DEFORMATION SPACES ASSCCIATED TO COMPACT HYPERBOLIC MANIFOLDS
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In this paper we take a Ffirst step toward understanding repre-

sentations of cocompact lattices in 50(n,1) into arbitrary Lie groups

by studying the deformations of ratiomnal representations — see Propo-

giticn 5.1 for a rather general existence result. This preposition

has a number of algebraic applications. For example, we remark that

such deformations show that the Margulis Super-Rigidity Theorem, see

[30], cannot be extended to the rank 1 case. Ve rematrk also that if

T © $0{n,1) is one of the standard arithmetic examples described in

Section 7 then ' has a fairhful representation o' in s0(n+l), the

galois conjugate of the uniformization representation, and Proposition
5.1 may be used tc deform the direct sum of p' and the trivial repre-

sentation in $0{nt+2) thereby constructing non~trivial families of

jrreducible orthogonal representations of I'. However, most of this

paper is devoted to studying certain spaces of representations which

are of interest in differential geometry in a sense which we now

explain.
Recently, there has been considerable interest in spaces of

locally homogeneous (or geometric) structures on smooth manifolds, see

for example, Thurston [25]. The spaces of conformal, projective and

hyperbolic structures are of particular interest. If M is a smooth

i es
manifold we will denote the corresponding spaces of marked structures,

see Lok [13], page 7, by C(M)y, P{M) “and H(M) respectively. OSince

these spaces are a measure of the complexity of the fundamental graup.

it makes semse to study them in the case that M is a hyperbolic

n-manifold of course, if m = 3 and M 1is compact, then the cele-

brated Mostow Rigidity Theorem states that H{M) 1is a point. OCur main

theme is that this is far from true for C(M) and PQ). Alsc
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H(M « R) 1is an interesting space closely related to C(M). Our first
main result is a lower bound for the dimensions of the three previous
deformation spaces by v, the largest number of disjoint, non-singular,
totally geodesic hypersurfaces contained in M. If M 1is a hyperbolic
surface of genus g then r = 3g - 3. From this bound, it is easily
shown that the deformation spaces have arbitrarily large dimension as
M wvaries. Our second main result is the existence of non-isclated
singularities. 1In fact, we prove that the deformation spaces are
locally homeomorphic to certain singular algebraic varieties; however,
it should be possible to prove that the deformation spaces themselves
have natural local analytic structures (see the remark at the end of
Section 7) preserved by the local homeomorphism hol (see below). We
would then have established that C(M), P(M) and HM x R) are singu—
lar for their natural local analytic structures.

To obtain the above results concerning the spaces of structures
it is convenient to replace them with the space of classes of repre-
sentations of ' the fundamental group of M, into the automeorphism
groups of the model space. This is possible because of the following
general result.

Let S(M) be a space of marked locally homogeneous structures
modeled on a homogeneous space X = G/H. Given a structure s € S(M),
by continuing coordinate charts around elements of [', see Lok [13],
page 6, we obtain the holonomy representation p:I' + G of s and a
map:

hel: S(M) - Hom(l',G) /G

defined by hol(s) = G-p where G acts by conjugation. Then Theorem
1.11 of Lok [13] states that hol is an open map which lifts to a

local homeomorphism from the space of (G,X)—developments to Hom(I',G).
We will refer to this result as the "Holonomy Theorem'. Unfortunately
hol is not necessarily a local homeomorphism. However, if p is a
stable representation (see Section 1) then there exist neighborhoods
U of s in S and V of p in Hem{I.G)/C, finite groups H

1
and H2 with Hl CH (the isotropy subgroups of s and p) and

finite quotient mappiigs U= E/Hl, V= Q;/'H2 such that hol 1lifts to
da homeomorphism U to V. In particular if p 1s good (see Section
1} then hel is a homeomorphism from a neighborhood of p to a neigh-
borhood of p. We see then that if p 1is stable then local informa-

tien around p gives us information around s.
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The representation p:I' = G is necessarily rigid because
p(I") is neot necessarily a lattice in G. Thus, we circumvent the
Mostow Rigidity Theorem by, on the one hand, considering second-order
structures such as conformal and projective structures and on the
other, by considering non-lattice subgroups. For the three deforma-
tions spaces comsidered abave we have G = S0(n¥l,1) for Con .,

G = PGLn+1(BJ for P(M) and G = S0(mt+l,1) for H(M x R). Thus, we
can concentrate our efforts on the two families of spaces
Hom(T,S80(n+1,1)) and Hom(T,PGLn+1GR)) and their quotients by

S0 (n+1l,1) and PGLn+lGR} respectively. With the exception of Section
§, this paper is entirely concerned with these latter spaces. In addi-
tion to proving the previous lower bound for the dimensions of these
spaces, we give examples where they are gingular at certain representa-
tions, including irreducible ones, for their nmatural algebraic struc-
tures.

Tt seems the first result showing the non~-triviality of
Hom(T.50(n+1,1)) £for n = 3 was Apanasov [1]. The matter was greatly
clarified by Thurston's idea of bending & Fuchsian group, see Sullivan
[24] or Kourounmiotis [27].

There are a number of techmical theorems contained in this paper
in addition to the main results alluded to above. For the reader's
convenience we briefly state them in order of occurrence.

dection 1 defines stable representations, characterizes them
in terms of parabolic subgroups and proves they are Zariski. open in
Hom(I',G). A slice theorem is proved for the action of G on the
stable representations. A very general notiom of quasi~Fuchsian repre-
sentation is studied and found to be surprisingly restrictive.

Section 2 treats deformations and infinitesimal deformations
of representations and the first obstruction to integrating an infini-
resimal deformation. We study this obstruction via the dual homology
class in later sections.

Section 3 deals with gquasi-Fuchsian representations of
T = ﬁl(M) on hyperbolic (ntl)-space and our main theorem in this
section shows they are open in Hom(T,S50(m+1,1)). We prove various
theorems concerning the local nature of the space of conjugacy classes
of quasi-Fuchsian representations; for example, for n even, this
space is an open subset of the real algebraic set (0,80 (n+l,1)) ~
see Section 1 for notation. In the odd case, this result is not neces—

sarily correct, there is another component of the real points passing
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through the uniformization representation p of T in S0(n,1) cor-
responding to deformations in the group 80(n,2) of 5 composed with
the inclusion of 50{n,1) im S0(n,2).

Seetion 4 is a technical section dealing with cycles with ccef-
ficients and their intersection products. This material is needed to
compute the first obstruction class.

Section 5 is one of the main sections of the paper. We intro-
duce an algebraic version of Thurston's bending deformation - see
Kourouniotis {27] for a geometric definition justifying the name
"bending". Theorem 5.1 identifies the derivative of the bending defor—
mation with the Poincaré dual of a totally gecdesic hypersurface with
an obvious coefficient from Minkowski space. The rest of the section is
concerned with proving that dim X(T,30(n+1,1)) and dim X(I',PGL ®))
are bounded below by r, the maximum number of disjoint, embeddegfl
totally gecdesic hypersurfaces in M. In the classical case of a
hyperbolic surface of genus g we have r = 3g - 3 and the bound is a
weak one. By a simple gecmetric construction the problem is reduced to
deforming a representation in G of the fundamental group of a graph
of groups such that all edge groups have non-zero invariants in ¢,
the Lie algebra of G.

Section 6 gives a criterion for the above spaces to have non-
isolated singularities. This eriterion involves computing some inter-
sections of cycles with coefficients. It is possible that the space
C(M) dis singular for any hyperbolic n-manifold (n = 4) admitting
two different intersecting, twe~sided, non-singular, totally geodesic
hypersurfaces. However, we have not been able tc prove this.

Section 7 is a technical section proving the existence of nicely
intersecting totally geodesic submanifolds in the standard arithmetic
examples. For example, we show (Theorem 7.2) that if p+ g #n -1
there exist totally geodesic submanifelds of codimension p and g

respectively intersecting in a single component. The reader may find
this section difficult - he is advised to refer to O0'Meara [18] for
background information on the Stéong Approximation Theorem and the
spinor norm.

Section 8 is concerned with the interaction of C(M) with
Riemann geometry. We state a theorem suggested to usg by Jim Simons
and proved by S5.Y. Cheng which shows each conformal class of metrics
on M contains a unique metric of constant scalar curvature -n(n-1).

(This also follows as a special case of the Yamabe problem, recently
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solved by R. Schoen [29].) This is a generalization of the General
Uniformization Theorem for Biemann surfaces. Using this metric we
construct an interesting function vol: C(M 4'B+ which assigns to a
conformal structure the volume of M for the canonical metric belong-
ing to that structure. We prove that wol 1is not constant 1f nz 3
(it is constant if n = 2). 1In case n =4, we prove that wvol has
an zbsolute minimum at the hyperbelic étructure. For ali n= 3, it
has a local minimum (with positive definite Hessian) at the hyperbolic
structure. The existence of the canonical metric combined with work
of Gasqui and Coldschmidt [10] yields a Riemannian metric on C(M},
generalizing the Petersson-Weil metric.

There are a great many problems concerning C(M) and PN
which remain unaunswered - their topological properties for example.

Tt would be very useful to have some examples, for instance for some
hyperbolic 3-manifolds. We believe that the most important problem is
to decide whether r iz always equal to the dimensions of C(M) and
P(M) or just a lower bound. A closely related problem is to construct
more deformations - perhaps by analytic methods.

We would like to thank a number of people who helped us with
this paper. Above all, we thank Bill Goldman for suggesting the main
tines of Theorem 3.1 and many other conversations. Also we would like
to thank John Morgan for suggesting the proof of Lemma 3.4, and for
suggesting the graph of hypersurfaces of Section 5, Larry Lok for pro—
viding us with his thesis and an extension of an argument of his thesis
(see the proof of Theorem 3.1), Robert Steinberg for providing us with
the proof of Lemma 1.1 and §.Y. Cheng for proving Theorem 8.1 and a
helpful conversation concerning Theorem 8.3. We should acknowledge a
debt to Bill Thurstom, for his idea of bending a Fuchsian group is at
the heart of this paper. Finally, this paper is dedicated to Dan
Mostow on the occasion of his sixtiety birthday (the second author
presented it at the conference at Yale marking this occasicm). The
second author would like to take this occasion to thank Dan Mostow and
the Yale mathematics faculty for the hospitality shown him as a visi-
tor in 1983-84, as an assistant professor from 1974-78 and on many
other occasions.

After we had finished writing this paper we learned of the
thesis of Keourouniotis {27]. Kourouniotis also obtains the lower
bound for the dimension of (). His thesis contains & careful des-—

cription of the geometric version of bending.
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1. Character Varieties and Generalized Quasi-Fuchsian Groups.

Let [' be a finitely generated group and G a simple linear
algebraic group defined over R. The complex peints of G will also
be denoted & and the real peints G. The set Hom([',G) is the set
of complex points of an affine variety defined over R with real
points Hom(T,3). We will often denote Hom(',G) by (',G) and
Bom([',G) by {I';&). The group G acts algebraically on {I,G) by
conjugation. This action will be dencted g-p for g<¢ G and -
¢ € R(T,G). Simce & is reductive, there is a quotient variety
X(I'.G) for this action, see Newstead [19]. The set of real points of
the quotient variety will be dencted X(T',G). We let n:R(T,G) = X(T,6)
and 7:R(T.G) - X(I'.G) denote the quotient projections. N

The quotient variety X(I',G) is obtained as follows. Suppose

{Yl,vz,...,yN} ie a set of generators for [ and {fl,fz,...,fm} is
a set of algebra gemerators for the algebra of invariant polynomials

N
on G, We may choose the fi‘s so that they take real wvalues on GN.

We define a map F:R(T,8)/G -+ " by

FGp) = (B () s esp () e a0 )5 1))

We caution the reader that F is not necessarily injective.

The image of F is contained in an affine variety determined
by the relations among the generators {Yl,...,YN} and the relations
among the invariants {fl,...,fm}. Precisely, X(I',G) is the affime
variety corresponding to the ring of G invariant polynomials on
Hom(T,€) . Then X(I',6) is defined over R. The set of real points
X(I',6) contains the image under F of the classes of representations
ont which the invariants {fl,fz,...,fm} take real values. We note
that F is the mapping induced by o on the orbit space of R(I,G}
to X({I,G)- -

As we have remarked previously, the variety X(T',G) is not
isomorphic to the orbit space R(T,G}/G. However, we now define a
subset of R(T,G), the set 6§ = S(T) of stable representations.

This set has the property that ¥ induees a homeomorphism from S§/G

onto an openp subset of X(T',G).

Definitions. A representation p din R(I',G) 1is said to be stable
if the orbit G-p is closed in R{I',G) and if the isotropy subgroup
Z{p) of p in G 1is finite.

A stable representation is said to be good if Z{p) = ZG, the
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center of G.

By Newstead [19], Proposition 3.8, 5 is Zariski open in
R(T',G). However, S might be empty.

Let FN be the free group on N generators. Then we have a
closed embedding R(T,G) < R(TN,QJ. Our definition of stability then

gives:
S(I = R(T,E N S(TN).

This equality allows us to reduce many problems for T to the corres—
ponding problems for T,. This is helpful because R(TN,§) = Eﬁ, a
non-singular variety.

We now characterize the stable representations in terms of com-
plex parabelic subgroups. Recall that a parabolic subgroup P of a
semi-simple Lie group G is the full mormalizer of a parabolic sub-

algebra - an algebra whose complexification contains a maximal solvable

subalgebra - see Varadarajan [26], 279-238.

Theorem 1.1. A representation p in R(T,G) is stable if and omly

if the image of p 1is not contained in any proper parabolic subgroup

of G.

Proof. Assume p is stable. If the image of ¢ is contained in a
proper parabelic subgroup, then by conjugating p by & one parameter
group in the center of a Levi subgroup we find a representation in the
closure of the orbit of p which is contained in the Levi subgroup.
Since the orbit cf p is closed, this limit representation is conju-
gate to p. But the limit representation has an infinite centralizer
in G (the centralizer contains the center of the Levi subgroup) con~
tradicting the stability of p. .

Now suppose that p is not stable. Hence, either the orbit of
o is not closed or Z{p) is mot finite. Assume the former. By the
Hilbert-Mumford Theorem, see Birkes {4], there is a one-parameter
group k:@m -+ & so that limtéok(t}-p exists. By Mumford-Fogarty
[17], Proposition 2.6, this implies that the image of p is contained
in the parabolic group FP{}) (notation of [17]). Thus, we may assume
that Z(p) is infinite., Hence, the image of p fixes an element =
in g, the Lie algebra of G. Hence, the image of p fixes the semi-
simple part % of x and the nilpotent part X, of =x. If XS% 0,
then the centralizer of 3 is the Levi subgroup of a proper para-

bolic and we are done. If L 4 0 then the centralizer of L is
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contained in a parabolic subgroup by the following lemma and again we
are done. With this the theorem is proved. We owe the next lemmz to

Rohert Steinberg.

‘Lémia 1.1. Let g be a complex seml-simple Lie algebra and x € g9 a

non-zero nilpotent elément. The subgroup of & which fixes x in the

adjoint action is contained in a preéper parabolic subgroup of 6.

Proof. By the Jacobsen—Morosov Theorem, see Kostant [127, we may
cheose h,y € g so thgt {x,y¥,h} 1is the standard basis for the Lie
algebra sﬂz(@). The element h acts semi-simply on ¢ with integer
eigenvalues. We may decompose ¢ according to ¢ =@ gi where 9;
is the eigenspace of ¢ wunder h corresponding te the eigenvalue i.

We define a parabolic subalgebra P of g by P =@ Let P-

-izogi'
be the normalizer of P of G. By Kostant [12], Theorem 3.6, the
element h is unique up to conjugacy by the Lie group GX correspond-
ing to the subalgebra gx = ker ad x N im ad x. Any element of
ker ad x 1is a sum of highest weight vectors for h and hence 9, < P
and GX < P. Hence the subgroup P is uniquely determined by =.
Hence if g f£ixes =x in the adjecint action then g normalizes P.
But a parabolic group is its own normalizer and the lemma is proved.

We now make an assumption that will be satisfied by all pairs

(I';G) considered in this paper.

Assumption. There exists a stable real representatiomn; that is, there
exists a representation p € R(T',G) such that the image of p 1is not
contained in any proper parabelic subgroup cf £.

We now recall that a topological group G is said to act pro-
perly on a space X if the map A:G x X » X x X given by A(g,x) =

(gx,x) is a proper map.

Proposition 1.1. The actions of G on S and G ‘on S N R(I',G) are

proper.

The proposition follows from a result in geometric invariant
theory. In order.te apply this result we have to relate the algebraic
geometry definition of propernmess to the usual cne. To this end, we
define a merphism of finite type f:X - Y of affine varieties X and
Y to be Zariski proper if it is Zariski universally closed; that is
if for every variety % the morphism f x idiX x Z + ¥ x Z 1is closed
in the Zariski topologies of X x Z and Y x Z, We now prove a lemma

for £ as above.
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Lemma 1.2. f is proper if and only if £ 1is Zariski proper.

Proof. We leave the implication that proper implies Zariski proper to
the reader. Assume f 1is Zariski proper and let i be an embedding
of X in Pn (the image of X will not be closed in Wn). We have
a diagram:

X —————-*44—} P

We claim that f Zariski proper implies J x £ is Zariski
proper. Certainly T x £ x X + " x ¥ 1is Zariski proper. But from

the diagram:

jo» £ I x £

we see that it is enough to prove that j x T 1s Zariski proper. But
this map is (up to an exchange of factors) the graph map Fj of ]
given by T (x) = (x,i(x)). But the graph map of any morphism

h:M >N is proper for it is a closed immersion - the image of Th is
the subset of M x N defined by the equations hupl =Py With this
the claim is established. Hemce (J x £)(X) 1is Zariski closed and
hence strongly closed in P" % Y. The iemma now follows.

We may now deduce the proposition from the results in Mumford-
Fogarty [17], Chapter 2, as follows. By Proposition 2.4, it is suffi-
cient to prove that the action of every one~parameter subgroup
a6 -~ G on S is proper. Suppose this is false. Then there 1s a
seqzegce {pn} contained in a bounded subset of 5, a sequence {an}
in € sguch that limn_man =« and a ome-parameter group p such
that limnawAd u(an)-pn = with p € 8. But the argument in [17],
Proposition 2.6, shows that the image of p is contained in a proper
parabolic subgroup of G, a contradiction. We note that since G is
closed in G and S N R(T,G) is closed in 35 the first statement of
the proposition implies the second. With this the proposition is
proved.

We now prove a technical theorem which will be of use later.

See Borel-Wallach [6]1, page 277, for the definition of a slice to a
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group action through a point.

Theorem 1.2. The actions of G on S and 6 om 5 N R(I',G) admit

analytiec slices through any p.

Proof. It is sufficient to prove the existence of slices on the stable
representations in R(PN,ED and R(TN,G) since a slice in R(TN,Q)
intersects R(I',€} in a slice. But S(PN) and S{TN) n R(FN,G) are
manifolds upon which G acts properly with finite isotropy groups.

The theorem now follows from Palais [20].

Corollary. If £ is a germ of a curve tﬁrough w(p) in X({I.G) or

¥(T,G) and p is good then there is a germ of a curve Py through
p in R(,G) or R(T.G) with image <

e
Remark. If p 1s good the quotient map n induces an analytic equi-
valence between a neighborhood of p in a slice through p and a

neighborhoed of w(p) in X(T',6).

We prove another gemeral result concerning R(T,G). Let
® %
S = {p€8:iZ(p) = ZG} where ZG is the center of G. 8 1is the set

of good representations.

%
Proposition 1.3. 8§ is Zariski open in R(T,G).

Again it is sufficient to prove the proposition for T = TN,
the free group on N generators. Im this case R{T',G) dis irreduci-

ble and consequently § is dirreducible.

%
Lemma 1.3. § dis open in the strong tepology on R{(I,G).

Procf. This is an immediate consequence of the existence of local

slices since ail identifications on a slice through p are made by

Z(p) -

#
Lemma 1.4. 8§ is constructible.

Proof. Let & be the diagenel in § x 5§ and 2,36 § + 5 the pro-

jection. Then *S - S* = pz(Afl(A) - ZG x §) is a constructible set.

Since 8 is constructible and strongly open it is Zariski
open and the propesition is proved.

Now let T be a torsion—free group, H a classical gimple
algebraic group defined over R with real points E and pO:F - H
an embedding of T inte H as a uniform discrete subgroup. If H
is not locally isemorphic to PSLZGR) then T is rigid by the Mostow

Rigidity Theorem. However, we now suppose that H is represented in
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another algebraic group G also defined over R so that the repre—
sentation E ~ G is defined over R. We assume the image of H is
not contained in a proper parabelic subgroup of G. Then Po composed
with the representation H + G of real points embeds [ inte G as
a discrete subgroup (usually no longer a lattice). We abuse notation
and denote the resulting embedding by Cyr We now discuss two problems
motivated by the classical theory of quasi-Fuchsian groups.

The first problem is to study the deformation space Hom(T,8) /G.
The second is to realize this space as the target of the holenomy map-—
ping of a space of locally homegeneous structures on the original com-
pact locally symmetric space M = pO(T)\H/K where K 1is a maximal
compact subgroup of H. In the classical case of gquasi-Fuchsian
groups we have H = PSLZ(R) and G = PSLz(@). In this case M is a
compact surface and the deformation space is the space of holonomy
representations of flat conformal structures on M.

Unfortunately, in the general case, the possibilities are sever-
ely limited. Recall that a representation p € Hom(I',G) is said to
be locally rigid if the orbit of p in Hom(I',G} dis open in Hom(l',G) »
We recall that two Lie groups are sald to be locally isomorphic if

they have isomorphic Lie algebras.

Theorem 1.3. is locally rigid in G wunless H is locally ise-

[
morphic to So(g,l) or SU(n,1).

Proof. Assume B is not one of the above groups. Let h  be the
complexification of the Lie algebra of H and ¢ the complexifica-
tion of the Lie algebra of G. By a theorem of Well, see Raghunathan
[21], Theorem 6.7, it is sufficient to prove Hl(T,g) = 0. Now,
decompose § into a sum of irreducibie” H modules according to

g = ®?=1Vj. Then since T < H we have Hl(T,g) = m?=1Hl(T,Vj). Now
pO(T) is a uniform discrete subgroup c¢f H and V, is an irreducible
representation of H. Hence, by Raghunathan [22], we have Hl(F,Vj)
=0 unless H is as above. With this the theorem is proved.

In fact, Raghunethan's theorem tells us that P is locally
rigid unless Vj is a symmetric power of the standard representation
in case G = SU{(n,1) or a space of (Minkowski) spherical harmenics
in case € = S0(n,1). We give three examples of representations
H—~ ¢ for which local rigidity does not follow from Raghunathan's

theorem. In each case, let ¥V denote the standard representation of

H. We assume n > 2 for 80{n,1) and n> 1 for SU(n,1}) 80 we
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have Hl(F,b) =0 by a theorem of Weil, see Raghunathan [21], Chapter
VIT, section 5. In the orthogenal case, we let SéV denote the
(Minkowski) spherical harmonics of degree 2; that is, the "traceless"
symmetric 2-temsors. Here the "trace" is the immer product with the
30(n,1) dinvariant bilinear form (,} using the form on the symmetric

2—tensors induced by ().

infinitesimal
B G g deformations
S0 (n,1) S0 (n+l,1) haVv Hl(F,V)
1 2
80(m,1) PGLn+lGR) heVv 4 (F,SOV)
SU(n,1) U+, 1) hev | H (V)

We will discuss the first and second examples in detail in this
paper. We note in the first example § may be identified with
AZ(V ® L) where V® L is the standard representation of SO({m+l1l,1)
and L is a line invariant under S0(n,1). As representatibn spaces
for S0(n,1) we have:

Puvel =sve Lev) =4Ye V.

We will use this identification extensively in Sections 6 and 7. 1In
2
the second case we have S£n+l ~ ATV @ ng as S0(m,l) modules. In

the first case is good if and only if n is even, in the second

o
case DD ig good for all n.
Tn the third case a more subtle rigidity theorem holds and

there are no interesting deformatioms - see Goldman-Millson [28].

2. Infinitesimal Deformations and Obstructions.

In this section, we review standard material concerning infini-
tesimal deformations. We begin by recalling the definitions of
Filenberg-Maclane l-cocycles and coboundaries.

Let V be a vector space and p:I' =+ Aut ¥V a representation.
Then a l-cocyele en [ with coefficients in p 1s a map c:' = V

such that for v,8 € I' we have:
clyg) = elyy + plr)-c(d).

1
We let Z (I',V) denote the space of l-cocycles on T with values in
V. Elements of Z (I',V} are often called crossed-homemorphisme (with

values in V).
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A l-cocycle ¢ 1is said to be a l-coboundary if there exists

v € ¥ such that:
cly) =ply)v -v forall y €T

We denote the subspace of l-coboundaries by Bl(F,V) and define the

first cohomology group of I with values in Vv by:

1
1
gLy = 500
B (T,V)
There are similar but more complicated definitions for ZP(F,V),
BP(I',V) and HP(I',V) for all p = 1, see Eilenberg-Maclane [91.
Let X be a real algebraic set in BP and x € X. Let
x:{-6,e) » X be a real analytic curve such that «(0) = x. Let
a{t) = Zk;oakt
the leading coefficient of o at t =10 to be a, if n> 0, o #0

bte the Tayler series for a about & = 0. We define

and a = 0 for 0 < m < n. We then define the tangemt come TCX of
X at x to be the set of all leading coefficients of curves a as
above. If X is smooth at x then TCX coincides with the tangent
space to X at X.

Now let p:T = G be a representation of T into the real
points G of an algebraic group G defined over R. Let Py be a
curve in Hom(T,G) with og = P- Let p(y) € TP(Y)(G) be the lead-
ing coefficient at t = 0 to the curve pt(Y) in G. Define a func-

rion ¢ from T to the Lie algebra ¢ of & by:

cly) = Bérp T

The following lemma is immediate, observe that I acts on g by the

composition of p with the adjoint actiocn of G on 4.

Lemma 2.). ¢ 1is a cocycle.

One obtains in this way an embedding of the tangent cone at o
to Hom(l',G) into Zl(F,g). For this reason, the space Zl(F,g)
will be called the space of infinitesimal deformations of p. We let
TCp denote the tangent cone to Hom(l',G) at p.

Suppose now that ey is a trivial deformation of p ; that is,
suppose there exists a curve g, in G with gy = 1, the identity
in G, such that p. = Ad g.P- Let & be the tangent vector Lo

By at t = 0; hence § € g. Upon differentiating we obtain:

ely) = ¢ - ad p(y)E

and we have proved the following lemma.

coefficient at t = 0 to a curve in X(T,G) and
2
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Lemma 2.2. If ¢ is tangent to a trivial deformation then ¢ is a

l-coboundary. Conversely, every l-coboundary is a tangent tec a trivial

deformation.
Corollary. If c € TCp then ¢ + b ¢ TCp for all b ¢ Bl(T,g).
Procf. © + b 1is tangent to the deformation Ad g, P

Remark. By the previous lemma, the map dn annihilates Bl(T,g) and
induces a map dn from the image of TCp in Hl(F,g) to the tangent
cone to X(I',G) at n(p). We can cbtain more informatiom in case ¢
is a good representation. In this case ﬁ[S*(FN) is a prineipal
bundle so EEWHI(T,Q) is injective. In this case we may identify dm

. . 1 . 1
with the projection Z (T',§) te H (I',§) restricted to TC .

Lemma 2.3. If p is a good representation then dw maps TC onto
P

the tangent cone of X(I',G) at m(p).

Proof. If =z is an element in the tangent come to X(T',G) at wn{p)
thgn there exists a cutrve %, in X(I',G) with tangent vector =z at
t = 0. But by the cotrollary to Theorem 1.1 we can lift %, mear

t =0 toa curve in Hom(T,8). The surjectivity of dm follows.

Remark. We call an element of Hl(F,g) an infinitesimal deformation
of mip).

We now derive a necessary condition for an element ¢ € Zl(T,g)
to be the leading coefficient at t =0 to a curve Py in Hom(l',&).
Recall that the cup-square of c € Zl(T,g) is the element f[c,c] €
ZZ(T,Q) defined by:

[cselya8) = [ely),Ad p(*r);(ﬁ)]-

Here [:] denotes the bracket operaticn im ¢. The following propo-

sition follows from Lemma 2.4 of Goldman-Millson [28].

Proposition 2.1. (i) If ¢ is an element in Zl(F,g) which is the

leading coefficient at t =0 to_a curve Py in R(TI",6) then [e,c]

is the zerc element in HZ(T,Q).

(11) If =z ¢ Hl(F,g) is such that dm(z} 1is the leading
?y is good, then
[z,2]) =0 din H (T,g}.

The second part of the proposition requires some comment.
First, it is standard that the cup-product is a well-defined map frem
Hl(P,g) @ Hl(F,g) to HZ(F,Q). Second, by the corollary te Theorem

1.2, a germ in X(T,G) with leading coefficient =z can be 1ifted to
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a germ in Hom(T,6) with leading coefficient c, where ¢ is a
representative cocycle for z. Then [c,c] represents [z,z] and is
a coboundary by (i).

Definition. Given an infinitesimal deformation =z € Hl(T,g) the class
[z,2] € HZ(T,g) ig czlled the first cbstruction to the existence of

a deformation tangent to zZ.

Remark. There is an infinite sequence of obstructions to the exis-—
tence of a deformation tangent to z. Thedlr constructi;n follows the
general scheme of Kodaira—Spencer deformation theory. The second
obstruction is an analogue of the Massey product and may be interesting

for three manifolds.

3. Quasi-Fuchsian Groups in Hyperbelic n-space.

Tn this section, we will specialize the considerétions of Sec—
tion 1 to the case H = §0(n,1) and G = 80(n+l,1). By 80(n,1) we
will mean the complex points of the algebraic group of orientation
preserving isometries of the quadratic form for @n+1 éiven by

—xz + xz ERNE x2 The symbol S0{n,l1) will

Elxps¥psres¥yyy) = T ol
denote the real points of S0(n,1). We will embed S0(m,1) . into
80(n+l,1) as the isotropy subgroup of the last standard basis vector.
We let ' be a torsion free group embedded as a uniform dis-
crete subgroup by pO:T - 50{(n,1}. We assume for convenience that
pO(T) = SDO(n,l), the connected component of the identity. We wish
to study the space Hom(T,50(n+1,1)), its orbit space
Hom(T , S0 (n+1,1)) /S0 (n+1,1) and its algebraic geometrical quotient
X(I',80(n+l,1)). For many reasons (among them to describe a nice neigh-
berhoed of g in the quotient) it is useful to impose a technical
condition on the representations considered. We observe any repre-
sentation o of T imn s0(n+l,1} defines an actien of T on Sn,

the boundary of hyperbelic space Hn+l.

Definition. A representation p in Hom(T,80(n+l,1)) dis said to be
quasi-Fuchsian if the action of T wvia p om st is quasi-confor-
wally conjugate to the action via Pot

We will call Py or any representation comjugate by an element
of 50(n+l,l) to Pg a Tuchsian representation. Our terminology is

classical in the case n = 2. We let RH(F) denote the space of all
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quasi-Fuchsian representations of T and TH(F) the space of conju-
gacy classes of quasi-Fuchsian representations.

We now prove that the representations in RH(F) have several
good properties. We note first that for any o 3 Rn(F) the subgroup
p (M) ¢ 80{n+l,1) 1is discrete since it has a non-empty domain of dis-
continuity on g™, Also since the action of any such p 1is topolo-
gically conjugate to LY the group p (') does not fix any point of
s™ and consequently is mot contained in any parabolic subgroup of

50¢n+1,1). By Morgan [16], Lemma 1.1, we have the following lemma.

Lemma 3.1. If p € Rn(T) then the 80(n+l,1) orbit of p in
Hom{T,90(nt+1,1)) 1is closed.

Coreollary. If p € Rn(F) then the S0(n+1,1) orbit of p in
Hom{I', 50 (n+1,1)) 1is closed.

Proof. The corollary follows from Birkes [4].

N We now show that if p ¢ RH(F) and p is not Fuchsian then
the image of p 1is Zariski demse in 350(n+1,1).

By [7], Thecrem 4.4.2, we see that it is sufficient toc prove
that I' does not leave invariant a totally geodesic subspace of
Hn+1. But if p(I') leaves invariant a totally geodesic subspace of
dimension k with %k < n, then, since p(l') is discrete, it would
operate properly discontinuously on some Hk and consequently have
homological dimension less than or equal to k. But Hh(T,RJ = R.
Finally, if p(I} leaves an Hn invariant then we transform this m"
to the standard by an element of sO(n+l,1). But M = p{T)\Hn
must be compact since HH(M,R) = HH(T,m) =[R. We can apply Mostow

rigidity to conclude p 1s Fuchsian. We obtain:

femma 3.2. A quasi-Fuchsiap representation which is not Fuchsian is

Zariski dense.

With these twe theorems we have established that R () is
contained in the subset § of stable representations (Seczion 1;
moreover, if p € Rn(T) is not Fuchsian then it is good.

The image of § in the variety X(T,80(n+l,1)) is its orbit
space - Newstead [19], Proposition 3.8; that is, ﬂﬁpl) = Eﬁpz) if
and only if Py and p, are conjugate in SO(n+l,1}.

Lemma 3.3. If PPy ¢ Bom(I',S0(n+1,1)) and oq is Zariski dense
then Eﬁpl) = Eﬁpz) if and only if Py and 0y are conjugate by -an
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element of 80(nt+l,1}.

Proof. Since ﬁ(pl) = n{p ) there exists g € 50(n+l, 1) so that
gplg_l =Py Applying complex conjugation ¢ we find G(g)plc(g)
=0y Hence o(g) 1g centralizes 0. Since e is Zariski dense,

its centralizer Z(pl) is Z the center of G. Thus eithex a(g)

s
= g and we are done or c(g)G= - I this second case g = ih with
h in GL +2(R). But we claim that 350(nt+1,1} contains no pure ima-—
ginary matrices (for n =z 2). TIndeed h would transform the matrix
A of the form £ relative the standard besis into its megative.

Note t(ih)A(ih) =A. But f ané -f have different signatures.

With this the lemma is proved.
¥ i » +1,1)).
Corollary. Tn(F) embeds in X{I,S0{wm bD)

We are now ready to prove that Rn(r) is cpen. First we need
a lemma, the main idea of which we owe to John Mergan. We refer the
reader to Thurston [25], 8.1 and 8.2, for the definitiens and proper-—

ties of the limit set A(p{l)) (denoted L in Thurston) and the

T
n
regular set L(EI)) = g™ - A(p(T)) for the action of p(f) on S .
Let p be quasi-Fuchsian. Then we know Alp(T)) is homeomor-
phic to a sphere and Qe (M) is homeoworphic to two disjoint open

hemi-spheres R+ and 9 _
Lemma 3.4. M(I) = (m“+1 U QM) /p{l) 1s compact.

Proof. M() is a (possibly mon-compact) manifold with boundary
components the guotients of the two hemi-spheres 9+ and & _. Since
the actior of p 1s topologically conjugate to that of Pg? we know
N, =R /Q(T) N =% /p(?) and H /QO(F) are homeomorphic. Hence N+
and N are compact oriemtable p-manifolds. Since the universal
cover _B+ of N+ embeds into Hn+1 U Q+ U we know nl(N+) in-
jects into ﬁl(M(F)j. But this map is clearly surjective since pO(T)
stabilizes 9+. Hence the inclusions N+ c M{T') and N_<c M{I') are
homotopy egquivalences. Hence Hn(M(F),Z) is igomorphic te % and
the homology classes represented by N+ and N_ are each generators.
Hence N+ and N_ (with the opposite arientation) are homeclogous.
But then there is a finite chain on M(T) with boundary N+ UWN_ and

the lemma is proved.

Corollary. N(I) = BAGe(T))) /o (T) is compact (here H(X) denotes
the convex hull of X).
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Proof. N(T') and M(I) are homotopy equivalent manifolds with bound-
ary, Thurston [25], 8.3.5, via a boundary preserving homotopy equiva-

lence. Hence N(I') is compact.

We are now ready to prove the main theorem of this section. We
will make frequent use of Lok [13], Theorem 2.123 and also use an un-

published argument of Lok.
Theorem 3.1. Rn(F) is open in Hom(T,S0(n+1,1}).

Proof. Let p be a quasi~Fuchsian representation and a be a small
positive number.

Consider the manifeld M obtained as the guotient of the open
s-neighborhood of H(A{p(I))) in m“+l by p(I'}). Then ¢ is the
holonomy of the resulting (incomplete) hyperbolic structure on M.
Then by Lok [13], Theorem 2.123, for any p' € R(T,80(at+l,1)) suffi-
ciently close to p there exists an open hyperholic manifold M"  and
v, a diffeomorphism from M to M' which has the property that ¥
maps any geodesic arc im M to an arc in M' of curvature less than
a.

We first claim that the developing map D:i! %-Hn+l is inject-
ive provided a <1 (here M' denotes the universal cover of M").
Suppose that there exist x', y' in M' so that D(x') = D(y"). We
can join the preimages of x' and y' wunder $ {the 1lift of ) by
a geodesic arc since ¥ is convex. Hence x' and y' can be joined
by an are v of curvature less than 1. But if D(x') = D(y') then

X ) -l X .
D({v) is a closed curve in H with a single corner and curvature

less than 1. Ne such curve exists in Hn+l, see Lok [13] Proposi-
tiom 2.1%2.,

As a consequence of the result of the previous paragraph we may
identify the universal cover of M' with a subset of m“+1 (via the
developing map). Of course we may do the same for M. The convex hull

of a connected subset X of M' is then defined as the guotient by

p'(r)  of the convex hull in Hn+l of a connected component of the
inverse image of X din M'. Let M' = n+l/p‘(F) so M'e ',

let Cc M hbe the Nielsen convex core of M; that is,
= H(A(p (I)Y)/o(T) and let N be the closed &'-neighborhood of €
in M (we assume &' < ). Themn N is a strictly convex hyperbolic
manifold with Cl boundary and with holonomy p. We claim we can
construct a hyperbolic manifold N' C M! which is diffeomorphic to N,

has holonomy p' and is strictly convex. We first consider
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Y() < M. Unfortunately ¥ (W) dis not necessarily convex but we claim
jts comvex hull is within the (nt1)&(u) neighborhood of (W) where
s{a) = cush_l(l/Vl - az). In particular, limmaoﬁ(m) = 0. We owe the
proof to Larry Lok.

et p and g be points in ¢(ﬁ). Then by the argument of the
previous paragraph we may join p aud q by a curve o in ¢(ﬁ) with small
curvature co. By Lok [13], Corolldry 2.113, the segment © is homo—
topic (but not necessarily with endpoints fixed) to a geodesic v 80
that o is within the standard equidistant neighberhood of v of
radius 6&(a). Since this neighborhood is convex, wé may find a geo—
desic ~' Jeining p and ¢ within this neighborhood. Hence, all
geodesic segments in Hn+1 joining points of W(ﬁ) lie within the
5(a) veighborhood of Y(N). We define the k-hull of ¥(X) to be the
set of convex combinations of k-tuples of points of W(ﬁ)- We now
show by induction that the k-hull of ¢{ﬁ) lies within k&(a) of
$(ﬁ). The previous argument proves the assertion for k = 1. Assume
that the assertion is proved for the (k-1)-hull. We observe that the
k-hull is the l1-hull of the (k-1)-hull. Let be a geodesic segment
commecting two points x and ¥ 6f the {k-1) hull. By the induction
hypothesis, there exist points x' and y' in W(ﬁ) so that
d(x',x) < (k-1)5(a) and diy',yv) < (k-1)8{a) - here d denotes the
hyperbolic distance. TLet v' be the geodesic segment in Hn+1 join-

T

ing %' and ¥'. Then, by the case k =1, for any 2z on vt

there exists =z in W(ﬁ) so that dfz',z'") < 6(a). But the function
. o+l N P

d(z,v') is a convex function on o and hence its restriction to

v takes its maximum value at either x or y. Hence, for any =z on

. there exists z' on ~' so that d{(z,z') < (k-1)6(a). But

choosing a z" as above we find z" din W(ﬁ) so that d(z,z") <kb(a).

We conclude that the k-hull is within k&(a) of W(ﬁ). Taking
k =1+ 1 we find that the convex hull of () is within
(rr1)5(e) of (F).

1f we choose a small enough, the boundary of HO(N)) will
be within a tubular neighborhood of the boundary of Y (¥) and will be
transverse to the fibers of that tubular neighborhood. Hence, we may
construct a self-diffeomorphism £ of M' which carries the boundary
of (M) to the boundary of H(¥(¥)) and consequently carries ()
to H(N)). Now let N' be an g"-neighborheod of HOP(F)). Clearly
H(y(¥)) and N' are diffeomorphic. Thus, we have found a strictly

convex hyperbolic manifold N' with holonomy ¢' and a diffeomorphism

p from N to N' as required. ]
We 1ift ¢ to a diffeomorphism 5 from ¥ to N'. The sets

¥ and K' are strictly comvex submanifolds of Hn+1.

We may then

~ 41 .
extend ¢ to H by mapping normal rays to nmormal rays as in
Thurston [26], 8.3.4, to obtain a quasi-isometry conjugating the action

-H.
cf p on m" to the action of p' on Hn+1.

The boundary value of
this quasi-isometry gives the required quasi-conformal comjugacy. With

this Theorem 3.1 is proved.

Corollary. Tn(F) ig an open subset of the real quasi-algebraic set

determined by the image of Bom(T',50(n+1,1)) in X(T,S0(n+l,1)). We

recall that a real quasi-algebraic set is 2 subset of R" determined

by polynomizl equations and inequalities.

Preof. The image of Hom{([',S50(n+1,1}) is the image of a real alge-
braic set by & polynomial mapping and consequently it is quasi-alge-
braic by the Tarski- Seidenberg Theorem [81.

’ Tn order to improve on this result, we must make a more careful
study of the real algebraic set X(T,50{n+1,1)) embedded into ¢ as
described in Sectieon 1. We know Tn(F) is an open subset of the
image of Hom(T,S0(n+1,1))) under . We now determine when the image
of Hom{T,30(n+1,1)) wunder = is open in X(T,S0(n+l,1)).

Recall that S* c § 1is the set of representations p with the
properties:

(i) 6'p is closed in R(I,G}

(i1) Z() = Z;- .

We have seen in Section 1 that 3§ is Zariski open in R(I,8).

We now compute the real points of S*/E, Let o be the conju-
gation of G relative the real form G. We note that the action of
g descends to X{I',50(n+l,1)). A superscript o on a set will
denote the subset of fixed-points for o. We define an action of T,
the non-trivial element of the Galois group of T over R, on the
regular functions on R(T,50(n+1,1)) by Tf(p) = %?5?5?57 where -

denotes complex conjugation.

Lemma 3.6. (S/g)c is the set of real points EﬁS)R of w(8).

Proof. ‘By definition EKS)E_ is the set of points in #(8) where the
real invariants take real values. Since the orbits of G on S are
closed we may identify S/G and w(s). Let £ bea real invariant;
hence, f{p) = £{o(p)). Now () dis real if and only if f{p) = £{p}
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or f(o{p)) = f(p). Since the real invariants separate G orbits in
S we conclude that p and o(p) are conjugate under G or

amip)) =ulp). With this the lemma is proved.

By the previous lemma we know that to compute E_(S)l'R we have
only to cempute the fixed-point set (S/g)c. In fact, it is consider-
ably easier to coipute Eﬁs*)mr= (S*/gjg. This we now do. L

Let % € § /G be a fixed-point of o. Choose o € 1 ~(x).
Then ofp) = Ad h-p for some h € G. Applying o again we find
o(h)h = £1 since Z{p) = *1 (in fact if nt?2 is odd we have
g(h)h = +1). Hence h is a coeyele, h € Zl(c,Ad G). We recall that
h and h2 in Zl(o,Ad G) are cotomologous if there exists g ¢ G

1
so that h, = U{g)hzg l. The set of cohomology classes of cocycles is

the cchomoiogy set Hl(U,Ad G). We enumerate this set as {hi} with
i ¢ I; in fact, this set is known to be finite. However, this will
follow from Lemma 3.7 combined with the fact that a real algebraic set
has a finite number of ;onnected componen:sé . ,

Firh?ach Ei_i_ﬂ (c,ad &) et (S )%i = {p € 5 :0(p) = hoh "},
Then (§) L= (S) + and w((s) M) c (8 18)°.

*
Lemma 3.7. The map h = w((§ )h) induces a one—-to-one correspondence

PN

between Hl(c,Ad 6) and the comnected components of (8 /G)".
%
Proof. The lemma follows easily since Ad G acts freely on S .

2 %
Corollary. ﬁ((S‘)U) is a comnected compoment of (8 /G)G.

The main result of this section now follows.

Theorem 3.2. (1) Tn(F) - ﬁ(po) is an open subset of the real dlge~
braic set X({T,S0(n+l,13).
(ii) If n is even, TH(T) is an open subset of the real

algebraic set X(T,80(ntl, 1))

Troof. RH(P) is open in Hom(I',50(n+1,1)) by Theorem 3.1. But by
Lemma 3.1 we know G'po is closed in 5 thence RH(T) - ng is
open in s”, But, by Lemma 3.2, we know Rn(F) - Gpo c (8 }U and
Rh(T) - Gpo is an open Gﬁinvariagt subset; consequently, its image
TH(F) - w(po) ig open in w({5 ) ). The statement (i) foliows,

In case =0 is even, an easy calculation shows that for »p
Fuchsian we have Z{p) = ZG. Hence, in this case RH(T) = (S*)U.

With this the theorem is p;bved.

Remark. In case n is odd, Z(pG) is larger than ZG and there is
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another ccomponent of (S/E}U containing ﬁ(pO) namely
n(Hom(T,50(n,2)} where 50(n,2) is identified with S0(n+l.1l) by
conjugating by the diagonal matrix with diagonal entries (1,1,.0..,1,1).
Thus, part (ii) of the theorem is false for n odd if w{Hom{T ,S0(n,2}))
contains non-trivial curves through Pye The methods of Section 5 show

that this is often the case for the standard arithmetic examples.

4. Bomology and Cohomology with Local Coefficients and the Crossed

Homomorphism Associated to & Hypersurface with Coefficient.

Let X be the underlying space of a simplicial complex and E

a flat bundle over X. We wish to define homology and cohomology
groups with values in E. We define a p-chain with values In E to
be a2 formal sum ZT_ c.o, where o, dis an ordered p-simplex and c,
i=1"1"1 i i

is an element of the fiber of E over the first vertex of o We

I
denote the group of such chains by CP{X,E) and define the boundary

operator:

3 1 C (X,E) = C . B
Lt G 008 > ¢ OLE)

by s
= 3 - j
ap(co) VT (C)Ob +jil( 1) caj.
Here Uj is the 4ith face of o and <VO’VI>* is parallel transla-
tion from v to v along the edge <v_ ,v.>. Then 82 =0 and we
0 1 0’1 P

may define homology groups with coefficients in E.

In a similar way cohomology with coefficients in a flat bundle
ig defined. An E-valued p-cochain on X 1is a function which assigns
to each ordered p-simplex o an element of the fiber of E over the
first vertex of o. The coboundary 5Sa of a p-cochain a 1is defined
on a (p+l)-simplex o by:

S iy
=*a{c ) + I (-1)"alc,).
Q 0 =1 i
Here Uj is the jth face of o. Then (6)2 =0 and we may define

su{c) = 20y s,

cohomology groups with values in E.

Choose a base-peint g € ¥ and a base-point §0 for X, the

universal cover of X, such that ﬂ(zg) = %y where % + X is the

covering. Let FE_. be the fiber of E over x,, 8@ E_  1s also the

0 0 0
~ %
fiber of w E over ER Note there is a map E:CO(X,W E) = EO using
* .
parallel translationm of fibers of w ¥ te E (this is independent

0
of path on X). We use & to construct a map from Zl(X,E), the
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l-cocycles on X with values in E, to Zl(ﬁl(X,XO),EO), the
crossed-homomorphisms on ﬂl(X,xo) with values in ED. Let
1 . s .
a € 27 (X,E) bewglven. Define ma.ﬁl(x,xoj -+ EO an v € ﬁl(X,xO) as
follows. Let v be a simplicial lift of ~ to X starting at -
Then:
*

¢ L) = elmaly)).

It is easily seen that ®, is a crossed-homomorphism and that the map
1 1

a e, indtces an isomorphism from H (X,E) to H (nl(X,xo),EO).

1f « 1is a p-cochain with coefficlents in E and b is a

p-chain with coefficients in M and v:E® M+ N ig & parallel sec-

tion of Hom(E ® M,¥), thep the Kromecker index <a,m> is defined by:

<1, = ha via(a) & b ).
simplices o in b o

Here bc is the coefficient of ¢ in b.
The Kronecker index is well-behaved under o and 6 and we

get a map:
<P (x,8) & 5 0L > N

The RKronecker index allows us to identify HP(X,E*) and H (X,E}*.
Indeed, if a € WP(X,E) and <a,b> = 0 for all b€ HP(XI:E), then
¢ annihilates the kernel of ap, so a is in the image of &. This
is true because the chain groups are vector spaces so the image of

ap igs a direct summand.

Now assume X is an oriented p-manifold and E, M, N are flat
bundles over X and viE® M—>N dis a parallel section of the flat
bundle Hom(E @ M,N). Let a € Hn—p(X’E) and b € Hn~q(X’M) and
assume that the simplices of a are in general position with respect
to the simplices of b. Then the intersection preduct 4a+b of a
and b is defined by:

(1) Intersect each simplex o of a with © eof b to get
an n - (p+q) simplex as usual.

(2) ¢ive the resulting simplex the coefficient v(a0.® bT);
this has to be given at the imitial vertex of the intersection; how-
ever, since ¢ is contractible there is a unique way to move aU to
any other point of o and the same for bT. In this way we obtain

the intersection pairing:
Hn_P(X,E) ® Hndq(X;M) 47Hn—(p+q)(X’N)

The geometric version of Poincare duality for coefficients
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states that the intersection pairing:

*
Hn_p(X,E) @ HP(X,E YR

is a perfect pairing. We then obtain an isomorphism from Hn p(X,E)
x % o
to HP(X,E ) . Composing this isomorphism with that obtained from the

KEronecker index we obtain an isomorphism:
PD:E_ (GE) - B (X,E) .

Using v and the usual formula for cup-product of simplicial

cochains we obtain a cup-product to be denoted U:
+

B (5LE) © i » vf dem .

The cchomological version of Poincare duality tells us that the
following pairing is perfect:

- #

B e 8 CEE) ¢ R.
Remark. TIf Z dis an (n-p)-cycle with coefficients in E, then PD(Z)
is" characterized by the equatiom:

<y U PD{Z),%X» = <n,Z>

for all w ¢ HH~P(X,E*).

There is a formula relating PD,- and U which will be cri-
tical fo us (in a special case). Let v:E® M+ N be as before. We
will not prove the following lemma but we will prove the special case

we need, Lemma 4.3.

Lemma 4.1. The following diagram is commutative:

oL ® 5l 2 EPtie,m

PD @ PDT PDT

Hnﬁp (X,E) ® Hn_q(X,M) - Hn—(p+q) (£,

There is a particularly simple construction of cycles with
coefficients in E. Let Y be a closed, oriented submanifold of X
of codimension p and let s be a parallel section of the restriction
of E to Y. Let [Y] denote the fundamental cycle of Y so

[Y] = ZiUi’ a sum of ordered n-p simplices.

Definition {Notatiom). Y ® s denotes the (n-p) chain with values

in E given by Y ® s = Eoi 2 8 where 54 is the value of s on
the first vertex of oy
Clearly Y& s is a cycle. BSuppose now that Yl and Y2 are

closed, oriented submanifolds of codimension p and ¢ respectively,
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sy and s, are parallel sections of E!Yl and E]Y2 respectively,

and Yl and Y2 intersect transversely. Then we may simplify the
previous general formula defining (Yl @ sl)-(Y2 ® 52) as follows:

(1) TIntersect Yl and Y2 in the usual way to obtain a
(possibly disconnected) codimension p+q submanifold Z with an inter-
section multiplicity *1 (see Section 7.

(2) Assign to % the parallel section of N|Z given by
v(sl,sz).

We wish to relate the intersection product of cyeles with coef-
ficients of the previocus special type and the cup preduct of their
Poincare duals. We first give a formula for the Poincare dual of a
cycle of the type Y @ s.

Let U(Y) be a tubular neighborhood of ¥ and ¢ be a
p-cochain with compact support in U(Y) representing the Thom class
of W(Y). Let [U{Y)] denote the relative fundamental cycle of oy,
We extend s to a parallel section of EiU(Y). Then extending ¢ & s
by zero we obtain an E-valued p-cocyele on all of ¥ which we centinue

to denote ¢ ® s. We then have the following lemma.

Lemma 4.2, PD(Y® s8) = ¢ ® 8.
%
Proof. Let 7 be any B -valued cocyele. Then, letting (,) denote
*
the pairing between L and E we obtain:

U (o® )% =a U (0@ 8),[0Mk =<m UeltMF
<(5,M}: ¥ = <, Y @ .

The next to last inequality follows because {s.n)y is a scalar-
valued coeyele on U{Y) and ¢ is the Thom class. The claim now fol-
lows from the preceding remark characterizing PD(Y ® 8).

We can now prove the relation between the intersection product

of cycles and the cup product of their duals.
Lemma 4.3, PD(Z @ v(sl,sz}) = PD(Y1 ® sl} u PD(Y2 ®152).

Proof. We choose tubular neighborhoods Ul(Yl) and UZ(YZ) and Thom
classes 9y and 0, respectively. But then ml U ¥,y represents the
Them clase of & suitable tubular neighborhoed of I n €. We find
then

PD(Y1 ® sl) U PD{Y2 ® 52) = (wl (] sl) U (@2 ® 52)
(o, U Py) @ visy.8,)
PD(Z ® V(sl,sz)).

[}

I

The last equality follows from Lemma 4.2. The lemma is now proved.
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¥ow suppose Y is an oriented hypersurface im X and I ® s
is a cycle with values in E as before. We now give a formula for
the crossed homomorphism o € Hl(ﬁl(X,xo),EG) which corresponds to
PD{Y ® s). Let =+ € nl(X,xo). We suppese % 1s transverse to Y.
Suppese & intersects Y at points that are FysTgaeees¥y in v,
that the signs of the intersections at these points EpsEgareaat and

T
that ay = s(yi) for i=1,2,...sr. Parallel tramslate o back

lon, !
a g v Lo XD torget ai.

Lemma 4.4. o(y) = Z &,al.
i= 1 1

The proof follows immediately from the definition of
o = @PD(Y % ) given in the beginning of this ;ection.

There is a decomposition of the fundamentzal group of X asso-
ciated to the hypersurface Y. We suppose first that Y separates X
into S1 and 52. We assume 52 contains the pesitive side of Y.
Ch?ose a base-point % for X which does met lie on Y and with
Xy € Sl. Let x, be a base-point for S, and c¢ be a directed arc

2 2

joining X, to x, which intersects Y at one point ¥y with multi-

plicity +l1. Let a be the segment from St to vy and b that

from v to %,, 8o ¢ = ab in the path groupeid. Let {uz,pz,...,pk}

2
be a set of generators for ”i(sl’xl) and {nl,nz,...,ne} be a set
of generators for wl(Sz,xz). Then {ul,...:pj,vl,...,ve} is a set

of generators for nl(X,xl) with “j = cnjc 1 ior j = 1,2,...;2 by
van Kampen's Theorem. Now let s{y) =B and af =a where a
denotes parallel translation along a from ¥y to g (a similar
notation is used below for other paths). Then by Lemma 4.4 we find
for 3 =1,2,...,4%:

o) = 2B - (enp™ % = a “(enpra™h

%
=g wy, O = 8 0w, )0.
3 x4 J)

i}

Clearly w{uj) 0 for j=1,2,...,k.
In case X-Y remains connected the ﬂl(X,xl) has an H-'N+N
presentation with gemerators {gl,pz}...,up,v} with ”j in the image

of Wl(X - Y,x in ﬁl(X,xl). The extra generator v meets Y at

1)
a single point. An argument similar to the previous one gives:
m(pj} =0 for J = 1,:2,...5P
pv} = a.

We summarize these formulas in a lemma. The notation is as above.
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Lemma 4.5. (i) If Y separates then PD(Y ® s) corresponds to the

unique crossed homeomorphism ¢ given by:

@(pj} =0 for j = 1,2,...,k
=qa —p(v,)o.
w(vj) a =p( J)a

(ii) 1f Y does not separate then PD(Y ® s) corresponds to

the unique creossed homomotphism o given by:

w(uj) =0 for j=1,2,...5P

p(v) = a.

We will often idemtify a parallel section s along a submani-
fold Y containipg the base-point X, for ¥ with its value a at

X Then o is an invariant for ﬁl(Y,xO). Given such an invariant

X
a, we will often denote the corresponding cycle by ¥ ® a.

5. Algebralc Bending and a Tower Bound on the Dimensions of the

Deformation Spaces.

Tn thie section, we comstruct deformations of T dn the confor-
mal and projective groups corresponding to disjeint, non-singular,
two-sided, totally geodesic hypersurfaces. By a two-sided bypersur-—
face we mean one with a trivial normal bundle — it does not necessarily
separate M. We begin with the case of a single hypersurface.

Suppose M is a compact manifold and M1 is an embedded two-
sided connected hypersurface in M. We suppose moreover, that we are
given a representation p:ﬂl(M) + ¢ where G i¢ a Lie group with Lie

algebra g. We abbreviate ﬂl(M) to I' and ﬁl{Ml) te A,

Lemma 5.1. Suppose p(wl(Ml)) has an ipvariant Xy in ¢ such that

%5 1s not invariant under p{T). Then R(T',G) contains a non-con-

stapt curve through p.

Proof. We first assume Ml separates M into 2 parts Sl and 52'
Then [ 1is an amalgam ﬂl(sl)*Aﬁl(SZ)' The vector X cannot be
invariant under both p(wl(Sl)} and p(ﬂl(sz)) since they generate
p(T). We assume % is not invariant under p(ﬁl(Sz)). Then we de-—

fine a curve in R(T,G) by:

Pr
p lm 8 =p
pt|ﬂl(52} = Ad R(t)+p {where R(t) = expt xl).

The representations pt\ﬁl(sl) and ptﬂﬂl(sz) agree on Aj hence,
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by the universal property of amalgams we obtain a representation of T.
We next consider the case in which 5 =M - Ml remains con-—
nected. Then T is an H-N:N group, T = ﬂl(S)*A. Hence we have a
generator v of I such that the only relations involving v are of the
form v_ljl(a)v = jz(a) where j1 and j2 are the inclusions of the
fundamental groups of the two sides of M1 into ﬁl(S). We let R(t)

= EXp Xy where % is dovariant under p(jl(A)) and we define:

P T (8) =p
pgﬂ = R{t}p (v).

! -1 .. . ,
Note pt(v) p(Jl(a))pt(v) is constant in £ and sc we obtain repre~
sentation pt:F - G for all ¢,

Definition. A trivial deformation of p parametrized by a set T 1is
one obtained by conmjugating p by a family of elements of G . para-
metrized by T.

We may prove the non-triviality of the above deformaticn by
c&mputing the class of the cocycle ¢ € Zl(F,g) tangent to o . Since
¢ is a crossed homomorphism, it is determined by its values cn a set
of genefators. We choose generators for wi(M) as described at the

end of Section 4.

A straightforward calculation then yields the following lemma.

Lemma 5.2. In case Ml separdtes we have:

c{p)y =0 for p ¢ ﬁl(Sl)
c(v) x-p(v}xp(\:)"l for v ¢ wl(sz)

il

Tn case Ml does not separate we have:

c{uy =0 for p ¢ ﬁl(S)

cfv) = x.

Lemma 5.2 together with Lemma 4.5 gives the following theorem

of fundamental importance in what follows.

Theorem 5.1. The derivative of the bending deformaticn Py and the

Poincare dual of the cycle with coefficients M, ® x coincide as

elements in Hl(F,g).

1

To show that the deformatien oy is non—trizial it is suffi-
cient toe prove that ¢ is a non-zero element of W (T,9). To do this
and to treat the gemeral case of r embedded hypersurfaces we intro-
duce the graph associated to a collection of two-sided hypersurfaces

of a manifold M.
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7.2t M be a comected n-dimensional manifold and % the uni-
versal cover of M. In the next lemma T denotes the group of cover-—

ing transformations of miM =+ M.

Temma 5.3. Suppose Ml’MZ""’Mr are disioint mon-singular rwo-sgided

comnected hypersurfaces in M. Then there exists an oriented tree X

such that T acts on X without inversioms and such that Y = X/T

has r edges.

Proof. We define the oriemted graph Z associated to any collection
of disjoint two-sided connected hypersurfaces {Mi}iEI ip a manifold
M. The vertices of Z are the componehts {Sj}jEJ of M - UiEIMi
and the edges are the M,'s. We choose a tubular meighborhood around
M, with boundary MI ﬂ_M;. Then, the origin O(Mi) of the edge Mi
is the component of M - UiEIMi containing Mi and the teriinus
t(Mi) of Mi is the compcnent of M - UiEIM containing Mi' We
observe that 1f M is the disjoint union of two submanifolds M' and
M" then the graph 2 is the disjoint union of two subgraphs (possibly
empty) Z' and Z".

Now, given M as in the statement of the lemma, we have the
graph Z attached to the collection {Mi}§=l. We also have the col-
iection of hypersurfaces in M formed from the comnected compomnents
M& of inverse images of tha Mi under the covering ¥+ M. The
set {M&} separates M 1into regions Sé. We let Z denote the
corresponding graph.

v
are compenents we may comnect them by & path in M crossing a finite

We claim 2 is a tree. 7 is connected for if Sé and §'

number of hypersurfaces. This gives an edge path between the vertices
§' anmd S' in %. To show % is a tree it is now sufficient to

B

show that the removal of any non-extreme edge from %7  disconnects 7
(an extreme edge is an edge containing an extreme vertex). But the
graph obtained upon removing a corresponding M& is the graph asso-
cinted to the collection of hypersurfaces {Mé:B 4 o} in the manifold
M- M&. But M - M& has two components (since any closed hypersur-
face in M must separate ), each of which contains hypersurfaces
from the collection {Mé:ﬁ # a}. Hence the new graph is the union of
two disioint proper subgraphs by the observation from the flrst para-
graph. With this the claim is established.

Since the collection {M&} is T-invariant, we see that T acts

on the tree Z. Since the Mi's are two—sided, T maps the positive

7

a : . ; ]
nd negative sides of M' to the corresponding sides of vM', Hence
a

T acts on Z without inversions. We take X = 7

We claim that 2 is the quotient of ¥ under the action of T

h . -m .
There is a map p:Z + Z given by sending the vertex on 7 correspond-

- 1
ing Eo SB to the vertex of Z corresponding to w(sé and the edge
in Z corres di ! :
l ponding to Ma to the edge of Z corresponding to w(M').
r r} . .
Clearly p dis dincidence preserving, bijective on I'—orbits and factors

through Z/F. If we take Y = Z, the lemma is proved

Corollary. Choose a maximal tree T im Y. Then I' is isomorphic

to the fundamental sroup ﬁl(F,Y,T)
[23], page 42).

(here the notation is as in Serre

Proof. The corellary is the Bass-Serre Theorem, Serre [23], Theorem 13

We can now give a sufficient condition for the deformations of

Lemma 5.1 to be nen~trivial. We first treat the case in which M
1

separates M dinto t i
wo parts S and 52 with 52 the positive side.

1
P will denote the deformation of Lemma 5.1. We abbreviate mw. (M)
11

te A d
an wl(Sl) and wl(SZ) to Bl and B, respectively.

Lemma 5.4, S i
uppose neither p(Bl) ner p(Ez) has a non-zero invar-

iant in ¢. Then Pe is a non-trivial deformatdion.

Proof. Since T acts on the tree X we have a cohomology exactk

sequence relating the cohomology of I' with coefficients im g to
that of the stabilizers of the vertices and edges of X (Serre [23]
1

Proposition 13). In particular we have:
0 0 0 1
H (Bl’g) @ H (stg) ! (Asg) - " (,q)
, 0 0
By hgpothe515 ? (B ,g) and H (BZ’g) are both zero; hence
B,tH (A @) > H (T,¢) ds injective. But 6*Xl = -¢ (lift =x=

£ =
o (0,x1)zi and 5(0,x1)(p) =0 and B(O,xl)(v) = (O,x1 -
p(v)le(U) ). With this the lemma is proved.

1 back

We next treat the case in which M - M1 remaing conmected. We

abbreviate ](S) to B. AgaAin pt denotes the deformation of Lemma

Lemma 5.5. Suppose p{B) has ne non-zero invariant in g. Then p

iz a non-trivial deformation.

Proof. The cohomology exact sequence associated to the action of T

on X now becomes in part:



78

1
10 (8,9) » B (A,9) ~ 0 (T,9).
Since HG(B,g) is zero by hypothesis, we find zgain that

a*:HO(A,g) +—H1(T,g} is injective.
We claim that again we have ﬁ*xl = —¢c. To prove this claim we

congider the diagram of short exact sequences of inhomogeneous cochains:
(Serre [231, page 126):
1 Lo indl @) » Co(T,ind L @ §) + 0
0+ C(T,g) » ¢ ({,in - q . "

]\ A

.
0 —> g — > indgl ®qg —> 1ndA; ® g —=0
Here indrl ® g means the representation with underlying vector
B

space T + giflyp) = f{¢Y,u € B} and ' actiom given by:

- -1
vy = ol Ely 1'@)@(?) .

The previous diagram arises from the double complex of Eilenberg-

MacLane cochains with values in the g-valued cellular cochains of X

T .
together with T-equivariant identifications of 1ndB1 ® g with

CQ(X) ® g and indil ® ¢ with Cl(X) ® ¢. Under these identifica-

0 P cps
tions the cellular coboundary d4:C Feag>c X®g is identified

T . .
with 62:ind£l ® Q- 1ndA} ® g given by:

ﬁzf(v) = £{yv) - £(v) .

. A
We mow compute 6*x1. Qur strategy is to identify % €g
with an element h in indi} @ g (Frebenius reciprocity), compute a

suitable preimage f of h under 52, apply 61 to f and find a

preimage b to ﬁlf in Cl(T,g). The class of b will then by

definition be By B
Clearly h is given by the formula hiy) = p(y)xlp(y) . Let
fe indgl ® g satisiy:
(1) £y =20
(11) 52f(Y) = £(yv) = £0y) = hivd.

-1
We note that £ exists because X is a tree and ¥ TAv < B.

fe Gl(T,indrl ® g), We may identify the space of such cochains

Now 51 ?
¥

¥ with functions fyom T x I inte ¢ satisfying:

By o) = Blrpoyy) for w & B
Then we have 61f(Y1’Y2) is independent of r, and the cochain

b ¢ Cl(F,g) - see above, is defined by biy) = Gif(y,l). Now accord-

ing to the formula for the Tilenberg-MacLane coboundary we have:
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870y s, = oG EG T I tr)Th - £y
and

ber) = o E Do ™ - £ = ot e Do

We claim b = -c. We have only to check that they coincide on
B and on v since they are both crossed homomorphisms.

If p € B then:

b = LW e T = p (I W T = 0 = ).

Before evaluating b on v we note that as a consequence of

(ii) with + = v_l we have:

$1) - 267 =00 Dre®) or £6T) = 2O e

and
eMEC e T = x, .

Finally then we obtain:

b = eMEE M T = = —ew).

With this the lemma is proved.

We now consider the general case in which M dis a compact mani-
fold containing r disjoint two-sided embedded connected hypersurfaces
Ml’MQ""’Mr' We suppose we have a representation p:T + ¢ where G
is the set of real points of a reductive algebraic group & defined
over R. In what follows we will comsider a graph Y with r edges
containing a maximal tree T with b edges., Our strategy is to con-

struct a deformation of the group asscciated to T.

Lemma 5.6. Suppose ¢ is a representation into G of the fundamental

group of a tree T of groups such that every edge group has a non-

zero invariant in g. Suppose T has b edges and P is a vertex

of T. Then there exists a b-parameter family of deformaticns of p

which is constant on TP and is trivial when restriéted to any vertex

Eroup.

Proof. For each integer n we let Tn be the set of vertices at

distance n frem P. If Q ¢ Tn’ with n = 1, there is a single
vertex Q' at distance strictly less than n from Q to which Q
is adjacent. The correspondence Q + Q' defines a map of Tn into

T If Q¢ Tn then we call the vertices in U f_l(Q) the pre-

n-1° 1 >n m
decssors of Q and the vertices of fn+1(Q) the immediate predeces-
sors of Q. The vertex Q together with its predecessors form the

vertex set of a subtree of T.
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Let Ql be an immediate predecessor of P and ey be the

edge joining P and Ql' Let Al be the edge group associated to

A. and x, an invariant of p(Al) in g. Let R(t) = exp £x, - Then

1 1 )
we define a l-parameter family Py of representations of T by

defining:
pf|TQ = Ad R(t)p}FQ if Q=0Q or Q is a predecessor of Qq
= T otherwise.
o.ITq = 2ITg

As Q1 varies through Tl’ we obtain a bl—parameter family ptl,

1]
for ty 3 E,l, of deformations of p. Here bl is the number of

immediate predecessors of P. Clearly the family ptl satisfies all

the hypotheses of the lemma.
Now we choose a vertex Qq € Tl and let G, be an immediate

predecessor of Ql' Let e, be the edge joining Ql agd Qz. Let

A. be the edge group associated to ey- Choose T ¢ R . Then the

2 . _ .
representation Pr |A2 has a non-zero lavariant x, = Xz(tl) in ¢
becauge it is conj&gate to p|A2. Moreover we may choose e to be
an analytic function of ty- Let R(tl,t) = exp txz(tl). We define a

{b,+l)~parameter family p of deformations of p by defining:
1 tl’t

= . T if = Q, or Q is a predecessor
Py ,tiFQ Ad R(t).1) p1:11 Q =1y
1 of Q
2
= T otherwise.
tl,tlrQ pt1| Q

Continuing in this way we obtain the lemma.

Temma 5.7. Suppose p is a representation of the fundamental group

of a graph of groups wl(T,Y,T) into G sc that every edge group has

a non-gero invariant in §. Suppose that Y has r

a base vertex. Then there exists an r-parsmeter family of deforma-

tions of p which is constant on TP and 1s a triviasl deformation of

p  restricted to any vertex group.

Proof. Let 2 be the subgroup of I' generated by the vertex groups.
E;;;“ © 1is the fupdamental group of the subgraph of groups corres—
ponding to T and we may apply Lemma 5.6 to obtain a b-parameter
family P of deformations of piQ satisfying the hypotheses of
Lemma 3.6-

We claim we may extend P to a b-parameter family of repre-
sentations Et of T". It remains to extend e to the generators

v corresponding to the edges e of Y which are not in T. There

edges and P is B
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are two cases. We assume first that e 1is a loop and let 4§ be the
origin (and terminus) of e. Then the relations involving Vv in

ﬁl(P,Y,T) are of the form:
ij(a)v_l = jl(a) for a ¢ A

where A 1is the edge group associated to e end j1 and j2 are two
embeddings of A into TQ. Since pt!PQ is trivial there is a
b—parameter~family R of elements of G so that pt|PQ = Ad Rt‘pIFQ'
We define pt(V) = Ad Rt'p(V). Then the relations invelving V are
satisfied.

We now suppose that e is not a loop. Let P and Q %be the
origin and terminus of e. Then the relations involving Vv are of
the form vjz(a)v_l = jl(a) where jl is the inclusion of A dinto
TP and j2 is the inclusion of A dinto T'.. Now there exist b—para-
meter families RL and Rt of elements of G so that pt}TP =
Ad‘Bé‘pifp and ptIFQ = Ad Rt-pWPQ. Define St(v) = Rép(v)R;l. Then
the relations invelving Vv are satisfied and we have proved the claim,

We now extend St to an r-parameter family pt,u of deforma-
tions of o for u = (ul,uz,...,ug) with £ =1 - b.

We define Pe,u on the generators of ﬁl(P,Y,T). If v €2 ,
then pt,u(Y) = St(Y)' Consider the generator vj associated to an
edge Ej of Y — 7. Fither ej is a loop with vertex (@ or it is

an edge with origin (Q and terminus Q'. If A, is the edge group

associated to e, then we have the embedding jl:Aj A-TQ' Now

~ r] - - . v s . . .
pt!JI(Aj) is trivial; hence pt‘jl(Aj) admits a non-zero invariant
x! din . Put R{u.,) = exp u.x! and define v,y = R{u,)p,(V,}.
: g b ujx! Pe,u(V) = REF ()

With this the lemma is proved.

We now compute the derivative of o We use the exact coho-

t,u’
mology sequence obtained from the action of ' on X, Serre [23],

Proposition 13. We require some more notation. For j = 1,2,...,r,
let Aj be the edge group corresponding to the edge ej of Y. We

assume the edges are ordered so that By18y5000s8 are in T. We

b
enumerate the vertices of Y as P = Pl’P2""’Pm so that the ver-
tices of Tn (see Lemma 5.6) come before those of Ym, for m> n.

We orient the edges of Y so that o(e) comes before t{e) in the

enumeration. Let Bk for k= 1,2,...,m be the corresponding vertex
groups. Then we have the sequence (exact at the middle):
m r
0 0 1
®H (B,.9) ~ H(A,,9) + W (T.9} (*)
k=1 =1 7
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Tn Lemma 5.7 we constructed an analytic map @(t,u):ﬂ? - R({,G)
N . =
c G given by &(t,¥) pt,u'

Temma 5.8. Assume that no vertex group has a pon—zero invariant in

g (under ¢): Then the differential of & has rank r at the origin
r
of R .

proof. We remind the reader of the enumeration of the vertices of Y
in the previous paragraph. Let {yki:i € Ik} be a set of generators

for FPk. We let Vl,“z,...,vg be the gemeratcrs for ﬂl(F,Y,T) cor—~
responding to the positively oriented edges of Y that are not in T.
We have assumed that there are N generators fer I in 2l1l. This

choice of generators gives an embedding of R(T,G) into GN by:

p (Q(‘Y‘l):---sp(“{m),p(\}l):---,ﬁ(\)g))-

Here we have abbreviated the coordinates corresponding to the gemera-
£ors {Yki:l € IK} by a single symbel p(yk). i .
We may then consider & as a wap from R into G . It is

convenient to define @l:Rr - Gm and @2:R? - G by:

n

@1(t,u) (pt!u(vl),.-.,pt,u(vug)

@z(t,u) = (Dt,u(vl),...,pt,u(vg))

Then ®{t,u} = (@1{t,u},¢2(t,u)) and @l(t,u) does not depend on u.
Thus to prove the lemma it is sufficient to prove that Dtél(0,0} has
rank b and Duéz(O,G) has rank £. Now Dt®l(0’0) and Du®2(0,0)
take wvalues in ZI(T,g). We demote their compositicns with the pro-

. 1
jection to H (T',§) by DE®1 and Duéz.

these latter two maps have ranks b and £.

Tt is sufficient to prove

We first compute Du®2. From Lemma 5.7 we have:
5,(0,u) = (Rlupdp(s;)se- R0 (8)))

But the calculation of a@zlaui(o,o) is identical te that of Lemma

5.5, We find a commutative diagram:

D &
R'ﬂ u 2 Hl(rsg)
1’2
v
d o
r f/l
& E(A,Q)
j=hb+l 4
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Here the wvertical arrow is an isomorphism mapping (ul,uz,... u,) to
T

. 0 .
(ulxl,...,ugxz). Since H (Bj,g) is zero for all j it follows freom

the exactness of (*) that &, ds injective and consequently D &
u

hasg rank #£. 2

We now compute Dtil. We claim that again we have a commutative

diagram: N
b t 1l
R 1 .9)
_5*
b 4]
® U (A.,G)
=1 3

Here the vertical
v cal map sends (tl,tz,...,tb) to (tlxl""’tbxb)' The

claim is equivalent to the formula:

3%
EET(O,G) = wﬁ*(D,...,xj,O,...,O) where x. is in the jth
component .,
By the construction of Lemma 5.6 there exists an edge e with
origin Q and terminus Q' and edge group A so that x. is invar-

iant under p{A) and & satisfies:

@((0,...,tj,...,o),(o,...,a)} = (pt_(Yl):---,Dt'(Ym))
where: 3 J

- -1, .
ptj(Yk) = R(tj)p(Yk)R(tj) if P, is Q' or a predecessor of Q'

ptj(Yk) = DCYk) otherwise.

Hence a@/atj(0,0) is identified with the cocycle ¢, given by:
) J
- -1, .
cj(yk) = Xj - p(Yk)xjp(Yk} if Pk is Q' or a predecessor of Q'

cj(Yk) =0 otherwise.

But to compute 6*(0,...,2.,...,0) we observe that an inverse image
. m 0 .
of (0,...,xj,...,0) in @k=lH (Bk,g) is given by o = (ak), where

g is given by:

a = F, if Pk is Q' or a predecessor of Qf
o = 0 otherwise.
Clearly Ba = —cj and the lemma iz proved (here & d1s the Eilenberg-

MacLane coboundary).

Remark. TIn the course of the proof we have proved the following dia-

gram commutative (here 4k is d&(0,0) followed by the projection to
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7 (r,9)) -

R = — Hl(r,g>

-6 %

T
® HO(A, Q)
gm0

Proposition 5.1. Suppose that o ig a stable representation (Section

1) of the fundamental group of a graph of groups into the real points

of an algebraic group & defined over R (with Lie algebra g) such

that every edge group has an invariant in g and no vertex group has

a non-zero invariant im ¢. Then:

dim X(T,G) = ¢

where T is the number of edges of the graph.

Proof. We use the previous lemmas to construct an embedded r-ball B
around p in R(T,G). We may assume +that B 1s contained in the set
of stable representations. We ¢laim that the image of B in X(T',6)
is the quotient of B by a finite group. To check this, it is suffi-
cient to compute the image of B under the orbit map m:iR(T,G) -
R{I,G)/G wsince B consists entirely of stable representations. Sup-

pose ﬁ(pl) = ﬁ(pz). Then there exists g &€ G with Ad g0y =p,-

Hence Ad g-p11FP = pleP. Here P is the base vertex (see Lemma 5.7).

But by construction pllTP = pZWTP = pﬂTP. Hence g € Z(p{PP)), the
centralizer of p(TP) in G. Hence g € 7(H) where H is the

Zariski closure of p{TP) in 6. But H has no non—zero imvariant
in g , hence Z(H) is discrete, hence finite and the proposition
ig proved since the quotient of an r-ball by a fimite group centains

a small r-ball.
Rematrk. If Py is good then X(T,6) contains an r-ball around Po-

We are now ready tc prove the required lower bounds for the
dimension of the spaces of conformal and projective structures on a
compact hyperbolic n-manifold M. Let T = ﬁl(M) and p:l = S0(n,1)
be the standard uniformization. We first treat the case of the space

of conformal structures.

Theorem 5.2. Suppose M gontains T disjoint, embedded, totally

geodesic, two-sided comnected hypersurfaces Ml’MZ""’Mr' Then the
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dimension of X(T,80(n+1,1)} dis greater tham r.

Proof. We first check that p(ﬁl(Mj)) has a non-zero invariant in
so(ntl,1) for i = 1,2,...,r. We may identify so(ntl,l) with

n+2 .
A%R by using (,). Now p(ﬁl(Mj)) leaves invariant a vector Vj

R o+l .
in R with (v,,v.) > 0., Alsc p(n (M)} leaves invariant e
i 1 1

so a fortiori p(ﬁl(Mj)) leaves invariant e yy- Thus p(ﬁl(Mj)}

el To prove the theorem it suffices to

check that p(ﬁl(Sk)) has no invariant in so{nti,1) for k = 1,2,

leaves invariant vj A e

.,b+l. This fellews from the next lemma.

Lemma 5.9. Suppese n = 2 and let § be a compact hyperbolic mani-

fold with totally geodesic boundary. Let p:ﬁl(S) -+ 50(n,1) be the

uniformization representation. Then p(ﬁl(S)) is Zariski demnse in

50(n,1).

Proof. We first prove that p(ﬁl(S)) has no invariant line in Rn+1.

Let HM be a boundary compoment of 5. Then p(wl(M)) has a unique

. . . . n+1
invariant line L in R

Since wl{M) c ﬁl(S) we see that if
p(ﬂl(S}) has an invariant lipe then it must be L. Suppose this to
be the case. Then p(wl(s)) is contained in the subgroup H of
30(n,1) which leaves L dnvariant. Since p(wl(S)} is discrete in
50(n,1), 1t is discrete in H. Since p(ﬁl(M)) is uniform in H so
is p(ﬁl(S)). Hence M' = p(wl(S))\H/K N H is a compact hyperbolic
(n~1)-manifold and M is a compact manifold covering M' with
[wl(S}:ﬂl(M)} sheets. Hence, if we can prove [Wl(s):ﬁl(M)] = o

we are done.

To establish this, assume that ﬁl(M) has finite index in
ﬁl(S). The universal cover M of M embeds into the universal cover
§ of 8. Now divide out 5 by p(wl(M)). We obtain a cover S' - 8§
go that the image of ﬂl(S') in ﬁl(S) is precisely ﬂl(M); hence,
a finite cover. By construction M c §' and the inclusion HI(M) -
ﬁl(s') 1s an isomorphism. We remame §' by §. We now claim that
M 1is the only boundary componment of 5. Indeed suppose M' were
another. Choose a closed geodesic at in M'. Because ﬁl(M) maps

onto WI(S), al

is freely homotopic to a closed geodesic B odin M.
Since M M' = ¢, the closed gecdesics a' and P are different.
But this leads to a contradiction because two different cleosed geo-—
desics In a hyperbolic manifold are never freely homotopic.

Now we have M = 38 and the inclusion of ﬁl(M) into ﬂl(S)

is an isomorphism. Double S aleng M to obtain a compact hyper—
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bolic manifold N. By van Kempen's Theorem we have ﬁl(N) = ﬁl(M)
wut this is impossible because Hn(wl{M),Z/2) = 0 whereas
Hn(ﬁl(N),Z/Z) = F/2. :

Now let R be the Zariski closure of p(wl(S}) in 80(n,1).
Then R 1is mot discrete. Alsc R properly contains H; hence R
ieaves no totally geodesic subspace of #" ipveriant nor does it fix
any point of the closed ball U Sn—l. Hence, by Theorem 4.4.2 of
{7] we have R > SOO(n,l). But R is a real algebraic subgroup of
$0(n,1) so R = 50(m,1).

Corollary. D(nl(s)) has no non-zero invariant in so{nt+l,l1}).

Proof. Any invariant of p(ﬂl(S)) would be an invariant of R =
80(n,1). But S0(n,l) has no invariants in so{mtl,1).
As a consequence of Theorem 5.2 and the Holonowmy Theorem, we

obtain the follewing theorems.

Theorem 5.2 {(bis}. dim{(C(M)) = r.

Proof. We have seen that Hom(I',G)/G contains embedded r-balls around
points arbitrarily close to Pgr The thecrem now follows from the

holonomy theorem.

Theorem 5.2 {(tertio). dim H(M =« R) = r.

Proof. The proof is the same as above.

We now treat the projective case.

Theorem 5.3. Suppose M contains r disjoint embedded two—sided

connected totally geodesic hypersurfaces Ml’MZ""’Mr' Then we have:

dim X(T,PGLIH_l(R)) > T,

Proof. We may identify the Lie algebra ( of PGLH+1(R) with

s£n+1GR), the Lie algebra of n+l by mtl matrices of trace zero.

As a module for $0(nm,1), we may identify the =tl by n+l real

%
matrices with ®2GRH+1) where the identity matrix is identified with

*
the form (,). Then so(n,l) is identified with Az(\a’“ﬂ)  and the

orthogonal complement M of so(n,1) in s£n+l(ﬁ) ig identified
%
with SgﬁRn+l) , the traceless symmetric 2-tensors. Let

p:T = S0(n,1) + PGL (R) be the uniformization representation fol-

ntl
lowed by the natural map.

We now observe that p(nl(Mj)) has a non-zerc invariant in

2, o+l % . . . , .
SDOR ) for 3 = 1,2,...,r. We know that in the uniformization

ol nt+l, *
7

representation on R (or R the group ﬁl(Mj) has a non-
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zero invariant vj. Let hv pe the traceless projection of the sym-
|
metric Z-tensor vj & vj. Then p(ﬁl(Mj)) leaves hv invariant for

k=1,2,...,b+l. But we know p(ﬁl(sk)) is Zariski dinse in 80(n,1)
and $§0(n,1) has no non-zero invariant in SEGRH+1)* - in fact this
latter module is irreducible, nor dees 80(n,1) have a non-zero
invariant in AZ(RH+1)*. With this the theorem is proved.

As a consequence of Theorem 5.3 and the Holonomy Theorem, we

obtain the following theorem.

Theorem 5.3 (bis). P(M) has dimension greater than or equal tc r.

Proof. In rthe course of the proof of Thecrem 5.3 we saw that
Hom(T,6)/G contained an r-ball around Py The theorem now follows

from the Holonomy Theorem.

6.. Singularities in the Deformation Spaces.

Tn this section, we give a criterion dn terms of the topology
of M for the spaces Hom(l',6} and Hom(T,G) to be singular at a
representation p and X{(C,& and X([,G) to bhe singular at the
class of a good representation po. In Section 7 we show that this
criterion is satisfied for the standard arithmetic examples. In what

follows we let U be a symbol denoting any of the four above spaces.

Lemma 6.1. Suppose Ml and M are embedded hypersurfaces of M

2
and p is any representation of T'. BSuppose the following hold.

(i) p(ﬂl(Ml)) leaves invariant a non-zerc x € §.

(it) p(wl(Mz)} leaves invariant a non-zero element ¥ &£ §.
(11) (4 ® ) QL, ® v) # 0.

Then Hom(T,G) and Hom(T,G) are singular at p; moreover,

if p is good then X(I,&) and X{I',G) are singular at the class

Proof. For simplicity we assume Ml is not a boundary and M2 is
not a boundary. Then I' has an H-N'N decomposition corresponding
to Ml given by I = Bl*Al where Bl = ﬁl(M—Ml) and Al = ﬁl(Ml)'
Let Ra be the one parameter group in G (or &) tangent to x.
As in Lemma 5.1, we cbtain a curve pq in T constant on Bl and
changing p(vl) to its product by Ra' The tangent wvector ﬁa to

P at a = 0 is, by Theorem 5.1, dual to Ml ® x, Let R5 be the
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one parameter group in G (or G) tangent to y. Then, as above, we

obtain a curve p, in D leaving 3, fixed and changing p(vz) to

its product by RS' The tangent vectir éB to QB at p =0 is
dual to M2 ® vy by Theorem 5.1. Now consider a lipear combination
céa + dﬁs with c# 0 and d # 0. We compute the first obstructiom
i {see the end of Section 2) to finding a curve in ¥ tangent to

o + de. We have:
. . . R TR .. 2. -
po=led, + de,cpCI * dpﬁl =8 e 1+ 2cd[pa,pB] +d [ps,pB]-
Now [pa’pa] and [pB,pB] are zero because fq and pi3 are tangent

to curves in T. Hence:
po= 2cd[o&,pB]-
But by Lemma 4.3, the class [ﬁa,éB] is dual to (Ml @ x)-(M2 ® v).

Thus the tangent cone to U is not a vector space and the lemma is

proved.

Remark. In the cases ¥ = X(T,G) and D = X(T,8) we must check that
the tangent vectors éa and p, are non-trivial and distinct in
HI(F,Q) (or Hl(F,g)). But this follows because [ém’éﬁ] # 0 and
[6,08,] = O-

In this case what is actually proved here is that the slice
through p in Hom(T',G)} 1s not a smooth analytic subvariety of
Hom(FN,G) because thi tangent cone to the intersection is not a
linear subspace of 2 (I',g). This implies that X(I',&) and X(I',G)
are singular at w(p) by the remark following Theorem 1.2.

Before proving the two main theorems of this section we need
the following cobservation. Suppose Ml and M3 are disjoint totally
geadesic hypersurfaces of M. Let g be the deformaticn of the
Fuchsian representation p corresponding to the hypersgrface M3.

Let v be a non-zere invariant of p(ﬁl(Ml)). Then v is an invar-
iant of pe(ﬂl(Ml)) - the curve g is constant cn nl(Ml) since

Ml n M3 = ¢}, Here we have chosen the base-point of M to lie on Ml.

Hence if Ve denotes the wector space V with T acting by pe

then we can form a curve of classes Ml @ v 4 Hn_l(M,Ve). We can now

state our main theorems of this section - in what follows we assume

the basewpoint of M 1is chosen to lie on Ml n M2'

Theorem 6.1. Suppose Ml’MZ’MB are embedded totally geodesic hyper-—

surfaces in M such that M1 n M3 =@ and M2 N M3 =@, Let Pg be

the deformation of p as above corresponding to M3 and Vi and Vs

89

be non-zero invariants of p(ﬁl(Ml)) and p(ﬁl(Mz)) respectively.

Assume that for all 6 the cycle Ml ® vl‘Mz ® v, is non-zero in
2
H 2(M,A Ve).

n—

Then there exists & > ¢ such that for every @& in (-g,8)

the point Py (or its class) is a singular point of 7.

Proof. We have only to check that the hypotheses of the previous

lemma are satisfied. We take x = v he and y =wv, 6 A e
fat

+1 ? otl’
then [x,¥] = vy oA Voo The theorem follows since Pa is quasi-Fuch-
siap but mot Fuchsian (hence good) for 6 in (-&,&) - {0} for some

positive e.

Corollary. If M , M, and M, exist as above then ? has non iso-

2 3

lated singularities.

The projective version of Theorem 5.1 goes as follows. We apply
L 1 owith = .
emma 6.1 with € = PGL .
Theorem 6.2. Suppose that for all 8 the cycle Ml ® h 'M2 % h is
v v, —
1

. 2
non-zero in Hn_Z(M,A Ve) (here hv is as in Theorem 5.3).

Then there exista & > 0 such that for every & in (-&,&)

the polnt e is a singular point of T.
Proof. The proof is identical to that of Theorem 6.1.

We conclude this section with a determination of when [hv,h ]
w

= 0. Recall we are identifying the traceless symemtric 2-tenser h
v

with an element of s&(n+l,R) wusing the form (,). This element is

esasily seen to be the endomorphism of Rn+l given by:
- (v,v)
hv(u) = (u,v)v ol U

We find the following formula for the bracket:
[hv’hw] = (v,w)Ww A ¥
where by v A w we mean the transformation given by:
(w oA v)ru = (wou)v - (vou)w.
Hence [hv’hw] =0 if and only if v and w are either proportional

or orthogonal. Note that the bracket carries SéV into AZV.
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7. Configurations of Totally Geodesic Submanifelds in the Standard

Arithmetic Examples.

Trn this section we verify that the hypotheses of Theorems 6.1
and 6.2 are satisfied for the compact hyperbolic n-manifolds obtained
from the standard arithmetic subgroups of §0(n,1). These groups are
obtained as follows.

Let p be a positive, square - free integer and Q:Rp+1 - R
be the quadratic form given by:!

22 2 -2
Q(Xl’XZ""’Xn) =¥ TR, deeeb X vp B

We let (,) denote the symmetric bilinear form asscciated to Q. Let
0 be the ring of algebraic integers in the quadratic field k = g(/p).
Then the group @ of matrices with entries in (! which are isometries
of @ is a uniform (coccmpact) discrete subgroup of the group of
matrices with entries in R which are isometries of Q - see for exam~
ple Borel [5]. Since this latter group can be identified with 0{n,1)
in an obvious way, we obtain a uniform, discrete subgroup of C{n,1).
The group & is often called the group of units of @, a terminclogy
motivated by the case n = 1. By Millson-Raghunathan [13], we can
pass to a suitable congruence subgroup I' = T@) of &, for & an
ideal in 0, and obtain a uniform, discrete, torsion - free subgroup
of SD (n,1) and consequently a compact hyperbolic n-manifold
T\H We let 7w H ~+ M denote the quotient map.

We will use the (upper sheet of the) hyperboloid model for i

that is:
={z ¢ Rn+1:(z,z) = p  and (z,en+1) < 0} .

Here {el,ez,...,e +l} is the standard basis of Rn+1 We will often

write V for EP+ and T for Gn+l

. the set of vectors with coor-—
dinates in 0.

We now comstruct compact orientable non-singular totally geo-
desic submanifolds in suitable (congruence subgroup) covers of M.

Let X = {x ,xk} be a k-tuple of vectors in L chosen so that:

13%gre e
(i) dim span ¥ = k

{ii) (,)|span X is positive definite.

We let M; denote the totally geodesic, codimensicn k sub-

manifolds of Hn given by:

H§ = {z € Hn:(z,x) ={ for span X}
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ha)

We put MX = ﬁ(HX). Usually MX will have self-intersections; how-
ever the following lemma shows that the self-intersections may be
removed upon passing to a suitable cover. In what follows we let Yy

denote the involution of V given by:

IX(X) = -x for = € span X

rx(x) =x for =x € (span X)i

Then H; is the fixed-point set of Ty acting on Hn. A subscript
X on a subgroup of 30(n,1) will denote the subgroup of elements

fixing {=x X } In particular F = {v € T"ij = x, for

17727 3
3= 1,2,...5k}. %rasﬂgmq)F'CT welﬂ,ﬁ ﬁ +M‘—TNH
denote the quotient map. A prime superscript on an object in M which
is the image under m of an object on Hn will denote the correspond-
ing image under w«'; for example, Mﬁ = ﬂ'GHE)- and M& = ﬁ'(ﬂ;).

Lemma 7.1, There exists a congruemce subgroup I’ < T so that
i (HX) I \E, In this case T OH ) is an orientable submanifold.
Moreover 1f T"cI'' and " ¢ I satlsfies Y‘HX n HX # ¢ then
" n
vy o€ TX.

Proof. Choose I'' so that T T rX ="', By the Jaffee Lemma, Millscn
[14], Lemma 2.1, we find that OHX) = A\H where 4 =

{v € T':ryr, = v}; that is, v preserves the splitting V = span X

+ (span X?l. But consider the action on span X induced by A. The
projection of A is a discrete subgroup of the direct product of the
orthogonal group of span X with itself (because the projection of
A leaves invariant a lattice in span X @ span X). But the restric-
tion of Q to span X dis positive definite and consequently the pro-
jection of & is finite. Hence if T is meat (so no element of T
has an eigenvalue equal to a non-trivial root of unity) we find that

= Fi. With this the first statement is proved. The second state-
ment follows because F% preserves the orientation of H; (see

remarks below) and Fi is torsion free. The third statement follows

" r = n
because [N FX FX.

Remark. TIn the course of the procf, we showed that if vy preserves
span X and T 1is neat then v fixes the elements of X.

To orient MX it 1is sufficient to orient m;. The normal
bundle of HX may be canonically identified with span X; thus, it
ts sufficient to orient span X. We orient EX so that the orienta-

tion of H; at 2z followed by the orientation of span X followed
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by =z is the orientation of the standard basis of V.
We now renmame [' by I and suppress all primes. By Miilson
[14], Section 4, for any positive integer m we can find a cover of

M containing at least m disjeint non-singular orientable totally

geodesic hypersurfaces (which in addition are homologically independent), 1

By the results of Section 5, we deduce the following theorem.

Theorem 7.1. For any m> O and any n = 2, there exists a compact

hyperbolic n-manifeold M with fundamental group T, a standard arith-

metic subgroup of 980(n,1), such that the dimensicms of con, PO,
HM x R), X(T,s50(n+1,1)) and X(T,PGLH+1(R)) are all greater thamn or

aqual to m.

We now assume X = {xl,...,xp} and Y = {yl,...,yq} are chosen
so that X U Y spans a subspace U of dimensien p+q s0 that {,)]U
is positive definite. This assumption on U implies that ﬁ; and H;
intersect transversely im a codimension pdq totally geodesic sub-
space. We do not assume that the vectors in ¥ are orthogomal to
those in Y. We let E and F be flat bundles over M and

v:E® E > T be a parallel bundle map as in Section 4. We chocse a

. n n . n _
point Y on HX n HY as a base-point for # and let Zg w(wb)
be a base-point for M. We let EO and FO dencte the fibers of E
. h . . .
and F over Zq We assume TX as an invariant ay in EO and
FY has an invariant BY in FO. The invariant Gy corresponds to
. . . - . The 4 _
a parallel section Sy of ElMX satisfying SX(ZO) ay The invar
iant BY corresponds te a parallel section SY. of E]MY satisfying

= . l i f .
SY(ZO) BY Then v(sX,sY) is a parallel section o F|MX n M& We
now give a formula for the intersection cycle (MX @ SX).(M& ® SY).

We assume MX and MY intarsect transversely in disjoint codimen—

sion ptg submanifolds P..P ""’Pg' We first show how to orient

1°72
each Pj.

Choose an orientation w for Pj. The orientation o Induces
an orientation o, of the normal bundle of Pj in MX and an corien-—
tation W,y of the normal bundle of Pj in MY by requiring that o
followed by oy be the orientation of MX and @ followed by N
be the orientation of MX. Then @y A N is independent of the choice
of . We define e(w) to be +1 if the oriemtation of o A oy A oy
{s the orientation of M and e{©) to be -1 otherwise. We will
call the orientation of Pj such that e(w) = +1 the intersection

orientation.
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Remark. The intersection orientatiomn may alsoc be described as the
orientation @ for Pj so that the irduced orientation of the normal
bundle of Pj in MX coincides with that of the restriction te Pj
of the normal bundle of MY in M - note that this second bundle
azlready has an orientation.

We give each component Pj for j = 1,2....,4, the intersec-

tion orientatiom. We then have an equality of oriented cycles:
&

ety = BT

j=1 7
By definition of the intersection of cycles with coefficients we also

have: P

® . = P .

(MX SX) (MY ® SY) jil i © V(SX SY)}Pj
We wish to obtain a formula which will enable us to determine when
v(sx,sYﬂPj is zero.

Tn order to simplify notation we suppress the subscript s
replacing Pj by P and Yj by - We let t denote the section

~ n n

VEiX,SY) of F|P. We have chosen 3 component P = Y(HX) n HY ofN
n (Py. We lift t to a section t of the pull-back ¢f F ko P.
We then parallel translate T to iy and evaluate, obtaining an ele-
ment @(t|P} which is zero if and ecnly if V(SX,SY)WP is zerc. We

o~

% £ P,
1 n 2

= o W .
5 ﬁ(wz) and let ws ( 2) se Wy € HX We choose a path

wish to evaluate ¢(t|P) in terms of v, ¢, and BY. Choose w

et =

~ ~ o, ki3
a in H from KA to Wy and a path b in HY from WO to Wy e

= W(E) and b = w(b). Then ab
ﬁl(M,zo) since it lifts to Ey_l(%_l). By definition sx(zz) =

=]

W B

We let represents in
2y x
where a, denotes parallel translation aleng a. Also SY(ZZ) = b*BY'
Hence t(zz) = v(a*ax,b*BY) and hence tiwz) = v(a*ax,b*BY); We
obtain @(tIP) by parallel translating t(wz) back aleng b; that
o ~e-] -1
ts o(t]P) = BT wlaab, ). Bt GO, = (00 ), end hence
-1 _ -1 B -1
Oe|B) = () (ayagsnuy) = v a,3gsfy) = V(@b ayby) . Now
(ab }*EX is the parallel trapslate of Gy around a loop represent-
ing v ~. This is the way v acts on ay via its action on the

standard fiber. We obtain the following lemma.

Lemma 7.2. v{sX,sY)!P = (0 4if and only if vQYaX,SY) =0 in EO.
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Remark. If we choose z different v, say At = oy with m € FY

and p €T then T would change to mF and the coeificient would

¥
change to nv(yax,BY}.
We define a subset A& <« T Dby

A

1]

{y € T () N Hy # 9}

: . -1
Then TX z r, acts on A by (Yl,yz) YO TSYYY - The map
¥ 4‘ﬁ(*‘r(l-IX) n H;) induces a one-to-one correspondence between the
orbits of PX 3 TY in A and the components of MX N Mi. Hence A
consists of a finite number of FX X TY orbits (or PY’ TX double

cosets). For any ideal b c (0 we define:
Ay =aNnT®).

We observe that if ¢ <D then A{g) < A(D).

We have the following theorem under the assumptions p¥q # n-1
and m = 4. In the next theorem we consider congruence subgroups
e T eT. We let M' = T and M' =T™E . We let w' and
#" be the covering projectioms and Mi = n‘@HQ) and M% = ﬁ"@H;) and
similarly for Y. We assume in what follows that T is the congruence

subgroup of &, the group of units of (,), of level a.

Theorem 7.2. There exists a congruence COVer M' of M so that

Mi n Mé consists of the single component W'GH; n H;). Moreover for

any congruence cover M" of M' the intersection Mg n Mg again

1 n
consists of the single component ﬁ"GHX N MY).

Theorem 7.2 will be a consequence of the following proposition.

Proposition 7.1. If pt+q # n-l, there exists an ideal b so that
at) c T JTy-

In what follows Rb{.) will denote reduction modulo the ldeal
b. We define A" < P by:

At = {X' ¢ P - v'X for some +' € A}.

The proof of Proposition 7.1 will follow twe lemmas. The next
lemma shows how to pass te a congruence cover and eliminate certain

intersection components.

Temma 7.3. Let X' ¢ A' and suppose b ¢ 0 4is an {desl such that:

Rb(FYX') 0 Rb(TYX) = @.

Then A{b) N TYY‘FX = ¢ where +' € & satisfies y'K =X'.

95

1 _ N .
Proof. If v € a(b) N T'Ty 80 ¥ = vyr'ry with ¥y € Ty and
Tq € FX then:

Ry (X) = By (vX) = R (y,0"v{X) = R (y,%') .
With this the lemma is proved.

We now use Lemma 7.3 to eliminate all double cosets so that the
orbit of X under the double coset can be separated modulo some ideal

¢ from the trivial double coset.

Temma 7.4. There exists an ideal b so that ~+ ¢ A(b) implies
RC(FYYx) 0 RC(FYX) # @ for any C.

Proof. There are a finite number of T‘Y, I‘X double cosets in A.
Let {yl,yz,...,yr} be a set of representatives. Either there exists

an ideal bl such that Rbl(TYle) N Rbl(FYX) =@ or no such ideal

existe. TIf such an ideal exists then by Lemma 7.3 we know A(bl) N
FYYITX = ¢ and we have eliminated the double coset containing Tyr I1f
ng such idesl exists then for every element v € PYYITX we have
RC(Tny} n RC(TYX) 4 ¢ for every C. In this case we do not need to
eliminate ¥q SO We take bl ={. Continuing in this way we obtain
£ (possibly non-proper) ideals bl’bz""’bﬁ' We put b = b1b2"' b5
and the lemma is proved.

We now begin the proof of Proposition 7.1. For the course of
this proof FX and TY will be dencted Fl and T2 and GX and
Gy by G and G, For & ring R containing ¢, the symbol Gl(R)
will denote the R-ratiomal points of the algebraic subgroup of 50(Q3
fixing X and similarly for GZ(R)' The symbol OP will dencte the
P-adic completion of ¢ and the symbol Gl(OP,a) will dencte the
subgroup of Gl(OP) consisting of v satisfying v = 1 mod P" where
m 1is the largest power of P dividing a. We will assume T is
chosen so that v € I' dimplies that the k spinor morm of vy dis 1;
this is possible by Millson-Raghunathan [16], Proposition 4.1.

The idea of the proof is to examine the elements v € ACbY)
that is, elements v such that the corresponding vectors X' = vy'X
have an associated FZ orbit, F2X‘, which cannot be separated
modulo any ideal ¢ from TZX. We show all such +' satisfy
¥' € T,T, . We let
AT(by = [X':X' = yX for v € A(b)}.

If X ¢ VP, Y € Vq, the symbol {X,Y) denctes the matrix
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((xi,yj)). For X' ¢ A', ler B(X') = (X'.Y¥), a p by g matrix
with entries in K. Then for ¥y € r., we have BCYZX') = B(X'} and
B is constant on TZ orbits in A'. If B{X') # B(X) then there

. _ v . )
exists some Yj ¢ Y. and some %y im X with (xi,yj) # (Xi,yj).
Hence, for almost every prime P in (¢ we have (xi,yj) # (xi,yj)modP

] 1)

and consequently RP(VZX )y # RP(X) fér ¥, € Fz. Hence RP(FZX }
R (FZX) = @. Thus, if X' € 4'(b), we have 3B{X') = B{X).

But if X' € A' them X' =+X with v € &4 so (X',X") = (X,X).

Consequently, the matrix of inner products of (,) relative X' UY
is the same as the matrix of (,) relative X U Y. Consequently, if
X' ¢ A'(b), there exists g € G(k) such that g% = X' and g¥ =Y.

We claim, that in case p + g < mn - 2, we may assume that g
has spinor norm 1. For, in this case, the orthogonal complement W
of span(X U Y) d1s an indefinite space of dimension greater than or
equal to 3. Hence, by 0'Meara 1181, 101-8, we may find an element
n € 80(W) with entries in k and having the same spinor norm as g.
Thern, replacing g by gn, we prove the claim (we will need this
later in the case p + 49 =n - 2).

In any case, since g¥ =¥, we have g = 29 € GQ(k)' But then

"1|_ _11__ FEON
g, ¥'X = X so g, ¥ =8 € Gl(k) and we obtain:

' =
v = gygy € G,k k).
By definition, if X' € A'(b), we may suppose that for every

prime ideal P in 0 and every integer m> 0 there exists an

element v, = Tz(P,HO with:
R _(v,X) =R _(X.
pit 2 pit

The infinite set {Yz(P,m)} < Tz c GZ(OP’a) has a limit point
V;l in GZ(OP’a) satisfying vPX = X'. We may assume that the spinor
norm of vp ig 1 since the kernel of the spinor morm is closed in
GZ(OP) - it is the intersection of GZ{OP) with the image of the spin
group in GZ(OP)' But then defining bp = vp ¥ we find that
Up € Gl(OP’a) and:

¥ o= Vpkp.

At this point we separate the proof of the theorem into two cases;

the first in which p + ¢ = n and the second in which p+gq=n = 2.
For the first case we note Gl n 82 = {1} since any g € G1 0

G2 fixes a subspace of codimension 1 and has determinant 1. Thus,
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we must have:

82 7 vp
and
gy Ty
for all P. This concludes the proof of the theorem for the case
p+ gq=n since the above equality implies = € Fl and &, 3 TZ.
In case P + q < n - 1 we consider the adele {ap} with P th

component ap given by:

-1

ap = Vp By
Then ap has spinor morm 1 by the previous claim and we may apply
the Strong Approximation Theorem to the algebraic group H = SO(W),
see 0'Meara [19], to conclude that there exists n € H(k) and an
adele {bp} €I H(Op,a} such that:

(o) = fvp gyt

Prom the previous equation we deduce vPbp = 85N Consequently
g,yn is an element of T fixing Y and so M € Tz. Renaming BqM
by v and defining p = v_lv we find | € Tl and vy = vy € TzFl.
With this Proposition 7.1 is proved.

We now show how Proposition 7.1 implies Theecrem 7.2. Choose
b se that A(b} c TYTX' Suppose first p + g = n. Then wpX = vX
and X = vpX ¥ X mod Bb. Hence VX = X mod b. But also V¥ =Y.

. Hence v = 1 modbon span{X U ¥). But this span has codimension 1

and det v = 1. Hence v = 1 mod b and consequently p = v_lY also
satisfies b = 1 mod b.

Suppose now that p + g = n - 2. The previous argument shows
that v and y are congruent to 1 modulo b on span(X U Y).
Also v = p—lmod b on W. Let ® be the element of the finite group
of isometries of W wodulo b to which v and u_l are congruent.
Since ¢ has spinor norm 1 and the dimension of W 1s greater
than or equai toe 3, Dby the Strong Approximation Theorem we may find
n €' N S0(W) so that n_l =¢ mod b, We let v' =vq and p' =
n_lp. Them v' zp'=1lmedb and vy =v'p'. This proves the first
part of Theorem 7.2.

To prove the second part note that if ¢ c b then A(c) < Al
[ and we may repeat the previcus argument.

X

We now apply Thecrem 7.2 to the case X = {e and

128s}
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Yo {yl,yz,...,yn_z} an 0 -integral (n-2)-frame chosen sc that X Uy
spans a positive definite space of dimension n and so that

(el A oBya¥q A yz) = 0, For example take Y = {el + e, ,et &

2 3°%2" %450t
We may assume, by the remark following Lemma 7.1, that TY acts tri-
vially on the span of Y. Consequently we may form a cycle with coef-
ficients in AZV given by M& ® ¥y A Yo gimilarly we have a cycle
with coefficlents in AZV given by M& & e} A ey We use the form

induced by () on AZV to define

(MX % &, A ez)'(MY ® ¥y A yz).

Lemma 7.5. There exists a congruence subgroup T(} ¢ T so that the

corresponding cycles '@ e, A e, and '® vy, Ay satisfy:
1 2 — 1 —_—

1 . 1
(MX ® e A e2) (MY ®y A y2) # 0.
Proof. By Theorem 7.2 we may find b so that M% and ! dintersect
at N‘GH§ n HE). We apply Lemma 7.2 with y =1 and find the coef-

ficient contribution (el A &ya¥y A y2) # 0. With this Lemma 7.5 is

2
proved.

Corollary. Mé ® &) A e is a non-zero class in Hn—2(F(b) Bn}AZV).

We replace our original T Dy I'(p) and suppress all primes.
We mow apply Theorem 7.2 to the case X = {el} and Y = {ez}. We

consider the cycles with coefficients in ¥ given by Me ® e and
1

Me ® ey We use the exterior product from V@V to A2y to define

2

2

M e M @e ) as an element of H (M,A"V). Let us denote

ey 1 e, 2 n-2

T

® & .

n(ﬁ{el,ez}) 2 A e, by Z & ey A g
1M ey is mot a boundary; hence if ' < T 1is a sub—
group of finite index, 2 =+ T'\Hn is the covering and Z' =

Remark. Z & e

W'GHH ng" ) then Z' ® e, A e, d1smnota boundary.
eq ey 1 2
Lemma 7.6. There exists a congruence subgroup I'(cy ¢ T' so that:

(Mé1 @ el}-(Mé ® ez) # 0.

2
Proof. We apply Theorem 7.2 to deduce that there exists a congruence
subgroup I['(¢) ¢ T' so that M' N M = ﬁ'GHn 0B ). We denote
e e e e
1 2 1 2
this intersection by Z'. By the previous remark Z' & ey A ey #0

and the lemma is proved since by Lemma 7.2 the coefficient comtribu-
tion 1e nmom-zero — again applying Lemma 7.2 with v = 1.

We have now proved the desired non-vanishing theorem for inter-—

e }.
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section products of hypersurfaces with coefficients in V. As a con-
sequence of the results of Sectiom 6 we have the following theorem,

again assuming n z 4,

Theorem 7.3. Hom{I',$0(n+1,1)) and Hom(T,S0(n+1,1)} each have a
singularity at hE
Simiiar arguments based on Theorem 7.1 using coefficients in

2
SO(V) yield the required theorem for projective structures. Note that

Th ,h 1 =e, re,.
eq e1+e2 1 2

Temma 7.7. For any subgroup I of finite index in the units of ()

there exists a further congruence subgroup T(c) so that:

M ®h_ )M ®@h y # 0.
eq ey ei+82 el+e2
Remark. In fact we obtain (M' @ h ) - (M @ h Y =
—_— el el el+e2 el+e2
M{el’ez}® & A e, which we proved to be non-zero in Lemma 7.5.
) Since Py is good in the projective case, we obtain the fol-~

lowing theorem, again assuming 0 = 4,

Theorem 7.4. &m@ﬂﬂbﬂﬁn,Em@JMhHWN,K@Jﬂ%H®D and
X(F,PGLH+1(€)) are singular at Ch

We now wish to establish the existence of non-isclated singu-
larities for the deformation spaces. By the results of Section 6, it
is sufficient to find a two-sided, totally geodesic, non-singular
hypersurface N disjoint from Me and Me (or Me and Me ‘e ).

1 2 1 172

We prove a more general theorem in the framework of Theorem 7.2 with

X and Y as in that theorem. We suppose that fiM' - M is a cover

and that ¥ is the group of covering transformations of f. We let
- . 1

YX denote the group of covering transformations cof MX *’MX and YY

denote the group of covering transformations of M% A-MY. Let 7 ¢ ¥.
Lemma 7.8. n(Mi) N Mﬁ # ¢ if and only if = € Tp.

Proof. Suppose ﬂ(Mi) n M% # ¢, We choose +v € I' representing mn.
Then there exist =y and %, in H; such that ﬂ‘(yxl) = ﬂ'(xz).
Hence there exists +~' € ' so that Y'yxl = Xy But by Lemma 7.1,
we have +v'yv € TX and comsequently 7 € YX. The converse is clear
and the lemmz is proved.

We now examine when ﬂ(ﬁ%) meets M%. We assume M is chosen

to satisfy the conclusions of Theorem 7.2; that is, we require that
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MX N MY consist of a single component.
1 1 . .
Temma 7.9. ﬂ(MX) n MY # ¢ if and only if n € YYYX.

Proof. Suppose n(M%) n Mé # @, Choose + € I' representing m. Then
o n

h 4 T = 1

there exist %) 3 HX and %, € EY such that «7( Xl) b (xz). Hence

there exists +' € I'" such that Y'Yxl = %,3 that is, +~'v € A. But

by construction of I ({Theorem 7.2} there exist V& FY and W € TX

such that +v' =vji. Reducing medule T' we find 7 QYQ%. The

converse is clear and the lemma is proved.

Theotrem 7.5. Let Yl,Yz,...,Ym be given such that for j = 1,2,...,m

the set X U Yj spans a positive defipnite subspace of ¥V of dimensiocn

ptqa with p 4+ g #n - 1. Then there exists a covering f:M' -+ M and

a covering transformation m of £ such that n(Mé) does not inter-
sect Mé}M% Mé .
m

Proof. We apply Theorem 7.2 successively to Yl,...,Ym to arrange

12

that Mi n M§ consists of a single component for J = 1,2,...,m.
3

Prom Lemma 7.9 we find that it is sufficlent to find a covering group ¥

such that ¥ # ¥_ T_ U-+-U ¥ ¥ . Suppose no such cover exists. Choose
Yl X Yn X

x € X and yj € Yj for j =1,2,...,m. Then the equation
H?:l[(gx,yj) - (x,yj)] = 0 1s satisfied for all g 1in the congruence
completion of T, hence for all g € I' and hence by Zariski density
for all g & &. Since G 4s irreducible one of the factors in the
above equation must vanish identically on G. But this is absurd.

We now prove the main thecrem of this section assuming =n = &

and T as above.

Theorem 7.6. The spaces R(I,80(n+1,1}), R(T,S80(n+1,13) .
X(r,s0(n+1.1)), X(T,50(n+1,1}), R(F’PGLH+1CR))’ R(T,PGLH+1(G)),
X(F,PGLH+1GR)) and X(F,PGLH+1(®)) all have non~-isolated singular-

ities.
Proof. We give the proof for the first case. We apply the previous

theorem to the case X = {el}, Y = {ez} and Y2 = {ez + ea}. Then

ﬂ(Mé ) 1is a totally gecdesic hypersurface which does not intersect
1

Mé . M; or Mé o

1 2 2 T4

M} .

{El+63’62+ea’85’86""’em}

and a fortiori does mnot intersect the suriace

Hence 1if Pe is the deformation of p

corresponding to the totally geodesic hypersurface n(Mé ) then G
1

is constant on the fundamental groups of the three above manifolds and
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the intersection number calculations of Lemma 7.5 and Lemma 7.6 are

independent of t.

Remark. Further work is required in order to make precise the state—
ment that COO, A(M x R) and P(M) are singular. First, we need a
"completeness" theorem to the effect that each point in 3(M), the
space of marked (G,X) structures for some ¢ and X, has a neigh-
borhood isomorphic to an analytic subvariety in Hl(M,B) where © 1is
the sheaf of infinitesimal automorphisms of the G-structure. Second
we need to know that the holoncmy map preserves this structure, It
appears that these results can be proved by imitating the proof of

completeness for complex structures.

8. CN  and Riemannian Geometry.

In this section, we will regard C(M) as the quotient space of
Ryemannisn metrics with vanishing Weyl tensor by the group which is
the semi-direct product of the group C:{M) of strictly positive
smoath functions on M and the group of diffeomerphisms of M iso-
topic to the identity. Thus a point ¢ ¢ C(M) is an equivalence
class of Riemannian metrics all of which have zero Weyl temsor. In
what follows 1 will denote the dimension of the manifold M under
consideration. The following theorem provides a cancnical metric in
an corbilt under C:(M) of confeormally flat metrics. We owe the
theorem to S.Y. Cheng. Tts proof will appear elsewhere. Of course

M is always a compact hyperbolic manifold in what follows.

Theorem 8.1. Every orbit under Ci(M) of conformally flat metrics

contains a metric of constant scalar curvature. The metric is unique

up to scalar multiples.

We will use two different normalizatioms of the scalar.

Corollary 1 (firet normalization). ZEvery orbit under C:(M) of con-

formally flat metrics_contains a unique metric g of constant scalar

curvature -n(on-1).

Corollary 2 (second normalization). Every orbit under C:(M) of con-

formally flat metrics contains a_unique metric g' of conmstant scalar

curvature such that the volume of M (using the volume element asso—

ciated to g') is 1.
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Remark. The first corollary is the generalization of the theorem

. 2z
stating that every complex (conformal) structure on M~ contains a
unique hyperbelic metric.

Corollary 1 allows us to defime an interesting function
vol:C (M) %'R+

as follows. Let ¢ € C{M) and g be the canonical metric with the
first pormalization. Then wvol(cy 1s by definition the volume of M
for the metric g. We can now relate the two normalizations g, g’
in a conformal structure c, namely:
1 2/n
T o
& {VDI(C)) N
We now define & funection A:C{M) + R closely related to vol

but more convenient for computaticns by:
Ale) = fyr(ghyvol!

Here ~<(g') 1s the scalar curvature of g'. Since T(hg) = 175 (g)
for A a positive constant we find:

ACe) = ~n(a-1) (vol(e)) /™.

Before studying the functiom vol further, we peint out another
consequence of Theorem 8.1, the existence of a Petersson-Weil metric
on ((M). WNow a Petersson-Weil metric om a space of structures is a
consequence of a canonical metric in each structure and a Hodge theorem
representing the infinitesimal deformations by "harmonic™ tensor fields
on M <{as opposed to cohomclogy classes of tensor fields). The re-
quired Hodge Theorem has been proved by Gasqui and Goldschmidt [1i].

We now prove some properties of the function wol. Of course,
in the case n = 2, the function wvol 1s constant by the Gauss-
Bonnet Theorem. For all mn, the unique hyperbolic structure, to be

denoted c 415 a critical point of A, Berger [3], page 29, hence,

0,
a critical point of wol. That the situation for n> 2 1s altege-

ther different from that of n = 2 is clear frem the following theorem.

Theorem 8.2. If n = 3 ¢the second derivative of vol:C(Mp) 4-B+ at

the hyperbolic structure ¢, is positive definite. In particular

vol 415 not constant on C(¥) provided n = 3.

Proof. The statement of the theorem is equivalent to the statement
that the second derivative of A at the hyperbolic structure is nega-

tive definite. But the thecrem mow follows from [12], Theorem 2.5.
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Tndeed, we have only to check the eigenvalues of the operator L of
[12], asscciated to the curvature transformation of the hyperbelic
metric, on traceless symmetric 2-temsors. These eigenvalues are easily
seen to be 0 on e ®e, —e, ®e, and -1 on 1/2{e, ® e, + e
i i 3 i i ! ]
® ei). The minimum eligenvalue -1 is greater than min{E)— I 1=
n

-(n-1) provided n = 3. With this the thecrem is proved.

Tn the case in which n = 4 we find a remarkable and suggestive

result using the Gauss-Bonnet Theorem.

Theorem 8.3. If n =4; the function vol:C(Mﬁ} - R+ has an absgolute

minimum at the hyperbolic structure =<

o
Proof. Let ¢ be a conformal structure on M i.e. a canonical metric
with the first normalization. In Berger [2], there is a formula for
the Gauss-Bonnet integrand B as a universal linear combination of

the norm HRHZ of the curvature transformation R, the norm HRicH2
of the Ricci transformation Ric and TZ the square of the scalar
curvature. For a conformally flat manifold R is a linear function

of Ric so B must be a universal combination of ”RicHz and <

By computing for S4 and S1 X S3 we find:

B = —ZHRiCNZ + % Tz.
Hence
2. 2 2, . 2
EJMT_ = 320K (M) + ZfMHRch
By Cauchy-Schwarz, we have for a symmetric transformation §8:
2 2
(tr 8)7 = [Isfi"m
if (Kl,hz,...,kn) are the eigenvalues we have:

2

2 2
((}\ls?\.zs---:}Ln)s(lslg--~sl)) = (7\.1 R R o )\n)n.

We obtain then:
w2 < Iric) 4
substituting
2 2 2 1 2
BfMT = 277X M) + E-IMT
and:

fMTz > 6(320°3% (1)

By the Hirzebruch Proportiomality Principle we have:

vol(co) 4] vol(co)
XMy = 2 7 = 5
8 8

3




104

where vol(co) denotes the volume of M for the hyperbolic metric.

Hence:

2
fMT > lﬁ&vol(co).

But the canonical metric is normalized so that © = ~-12. We obtain:

fMT2 = 144 vol M = 144 vol{e)

and hence

vol(c) = vol(co}.

With this the theorem is proved.
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oy DIVISION CF FUNCTIONS, SOLUTION OF MATRIX EQUATIONS,
AND PROBLEMS IN DIFFERENTIAL GEOMETRY AND PHYSICS

by Mark Alan Mostow
Dedicated to my father on his sixtieth birthday

In this article we present some results on the continuity of divie
slon of smooth functions and discuss their applications to linear alge-
bra, differential geometry, and physics. Much of the work was done
jeintly with Steven Shnider and will appear in greater detail elsewhere
([M52], [M83], [Mcs2].

The basic division problem treated here, which we shall call the

joint continuity of division of smooth functions, is the following:

Consider the collection of triples (f,g,h) of smooth
(¢®) real-valued functions on Rn, or more generally, on
a manifold M, satisfying the relation f = geh (product).
Assuming that gul(O) is nowhere dense (i.e. that its com-
plement 1s dense}, we can write h = f/g without ambiguity.
Is the quotient h a (jointly) continuous function of the
pair (f = gh,g), with respect to the Fréchet ¢’ topology
of uniform convergence of a function and its derivatives on

compact sets?

This question appears mot to have been congidered explicitly.
Whalt has been studied is the continuity in the numerator of division by
a fixed smooth function g, that is, of the operator sending f = gh
to h = f/g. For example, Fojasiewlcz [Loj] proved that division by a
real analytic function is ceontinuous. We refer to [MS2] for = discus-
sion of the problem of continuity in the numerator and its relation to
closedness of ideals in vings of smooth functions and to divisibility
of distributiens by smooth functions; see [Borm} for its relation to the
existence of tempered solutions of partial differential equations. But

continuity in the numerator does not imply joint continuity, as the



