))\}_{i=1}^N \subset H$

is a Parseval frame for H that minimizes P_e .

- **J** Theorem A minimum energy solution is obtained in the SO(N) component of O(N).
- So we need only consider parameterizing SO(N).

It can be shown that

Proof Theorem Denote by $\vec{q}(t) = (q_1(t), \dots, q_{N(N-1)/2}(t))$ a solution of the equations of motion that minimizes the energy *E* and denote by \mathcal{P}_H the orthogonal projection from *H'* into *H*. Then $\vec{q}(t)$ is a constant solution and the set of vectors

$\{\mathcal{P}_H e_i(\vec{q}(t))\}_{i=1}^N \subset H$

is a Parseval frame for H that minimizes P_e .

- **Important** For the set of O(N).
- So we need only consider parameterizing SO(N).
- **P** Theorem A minimum energy solution, a minimizer of P_e , satisfies the expression

$$\sum_{i=1}^{N} \rho_i \langle x_i, e_i \rangle \left\langle x_i, \frac{\partial e_i}{\partial q_j} \right\rangle = 0.$$

Numerical problems

The use of Lagrangia provides a point of view for computing the TF minimizers of P_e . (Some independent, direct calculations are possible (Kebo), but not feasible for large values of d and N.)

Numerical problems

- The use of Lagrangia provides a point of view for computing the TF minimizers of P_e . (Some independent, direct calculations are possible (Kebo), but not feasible for large values of d and N.)
- The minimum energy solution theorem opens the possibility of using numerical methods to find the optimal orthonormal set. For example, a type of Newton's method could be used to find the zeros of the function

$$\sum_{i=1}^{N} \rho_i \langle x_i, e_i \rangle \left\langle x_i, \frac{\partial e_i}{\partial q_j} \right\rangle.$$

Numerical problems

- The use of Lagrangia provides a point of view for computing the TF minimizers of P_e . (Some independent, direct calculations are possible (Kebo), but not feasible for large values of d and N.)
- The minimum energy solution theorem opens the possibility of using numerical methods to find the optimal orthonormal set. For example, a type of Newton's method could be used to find the zeros of the function

$$\sum_{i=1}^{N} \rho_i \langle x_i, e_i \rangle \left\langle x_i, \frac{\partial e_i}{\partial q_j} \right\rangle.$$

With the parameterization of SO(N), the error P_e is a smooth function of the variables $(q_1, \ldots, q_{N(N-1)/2})$, that is,

$$P_e(q_1,\ldots,q_{N(N-1)/2}) = 1 - \sum_{i=1}^N \rho_i |\langle x_i, e_i(q_1,\ldots,q_{N(N-1)/2}) \rangle|^2.$$

A conjugate gradient method can be used to find the minimum values of P_e .

Analytical methods

Problem: Let $p = \{p_k\}_{k \in \mathbb{Z}}$ be positive definite, *i.e.*, for any finite set *F* ⊆ Z and any $\{c_j\}_{j \in F} \subseteq \mathbb{C}$:

$$\sum_{j,k\in F} c_j \bar{c}_k p(j-k) \ge 0$$

Suppose p = 0 on a given $F \subseteq \mathbb{Z}$. When can we construct unimodular $u : \mathbb{Z} \to \mathbb{C}$ such that:

$$p(k) = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{|j| \le N} u(j+k) \overline{u(j)}?$$

Analytical methods

Problem: Let $p = \{p_k\}_{k \in \mathbb{Z}}$ be positive definite, *i.e.*, for any finite set *F* ⊆ ℤ and any $\{c_j\}_{j \in F} ⊆ ℂ$:

$$\sum_{j,k\in F} c_j \bar{c}_k p(j-k) \ge 0$$

Suppose p = 0 on a given $F \subseteq \mathbb{Z}$. When can we construct unimodular $u : \mathbb{Z} \to \mathbb{C}$ such that:

$$p(k) = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{|j| \le N} u(j+k) \overline{u(j)}?$$

• This is the same problem for \mathbb{Z} that we have been addressing for \mathbb{Z}_N in the one-dimensional CAZAC case.
Iterative Generalized Harmonic Analysis (GHA of Wiener)

- Iterative Generalized Harmonic Analysis (GHA of Wiener)
- Uniform distribution and discrepancy theory

- Iterative Generalized Harmonic Analysis (GHA of Wiener)
- Uniform distribution and discrepancy theory
- Generalized Gauss polynomials with irrational factors:

- Iterative Generalized Harmonic Analysis (GHA of Wiener)
- Uniform distribution and discrepancy theory
- Generalized Gauss polynomials with irrational factors:

 $e^{2\pi i n^{\alpha} \theta}$, integer $\alpha \geq 2$, and θ irrational

- Iterative Generalized Harmonic Analysis (GHA of Wiener)
- Uniform distribution and discrepancy theory
- Generalized Gauss polynomials with irrational factors:

 $e^{2\pi i n^{\alpha} \theta}$, integer $\alpha \geq 2$, and θ irrational

Finite approximation and software as with algebraic CAZACs.

