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Annals of Mathematics, 108 (1978), 1-39

Closed geodesics and the z-invariant

By JOHN J. MILLSON

Dedicated to the memory of V.K. Patodi

Introduction

In[3], Atiyah, Patodi and Singer introduced an invariant of a Riemannian
manifold of dimension 4n — 1. This invariant, which they called the
7-invariant, is determined by the spectrum of a certain self-adjoint square
root of the Laplacian on differential forms. It is non-local; that is, it is not
obtained by integrating a universal polynomial in curvature over the mani-
fold. Thus, unlike earlier invariants determined by the spectrum such as
the Euler characteristic or the signature, it cannot be computed from the
asymptotic expansion of Trace !, the trace of the heat operator, as ¢ goes
to zero. However, recently, Colin de Verdiere [26], Chazarain [7] and
Duistermaat-Guillemin [9] discovered a connection between the spectrum of
the Laplacian and non-local information about a Riemannian manifold by
studying the distribution trace of the fundamental solution of the wave
equation. For generic manifolds the singularities of this distribution on
the real line are at the set of lengths of closed geodesics and there is an
asymptotic expansion at each singularity with coefficients giving informa-
tion about the closed geodesic. It is an important question to decide if the
7-invariant can be determined from these data. The following formula
shows this is indeed the case for manifolds of constant negative curvature
and suggests a general formula.

Let M be a compact oriented 4n — 1 dimensional Riemannian manifold
of constant negative curvature. Let &9 be the set of primitive closed
geodesics on M. Then each ¥ € P determines the holonomy element R(7)e
SO(4n — 2) by parallel translation around 7, the (linearized) Poincaré map
P(7)eSp(8n — 4, R) and the length L(7) of 7. We stop to give a definition
of P(7). Let ¢, denote the geodesic flow on S(M), the unit tangent bundle
of M. Then a closed geodesic of length L corresponds to a fixed-point of ;.
Then dp, maps the tangent space of that fixed-point to itself and preserves
the geodesic flow direction and hence induces a transformation P(7) normal
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2 JOHN J. MILLSON

to that direction. Now we return to the statement of our results. Let ¢ be
the standard representation of SO(4n — 2) regarded as a complex represen-
tation. Then the middle exterior power A* ¢ decomposes into the sum of
two irreducible representations of SO(4n—2) corresponding to the -7 and —%
eigenspaces of * acting on the space of A**™'¢. We let ch, be the character
of the +7 eigenspace and ch_ the character of the —1 eigenspace and define
a class function y on SO(4n — 2) by

x(g9) = ch. (9) — ch_(g) .
We set N(7) = ¢ and using the idea of Selberg [21] we define a zeta func-
tion by the following series which is absolutely convergent for Res > 2n —1:

AR N(v)™*
I—PO”™ &k

logZ@n —1+8) =3, 37, et

Then Z(s) admits a meromorphic continuation to the entire complex plane
and

7(0) = Llog Z(2n — 1) .
V(%)

In fact Z satisfies the remarkable functional equation
Z (S)Z~ (4n — 2 — 8) = ¢

and satisfies the Riemann hypothesis (it has all its zeroes on the line
Res = 2n — 1).

The properties of Z developed in Chapter III should be considered as
joint work with Takuro Shintani. He first proposed the group theoretic
version of the formula for Z in the three dimensional case and proved the
functional equation (with an unknown constant on the right hand side).
Theorem 3.1 (and consequently the calculation of the constant) is due to the
author. It is a great pleasure to thank Takuro Shintani for all these con-
tributions and for many helpful and agreeable conversations. We would
also like to thank Jim Arthur for much help with the Selberg trace formula
and the unitary representation theory of the noncompact simple groups.
His thesis [1] was a great help to us in learning this difficult subject.
Lastly we would like to thank M.F. Atiyah who encouraged us to begin
these calculations four years ago and I.M. Singer who showed us how to
rewrite our original group-theoretic formula to obtain the present one and
also helped us with some other problems that arose while we were working
on this paper.
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Chapter 1
1. The 7-invariant of Atiyah, Patodi and Singer

Let M*** be a compact oriented Riemannian manifold. Consider the
operator A on odd forms on M, @,Q** defined on Q*** by

A = (—1)""*(xd + d=+) .

It is easily seen that

(i) A is self-adjoint;

(ii) A* = A, the Hodge Laplacian.
From (i) and (ii) it follows that A is diagonalizable with real eigenvalues.
The point of the definition of the %-invariant is that the eigenvalues ), of
A can be either positive or negative—they are square roots of the eigen-
values of A. We define

_ e signi, 1 1
7(s) = n=0 IE - Ez,pov - Ezn«)‘lﬁ .

In [3] the following result is proved. 7(s) has a meromorphic continuation
to the entire complex plane and does not have a pole at zero. From this it
follows that 7(0) is well-defined. This value is the 7-invariant. The above
result is proved with the help of the formula

77(8) — ;Swt“—l/ztrAe”Mﬂ .

F(s + 1> 0

2
This formula will be the basis of our calculations. We will not however use
the operator A but replace A by its restriction to the space of (coclosed)

2n — 1 forms. If we call this new operator A then A = =d and we have the
following result from [3]:

1 °° T

— ts+1/2t A

0] ey |t r de
r 2

For the rest of this paper A will denote this operator.

L

2. Review of homogeneous vector bundles

Given a homogeneous space X of dimension m with X = G/K where K
is compact and a unitary representation : K— GL(V,), we can form a vector
bundle £ = Gx,V. The points of E are equivalence classes of pairs (g, v)
under (gk, v) ~ (g, o(k)v). We denote such equivalence classes by [g, v].
Note that E admits a left G action g,[g, v] = [g.9, v]. We call ¢ the isotropy
representation of K.
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Given such a bundle E we can form I'(E), its L* sections (G/K has an
invariant measure induced from Haar measure on G). G acts on a section
s by g,8(x) = g,s(gi'x). By this procedure we associate to every unitary
representation o of K, a unitary representation of G whose spaces are I'(E).
We denote this representation Ind$c and call it the representation of G
induced from ¢. Ind%o is not necessarily irreducible but in case G is compact
the Frobenius Reciprocity Theorem, Wallach [27, p. 118], tells us how to
decompose it into irreducibles. We make the important remark that an
element f of I'(E) may be identified with a K-equivariant mapping f: G— V..

We assume henceforth that G is simple and non-compact, that K is a
maximal compact subgroup of G (hence X = G/K is symmetric) and that C
is the Killing form of G. Let E,, E,, - - -, E,, be a basis for the right invariant
fields on G which are orthonormal with respect to the metric (x, y) =C(x, 0y).
The operator Q" = 3" E? operating on functions on G is called the Casimir
operator of G. We recall that Q' is in the center of the universal enveloping
algebra of G. (For the case we are interested in, G = SO(n, 1), we definea
new operator Q by the formula Q = —(2n — 2)Q'). If o denotes the action
of G on the bundle of forms on G/K then we have

KuGA’S LEMMA.
o@) = —A
where A 1s the Hodge Laplacian for the metric induced on G/K by C.
Proof. See Matsushima-Murakami [20].

Remark. For each element ¢, of the Lie algebra of G we associate a
Killing field E, on G/K using the left action of G on G/K as follows:

E(m) = %(exp t(—te;) - m)

t=0 *

Clearly the action of the Lie algebra of G on forms associated to the action
of G is ¢;— L3, where £, denotes the Lie derivative operation by X. Thus,

o@) = 7, €5, 25,
With Q as above for G = SO(n, 1) we have p(Q) = A where A is the
Laplacian of the metric with constant curvature —1.
In this paper we shall be solely concerned with homogeneous vector
bundles E which are exterior powers of the cotangent bundle of G/K. Let

us first recall what the tangent bundle of G/K looks like. The Lie algebra
of G which we will denote by g splits as a vector space

g=tDp
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Here f is the Lie algebra of K. This splitting is just the splitting of g
into a subspace f on which the Cartan-Killing form C is negative definite
and a subspace p on which C is positive definite. Of course we may identify
p with the tangent space to G/K at the identity coset which we will hence-
forth refer to as the origin of the homogeneous space G/K. C provides us
with an invariant metric on G/K.* This metric, in the case G = SO(n, 1),
K = SO(n), has constant sectional curvature —(1/2n — 2). We will use the
metric {x, ¥) = (1/2n — 2)C(x, y) which will have constant curvature —1.
Now the action of K on g given by restricting the adjoint action of G to
K also splits into the direct sum of an action on f (just the adjoint action
of K)and an action of p. This later action will be referred to as . Then ¢
is the isotropy representation of the tangent bundle. It isalso the isotropy
representation of the cotangent bundle and A?¢ will be the isotropy repre-
sentation of the bundle of p-forms. Now the left-invariant distribution on
G corresponding to p is the horizontal distribution of the Riemannian con-
nection on the tangent bundle of G/K associated to C. In other words the
left-invariant vector fields correspond to the canonical horizontal fields from
the theory of principal bundles (which never correspond to vector fields on
the base). Thus A?p* extended to be left-invariant is the horizontal distri-
bution associated to the connection on p-forms. Let w,, @,, -+, @, be a basis
for the left-invariant 1-forms on G which are horizontal (that is w;,,, € p*).
Now given any » form w on G/K we may lift it to G to obtain a horizontal
p-form @ =7*won G. We may then write out the components of @’ relative
to the basis for the horizontal p-forms obtained by forming all possible
products {®;, A W, A\ -+ N @;,:1 <1, < --- <1, =n}. The component func-
tions (fi;,..;,) give us a map f: G — A’R" which satisfies f(gk) = o(k™")f(g)
where 0 = A”p*.

We now return to a general homogeneous vector bundle ¥ to discuss
invariant differential and integral operators on homogeneous bundles. We
begin with a study of first order invariant differential operators on I'(E).
Let D be such an operator.

We define a differential operator D on C=(G) R« V, by
Df=Df.
Let {x;},t=1,2, ---, m, be an orthonormal basis for p» and X/ the corre-

sponding left-invariant vector fields on G. Let {w;}, i1 =1,2, ---, m, be a
dual basis for the left-invariant 1-forms which are horizontal.

* This metric is »—1 times the metric C’ given by C’(x,y)=trace xy where x, y are
thought of as symmetric n+1 by n-+1 matrices.
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Before describing D we recall for the benefit of the reader the definition
of the symbol of a first order differential operator on a vector bundle E — M.
Let & be a contangent vector to M at m and ve E,.. Let ¢ be a real-valued
function on M satisfying p(m) = 0, dp(m) = & and let f be a section of K
satisfying fim) = v. Then

S,.(&)v = D(pf)(m) .

LEMMA 1.1. There exist constant matrices A;, 7 =1,2, --+, m, and B

so that
D=%" X!®A;+B.

Here A; = s,(w;],) and Be Hom,(V,, V,) may be determined as follows. Let
f eT(E) have the properties that f(0) = v and f is covariant constant at 0;
then,

Bv = Df(0) .
Proof. We observe that there exist functions B, 4;;G—~EndV,, j =
1,2, ---, m, so that D has the above form whether or not D is invariant.

Because D is invariant these functions are constant functions. It follows
immediately from the definition of the symbol that

Al(g) = sg(wi) .

Lastly the formula for B follows from the lemma, page 115 of Kobayashi-
Nomizu [16] which implies that the horizontal left-invariant fields at ¢
annihilate the lift of a section which is covariant constant at gK. This
proves Lemma 1.2.

We now investigate the properties the matrices A; must have in order
that D preserve the equivariance of f under K.

LEMMA 1.2. Let s be the symbol of a G-invariant first order differential
operator on a homogeneous vector bundle E with isotropy representation o.
Then

s, € Hom, (p*, End V) ;
that 1s,
s,(Adk - &) = a(k)s,(§)o(k)™ .
A more useful equivalent formulation is that
i Xf®A;e(P®End V)~ ;
that is,
T AdRXFQok)Aok™) =3 XI®RA;.
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Proof. We prove the last formula. Suppose feI'(E) and Df e T'(E).

Then
L (S5 Aif(ghesptX))| = ob™) L (7., A (g exptXy)

But

d n —
L (T A (ghexptX))| =

t=0 °*

(=7 A;f (gk exp tX;k'k))

t=0

SIS

= = (7, Aok (g exp thX k™))

t=0
=2 1 Adk- X7 ® Ao(k™)f(g) .
Hence for all fe'(E)

X Qo)A f(9) = 207 Adk - XP® Aok S (9) -
This proves the lemma.

Remark. For k' order operators one has s, ¢ Hom, (S*p*, End V,) where
Stp* is the k™ symmetric power of p*, hence D € (S*p Q End V,)*.

We now examine how the kernels of invariant integral operators appear
in our setting. K will denote as usual a homogeneous vector bundle defined
by an isotropy representation o. The kernel of an integral operator & will
be a section of E[X E*, the external tensor product of E with E* over
G X G. Because E is a trivial bundle, an L* section of this bundle will be
merely an element of L*(G X G) ® End V,, that is an endomorphism valued
function on G X G. If e denotes the kernel of ¢ then e will satisfy K-
equivariance

e(9.k, 9,) = o(k™) o e(gy, gs) ,
e(9,, g:.k) = e(g,, g,) oo (k) .
If the operator £ is symmetric then ¢ will satisfy symmetry:

e(g:, 9.) = €*(9. 9v) -
Here * denotes the adjoint operation in End V.
If the operator & commutes with G then ¢ will satisfy G-invariance:
e(99:, 99.) = €(gy, G2) -
We will assume all three of these properties henceforth. We now deduce
an elementary (but important) consequence of G-invariance.
LEMMA 1.8. If & 1s G-invariant then there is a function ¢:G —End V
such that:
e(g,, 9,) = €(g:'9y) -
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Proof. Set e(g) = e(g, 1). We say € is a representation function for &.

Remark. e(k.gk,) = o(k;")e(g)a(kr'). The space of all smooth functions
satisfying the above law will be denoted by L,(G).

We need one more definition concerned with integral operators. Given
an integral operator &£ with representation function ¢, we define the local
trace of & written & to be the scalar function on G given by

¢(g) = tracee(g) .

Here the trace is taken in End V,. Then under suitable hypotheses on 2
which will be discussed in Chapter 2 we have that & is trace class and the
trace of & denoted Tr £ is given by

Tre = SG«?(g)dg .

We now give the examples that will concern us. We first describe how
d looks in this framework. The symbol of d at w, is the map s(w,): A?p* —
A p* given by s(w,) o w = w, A\ @. Noting that d acting at a point annihilates
sections which are covariant constant at that point we have

d=237" X/ ®sw,).
Hence
A=deos@) = T, X/ ® *s(@;) .

We shall reserve the symbol s to designate the symbol of d henceforth. We
will also denote the representation function of the heat operator ¢ ** by e,

and its local trace by &, and the representation function of the integral
operator Ae ' by @, and its local trace by d,.

3. Unitary representation theory of the Lorentz group

In this section we will establish some notation and define the unitary
principal series for certain real rank 1 groups. Of course in this paper we
will be interested only in SO(4n — 1,1) but we will maintain a certain
generality for the sake of clarity.

Thus we let G be a rank 1 group and K a maximal compact subgroup
which we assume has rank strictly less than the rank of G. We can find a
Cartan subalgebra a of g which splits a = a, @ a, where a, is one dimensional.
We exponentiate to obtain a Cartan subgroup which splits A = A’A, where
A'C K. Welet M denote the centralizer of A,. Then A4, is isomorphic to R.
We now give an explicit isomorphism. For SO (m, 1) there is a unique re-
stricted root which we denote by 7, Let Hea, be such that »,(H) = 1.
Then we define the element a, € A, corresponding to » € R by
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a, =exprH.
We have C(H, H) = 2m — 2 hence (H, H) = 1 where {, ) is the curvature
—1 metric and C is the Killing form.

Now let g. denote the complexification of g and a. the complexification
of a. We let P, denote the set of positive roots of g, which do not vanish
on p. Let ng = EaeP+CXa where for any ac P, X, is a fixed root vector.
Let n=n;Ng and N be the analytic subgroup of G corresponding to 1.
The well-known Iwasawa decomposition states that the map

n,a,k)—mnak, neNacA,kecK

gives a diffeomorphism of N X 4y X K with G. We denote by B the group
MA,N. '

We now construct a basis {X;: 5 =1,2, ---, m} for p. Let X, = H.
Let N,, N,, ---, N,, be root vectors for the root 7, chosen so that
[N;, 6(N;)] = 0,7+ j, and so that [N,, 6(N,)] = —2H where 6 is the Cartan
involution. We define X; in the orthogonal complement of a, in p (which
will be denoted by q) by

X, = %(Nj — O(N) .

Then the basis {X;:j = 1,2, ---, m} is an orthonormal basis for (v, (, ).
We define Y;ek for j = 1,2, ---, m by

Y, = %(N,. + 6(N))) .

Then N; = X; + Y,;and [X;, Y;] = — H. Moreover, all the vectors X, Y,, H
have the same length for C and are unit length for (, >. The above basis
for p will be used in all subsequent calculations with differential operators.

Now we construct the different principal series of G. They will be
parametrized by the various irreducible representations of M (which is
compact) and the real numbers. To an irreducible representation 7 of M
and a unitary character of A, defined by »—e"", A eR, we correspond a
representation of B = MA,N by ma,n— t(m)e*”. Now we construct an
irreducible (infinite-dimensional) unitary representation of G which we
denote 7,,. Let E. denote the Hilbert space of functions f:G — V. (the
space on which 7 acts) satisfying:

f(mg) = z(m)f(g) ,
fng) = f(g),

whose restrictions to K are square integrable for the Haar measure on K.
We realize the principal series representation 7. ; on the subspace E. ; of E.
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of funetions satisfying the additional condition:
fla,.9) = e f(g) .

We have defined the space on which 7. ; acts. 7. ,(g9) acts on an element f of
the space E. ; as follows:

T (9)f () = [fag)er#emmedton

Here o is one half the sum of the positive roots of gc. The inner product on
E.,is given by:

(1, 0 = | _(£0) g(k)).dk

where (,), denotes the inner product on V.. The family of representations
{m.:neR, 7€ 74 } constitute the unitary principal series of G. If we allow
» € C we obtain the general principal series 7. ,. We observe that ;| K =
ind¥z.

Having concluded our discussion of general representation theoretic
facts we now specialize to the Lorentz groups SO(4n — 1, 1). Here we have

{/cosh7 sinhr 0
A, = {|sinh7 coshr 0 |:reR
0 0 1

10
M={< ):xeSO(4n——2)l,
0x

’

and A’ is the subgroup of M for which X consists of 2 x 2 diagonal blocks
R#;),1<j=2n — 1, where
RO, - (c?s 0; —sin0j> '
sinf; cosd;

We will say 7€ G is a hyperbolic element if there exists g € G so that
g7gle A= AA and r, % 0. (We will write 7, 6,(7), « -+, 0,,(¥) for the
coordinates of gYg™'; since these parameters will always be the arguments
of a class-function there will be no ambiguity.) If TS G is a uniform,
torsion-free, discrete subgroup then every ¥ €I' which is not the identity
is hyperbolic.

Now we note that since we are dealing with a symmetric space of odd
dimension, the Cartan involution is orientation reversing. For hyperbolic
space the Cartan involution # which fixes the standard embedding of SO (n)
in SO(n, 1) is given by conjugation by the diagonal matrix ¢ with diagonal
entries —1,1, ---, 1. 6 acts on the representations of G according to

m’(g) = m(6(g)) .
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To compute the action of 4 on 7. ;, we note that the action is the same
as that of 4o Adg for g€ G. Now we make the following judicious choice
of inner automorphism. Let M’ be the normalizer of a, in K. Then M'/M
is a group of order 2, say {1, 6}. ¢ induces an automorphism of M (modulo
the group of inner automorphisms of M) hence a transformation of M. We
set 7’ = 8(7), for 7 € M. Now 6 has the advantage over 0 that it preserves
N and its action on 7, ; can be immediately found to be

Tl =T .
Since it is well-known, Wallach [27], page 254, that § induces an equivalence
between 7_,; and 7., _; we have also
Tl =T g
Note that because 6 centralizes K, 6 acts on Ind$ o by
fg) = f(0(9)) = flege) .

Now we want to apply the Frobenius reciprocity theorem to find out
which representations 7. ; contain ¢ = A !¢ when restricted to K.

[A g ;| K] = [A*™ ¢: Ind % 7]
= [A™'¢|M:T].
But A* '¢|M = AT ¢ DA™ P A 2.
Here ¢ denotes the standard representation of SO(4n — 1) and ¢ the
standard representation of SO(4n — 2). Since 7 is irreducible we must have
one of

T = A?_lgz ’
T =A""1¢g,
T =A""g .

We denote these representations by 7., z_, and 7z, respectively. By the
Plancherel theorem we may now decompose the 2n — 1 forms on hyperbolic
space as a sum of direct integrals

Ind§ A* g = SW e 2 D(T4, MANED Sm T 0(T_, M)AND S: o2 0(Ty M)AN
where p(z, \) is the Plancherel measure.

The results of the next section show that we can identify the first two
terms of the right-hand side with the co-closed forms and the third term
with the closed forms.

Our last computation of this section will be to compute Q. ,, the value
of the normalized Casimir operator on . ,, incase t =7, or v = 7_.
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LemMA 1.4,

Q. .=Q_ ,=2".

Proof. The following well-known formula for the value of the Casimir
operator Q" on 7., can be found in Arthur [1], Section 6. Let g be the
highest weight of 7 and let o, be one half the sum of the positive roots of
M. Then

Q. = Ot + O, £+ 0x) — C(0, 0) — 2°C(1y, 7)

If y¢, denotes the highest weight of A*'¢ and y_ that of A* '@ we

have

po =0, +0,+ o+ + 0y + 0,5, ,

po=0,+0,+ oo + Oppy — 0,5, .
We have also

Ow=(2n —2)0, + 2n — 3)0, + -+ + Op,_, ,
0=0@Cn—Lr,+ 2n —2)0, + - + 20,, , + 0,,_, .

Let ¢ denote either f¢, or /¢ and 7 denote either v, or z_ in what follows.
Noting the relation between Q. , and Q. , we have

Q.. =2+ 00, 0) = ———=Clft + 0wy 4 + 0) -

2n — 2 2n

But C(p, p) — C(¢t + 0y, 1t + Py) = 0 and the result follows.

4. Harmonic analysis of ['(F)

Given a C~ function of compact support on G we define its Fourier trans-
form f as a function on G, the unitary dual of G, as follows. Let teG.
Then we can associate to = a representation of the convolution algebra of
compactly supported functions on G, also denoted by =, by defining

=) = | Fomadg .
It is not difficult to show, see Harish-Chandra [14], that if fis C~ and of
compact support on G then n(f) is trace class. Then f(x) is defined by

7 () = Tracen(f) .

Harish-Chandra [14] proved that there is a locally L' function 6, defined
almost everywhere on G and analytic on the regular elements such that

Fa =\ f@0-0dg -

We will sometimes denote f(x) by 6.(f). We can extend the Fourier
transform to a larger space of functions, those in the Schwartz space S(G)
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which is defined in Chapter 2. This is of interest to us because @, is in S(G).
Now we can state the main theorem of this section.

THEOREM 1.1. The Fourtier transform of &, which we denote h, s given
by:
h(ze, M) = ne ¥t
h(t_, \) = —ne ¥t
h(z,N) =0 forallc=#r7,,7_.
In order to prove this theorem we need some more machinery. We

begin by defining the matrix blocks ¢; of unitary representations 7. We
recall the isomorphism in the Frobenius reciprocity theorem

F
Hom, (7| K, 0) — Hom,/(rx, ind% o) .

& is defined as follows. Let P,e Hom, (x| K, ¢). Then

JP,=Pr(9™") .
We define the matrix block of 7 corresponding to P,, to be denoted by &,
by

¢; = P,(g™)P, .
We note that ¢ € L,(G).

If D:T(E)—T(F) is a G-map then D acts on Hom,(z, ind% o) for each

7 by composition; that is, if ® e Hom,(x, ind%o) then D® = Do® ¢
Hom, (7, ind% ¢). We have then the following proposition suggested to the
author by G. Zuckerman (the proof is now obvious):

PrOPOSITION 1.1. If 7| K contains o exactly once then there is a scalar
[t so that

D¢ = pgs .
Remark. Let v be a vector orthogonal to the kernel of P, in the space

of 7. Then P,z(¢g")v € T'(E). Then Proposition 1.1 implies that there exists
a scalar /¢ independent of v so that

DP,r(g™ v = pPa(g v .

Hence (if we choose a basis for the orthogonal complement of ker P, in the
space of 7) we may consider ¢: as a matrix with columns made up from
eigensections of D with all columns corresponding to the same eigenvalue
pt. With this remark we state two corollaries.

COROLLARY 1. Suppose & is an invariant integral operator on T'(E)
with representation function €. Then the columns of ¢ are simultaneous
eigensections for & corresponding to the eigenvalue ft. Hence
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|, o ade(0)dan = 133l -
COROLLARY 2. Suppose D is an invariant differential operator on
L(E), then the columns of ¢= are simultaneous eigensections of D.
Let ¢ = trace ¢: where the trace is taken in End V,.

LeEMMA 1.5.
dim V)| 2(s)$3(0)dg = 15301 .

Proof. This result follows from Corollary 1 by substituting g, = 1,
taking the trace and using the orthogonality relations for the matrix
elements of o.

Noting that ¢3(1) = dim V,, we have

COROLLARY.

\e:00dg = 1.
We will see shortly (Lemma 1.7) that ¢ = 6.(¢).
LeEMMA 1.6. Suppose n|K =)~ o, and f € S(G); then

0.(5) = Lo\, £l -

Proof. Compute trace n(f) relative a K-finite basis.
LEMMA 1.7. Suppose f € S(G) and f = trace f with f € L,(G); then

0.0f) = | Fg 53 (0)dg -

Proof. The lemma follows immediately from the orthogonality of
matrix elements of two distincet irreducible representations of K.
R COROLLARY 1. If f s as above and w|K does not contain o then
f(@) = 0.

COROLLARY 2. If 7| K contains o exactly once then

ex 35 = 0(2)g; -
These results greatly simplify the problem of computing the Fourier

transform of @,. We first note that Corollary 1 combined with the state-
ments near the end of Section 3 imply

hi(t,\) =0 unless c=7,,7_,7,.

Since 7., ;| K, 7._;| K and 7., ;| K contain ¢ = A* ¢ exactly once, we
may apply Corollary 2 to conclude
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(a) dt*¢2r+'l = hy(z,, )\')952”"1 ’
(b) dt*égkf"l = ht(f—’ )")52?—’2 ’
(e) 5t*5”t1’1 = h,(z,, 7\')95:”'1 .

Finally since @, is a representation function for the integral operator
Ae™** = Ae " all we have to do is calculate the eigenvalue of A acting on
the matrix block ¢,;+*. In fact to prove Theorem 1.1 it is necessary and
sufficient that we show

Ag;Zr_[_,Z — )\Jéﬁr.pl ,
A" =0 .
We first prove that h,(z,, ) = 0.
LEMMA 1.8. |
Ag;rt =0,

Proof. In what follows we abbreviate 7.2 to . Consider the trans-
form 7 of @2 by 6. Since ¢% € Hom(x, ind% o) we have % ¢ Hom, (7?, ind$ o).
But 7’ = 7 and Hom, (7, ind% o) is one dimensional; hence, there exists ¢ € C
so that

gileat) = pgi(x) .
Evaluating at © =1 we find ¢ = 1. But since 4 and ¢ anti-commute we
have the result.

We now use a formula of Harish-Chandra (see Warner [29], p. 42), the
Eisenstein integral formula. For the principal series representation 7 = =7, ,,
T = 7. we have ¢3(x) = E’;(q}r,: x) = Ey(: x7Y),

By 2) = || oyt metrotoneang;

Here +. is obtained as follows. Since ¢ appears once in the restriction
of = to K, ~ must appear once in the restriction of ¢ to M.

Choose a copy of V. in V, and let + = +.(1) € Hom,(V,, V,) be the
projection of V, onto V.. We extend +r. to a map G — End V, by requiring

Vo(nak) = (L)o(k) .
We would like to calculate the eigenvalue y so that
AoE}(a/r,: x) = pE‘z(@k,: x) .

Since we are interested only in calculating the eigenvalue ¢ it is enough to
calculate Ao E(4r.: 27 ],—,.
Let us denote the integrand +r.(x)e!**ro*@7=) by F(x). Then
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AcE(pio) = X0 XF® AiS (k) F(k~'z)dk
K

S " Ao F(k exp (—tX;) o a)dk ! )

t=0

a
dt
- di S " Ao F(k exp (—t Xkl 'a")dk
a
dt

S o) ", A;F(exp (—tX;)k 'z

=0 .

Putting x = 1 we obtain
Ao By 1) = _S o) " A;F(exp(—tX;) o 1)o(k 1)dk|
t=0
Now we choose for X; the elements of the basis for p constructed in

Section 3. We note

F(exp(—tN;)~1) = F(1) for all ¢;
hence

d = =
%SKM) A;F(exp(—tN;) o 1)o(k™)dk } o

Noting X; = N; — Y;, we obtain

d d

L7 A Flexp(~ tX)ol)‘:O:W jzzAjF(eXpthOI)ltzo
Hence
Ao By 1) = — S o)A, HF Vo (k)dk
+_(S o) ", A;F (L exptY)o(k”l)dk>
Now

SKa(k)A,.F(l cexptY,)o(k)dk = SKa(k)A,-F(l)a(exp LYk
- SKa(k exp t YA, FVo(k)dk .
Taking the derivative at ¢ = 0 we obtain
Ao Bypl) = — SKa(k)AIHF(l)o(k‘l)dlc
S o) S0, o(Y ) A;F (Vo) .

Now the evaluation of /¢ is easy. We begin by computing the second
integral (the zero order part of A acting on E;,). We have from general Lie
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theory, Y; = [H, X;], = 2,8, ---, m. Hence 0(Y;) = Ad[H, X;]. Now we
define for each pair of vector u, v € p a derivation of the full tensor algebra
g, as follows. If wep then
uNAv-w=(u, wv— (v, wWHu .
Then u A v is the unique extension to J,.
LEMMA 1.9. As derivations of I, we have
Ad[H, X;]= —-HANX;, 1=2,8,---,m
Proof. Itis enough to check that we have equality on p. This follows
easily from the bracket relations
[Xj’ ch] =0 ’
[Xj: Yk] = —3ikH .
Let us denote by w; the dual of X;. We have

LEMMA 1.10. For the curvature —1 metric
¥ 0 0(Y)Apr = i(2n — 1)y .
Proof.
x Y0 0(Y)Apr = — 250 (H A Xps(@)y
To compute this last composition we construct - more explicitly. Let
{vek =1,2, -+, N} be a basis for the +¢ eigenspace of the induced Hodge
star % on A*'q*. Then
P = Ef Y @V

Putting S = 7" H A X;°s(w;), we have

Sy =Y 0 Sy, @vr .
We claim that for any form ve A?q* we have Sy = (dn — 2 — p)r, A v.
This follows immediately from the observation that if v = @; A w;, A ---
A @;, then
(ro A Y if j,# 7 any J

H Xj =
(H A X5 10 if some j,=17.

To complete the proof of the lemma we have only to note that since 7,
has unit length for the curvature —1 metric we have
x(ry A V) = %y,
Hence
—* Sy, = 1(2n — Dy .
Now we calculate the first-order piece of A, thatis, x(—H @ A,) where
A, = s(r,). Once again we work with the curvature —1 metric. Then
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—HF1) = — % Fexp tH);
dt =0
- _ _d_ (i2+p(Ht
b (e )
= —(in + p(H))y .

t=0

Applying =s(r,) we obtain

—*x(HQAY)F(1) = —(in + o(H))*1y A 4
= —(in + o(H)) 4
= —i(in + po(H))p
= (M — ip(H))y .
Finally adding the two contributions and noting o(H) = 2n — 1 we find

L=
Thus
Agrred = \Gre+
and consequently
Aqur_,z — —7\»555""2
and the theorem is proved.

We are now ready to prove a theorem which implies the Riemann
hypothesis for Z (see Theorem 3.2). We thank the referee for correcting
our original argument; the main part of the following proof was suggested
by the referee.

THEOREM 1.2. Let + be an irreducible unitary representation of
G = 80(4n — 1, 1) occurring in the decomposition of LAT\G) which contri-
butes to the coclosed 2n — 1 forms on I'\G/K but which is not closed. Then
there exists M € R so that « = ey 2 OF A = T,

Proof. Let ® be a non-zero coclosed 2n — 1 form satisfying Aw = po.
® corresponds to a mapping f:G— V, which is K equivariant; that is,
flgk) = o(k™V)f(g). Set (g, x) = SKf(gk“xk)dk. Choose geG so that
Sf(g) # 0. Then for that choice of g we define p(x) = h(g, x). @ has the pro-
perties that o(1) # 0, xdp = pp, p(k™'x) = o(k ")p(x) and p(xk) = o(k™)p(x).
Consequently @ can be expressed in terms of the Eisenstein integrals
E,(¢.,: %), B,(y._: x) or E,(4.:x) for some appropriate u, v, weC. But we
have seen (Lemma 1.8) that AF, is zero when w is real. Since AE, is a
holomorphic function of w it must be identically zero. Hence if 1 # 0 then
@ can be expressed in terms of E,(v.,: ) and E,(y._: %) (if @ is closed then
it does not contribute to Tr Ae**). But we have seen that the value of the
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normalized Casimir operator on each of these two representations is w’.
But by Kuga’s lemma we have Aw = 1w, consequently u? is positive and u
is real. We have shown then that if + contributes to the coclosed 2n — 1
forms then @ gives rise to an element of Homg(vy, 7. ;). Hence either
Y =T, 2 OF = T, )

Chapter 11
1. The Selberg trace formula and the calculation of Tr Ade™**

Suppose that E is a homogeneous vector bundle over G/K defined by
the isotropy representation ¢: K — V,. Let & be an invariant integral
operator on I'(E). Then the kernel of £ will be an element of L*G x G) &
End V,, that is, an endomorphism valued function on G X G. As explained
in Chapter I, £ has a representation function ¢: G — End V,and a local trace
¢ = tracee.

We shall require one more condition on our integral operator &: that it
anti-commute with orientation reversing isometrics of G/K. In terms of e,
the kernel, this says for v orientation reversing

e(gy, vg,) = —e(V7'gy, gs) -
In this case we say e is an odd kernel. (We must assume that orientation
reversing isometrics may also act on I'(E), a hypothesis satisfied in practice.)
In this case we have (1) = 0 and ¢(1) = 0; consequently there will be no
“identity contribution” to the trace formula.

Now given an invariant integral operator & on sections of a homogeneous
bundle over G/K satisfying certain growth conditions, we get an induced
integral operator &* on the induced locally homogeneous bundle over T\G/K.
If e(g,, g.) is the kernel of £ then the kernel of &* will be given by

20670, ¢) = 2. 8(0:7gy) .
We shall restrict ourselves to integral operators ¢ so that &% is of trace class
and

Tr& = Epggfi(g‘lw)dg ,

where 9 is a fundamental domain for I' in ¢. (Here we assume Haar measure
on G is normalized by the condition that vol K = 1 and the induced measure
on G/K agrees with that inherited from the metric of curvature —1.) If ¢
satisfies the above conditions we will say that the function & is admissible.

Following the now well-worn path of Selberg on pages 63 to 66 of his
famous paper [22], denoting by {¥} — 1 the non-identity conjugacy classes,
we obtain (for an odd admissible kernel &)
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Tre' =5, volT\G)| 70y .

T

Now it is easy to see that though each of the two factors on the right-
hand side depend on the normalization of the Haar measure of G, their
product does not; hence we may normalize the Haar measure of G, in any
convenient way. Also we may replace 7 in the above formula by any con-
jugate of 7 in G, in particular by a conjugate a, ¢ A. We will assume this
has been done throughout this section. Thus we obtain the parameters of
Chapter I, Section 3; 7, 6,(7), 0,(7), -+ -, 0,,_.(¥). We may assume that », is
positive.

As explained we can assume A C G, and obtain

volTAG)| | etg oy = volCAA|  #(s-a0)dg .
T

Once again we can give A any convenient measure. We give it the product
measure of Lebesgue measure on A, and the measure on A’ so that
vol(A’) = 1. We find then that vol(I',\4) = 7r,. where v* generates T,.

But there is a simple formula relating ¢(g'a,;9)dg and the Fourier
transform h of €. We write a, = a, exp ;,\;I e A’A. We also put A, =
II..,(e”* — e7*/*) where « runs over the positive non-compact roots of g
with respect to a.. Then we have, see Wallach [28], pages 177, 178,

SA\GeN(g“arg)dg =1y L S_mh(z' Ne it tro(a))dn

27r P( T)
and we obtain the trace formula
Tret — }‘_‘,m . (r )S Iz, Ne tr o(@)dn .
p @y) J—

Now we apply the trace formula to Tr Ae~**. We calculated the Fourier
transform of @, in the previous chapter and found
hy(Toy N) = Ne™H
h(t_, \) = —ne ¥,
h(z,n) =0 for 7#7,,7_.

We use the following formulas (for formula (3) see Atiyah-Singer [4], page
577):

(1) t = grotitg/ ,
Aay) =TI s — 315
1 * —12t i 27'[,'?,?" 2
2 _S 7\:6 A tedrd)\' — e re/4t ;
(2) 27 ) (4mct)™®

(38) chz, —chz_ = ¢*"'2*'gin§,sinf, ---sinb,,_, .
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Ia what follows we abbreviate 6,(v) by 6; and p;(v) by p,. Also we put
lpe] = | pes] and | p*| = ().
THEOREM 2.1.
Tr Ae™* = 2142 121q Emr log| ¢ ‘Z(Sin b, sinb) l?g]ylz ¢ o
[ — P s — faa (4T
From Theorem 1.2 we also have
Trde™ =35, (Nepz; — Ne_y e s

where N, ;; is the multiplicity with which x., ;. occurs in L*T\G). The
equality of these two expressions is a relation between eigenvalues of the
Laplacian, the \,’s and the eigenvalues of the element v eT, the p,’s. We
caution the reader not to miss the point—there is a vast difference between
the y¢;’s and the \;’s.

It follows from Theorem 2.1 that there exist positive constants a, b, ¢
so that |Tr Ae ™| < ce™ /D),

Finally we record the general trace formula which we have obtained
for kernels on SO (4n — 1, 1) whose Fourier transforms satisfy:*

(1) h(ty, M) = —h(z_, N) = h(z_, —N),
(2) h(T,)\l)ZO, TF Ty To,
(3) h(z, \) has a holomorphic extension to the strip &, where

Fo={N=7n+1weC:|y|<2n — 1},

(4) h(z, \) has a continuous extension F, and satisfies, for all [ and m,

supir, (1 + [\

di;—h(z',??—k 7:»)‘ < oo

Then abbreviating i(z,, \) to h(\) we have

[

g2n—1j2n-1 log | p#* *(sin 6, -+ - sin6,,_,) Sm i1
. L) — h(n) e dn
Expo’my (N) Py E”’r [ty — (P oo e | Money — Mo )

where m; = N, ,; — N._,.

2. Some estimates

Up to this point we have not justified the application of the Selberg
trace formula to Ae ' and in fact we shall need to apply the Selberg trace
formula to a much less rapidly decreasing kernel in Chapter III. Also we
have not shown that @, and @, are Schwartz functions on G. We now deal
with these points.

* The admissibility of such kernels will be proved in Section 2.
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We begin by defining the Schwartz spaces $(G) and S(G). For z in G
define

E(x) = S et HEN
K

The geodesic distance d on G/K lifts to a K bi-invariant function on G

o(g) = d(1, g)

0(gi'g,) = d(g,, G5) -

Now we define a collection of semi-norms on C=(G) as follows. Let D, be a
left-invariant differential operator on G, D, a right-invariant differential
operator on G and s€R. Then we define a semi-norm || |[5,5,, by

_ 1+ @)
[ f 1o,y = SUD,cq| DiD,f ()] Em

Then §(G) = {f € C=(@):||fllp,p,, < o} for all D,, D, s. For any vector
space V we define S(G, V), the Schwartz space of V valued functions on G,
by

3G, V)=G)RV.

Now in our case we can regard G as a collection of disjoint copies of
the real line. $(G) will be just the direct sum of the usual Schwartz spaces
of each line.

In his thesis [1], J. Arthur proves that the Fourier transform gives an
isomorphism from &(@) to S(G'); hence, we get an induced transformation
of the topological duals, $(G) to $'(G). The space §'(G) will be called the
space of tempered distribution on G. We have inclusions

S(G) C LA(G) C&'(G)
hence
G, VY LXG, V) &G, V).

Now Gaffney [11] has shown that for any complete Riemannian mani-
fold, e7** is a bounded operator on the square integrable p-forms. Hence it
defines a tempered distribution and we may take its Fourier transform as
a tempered distribution. But since this operator is just ¢ *° where C is the
Casimir operator, the value of the Fourier transform of &, at a representa-
tion 7 is just ¢ %= where C. is the value of C on 7. Since we are assuming
7w contributes to the forms, we have C. = 0. Hence the Fourier transform
of ¢, is a Schwartz function; hence &, € (G, V). But by definition §(G, V)
is stable for operators of the form X,® L, where X, is a left-invariant
vector field on G and L;c End V. Hencead, = Ac¢,isalsoin §(G, V). From
this it follows immediately that @, € S(@).
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We now attack the problem of showing @, is an admissible function
(see Section 1). To do this we give a whole class of admissible functions,
of which @, is a member, namely the L' Schwartz space of ¢ bi-invariant
functions CY(G, ) which we now define.

For any left-invariant differential operator D and any integer » = 0 we
define the semi-norm vy, , on L,(G) by

_ (L + o)
Vp,.(f) = sup,.q|| Df (@)l E@)
We now define
CYG, 0) = {f € L,(G): vp,,(f) < oo for all D, r}.
PROPOSITION 2.1. All functions in CY(G, o) are admaissible.

Proof. This result is standard. A proof may be found in the Rutgers
doctoral thesis of R. Miatello written under the direction of N. Wallach.

The rest of this chapter is concerned with giving sufficient conditions
for a function i(z, A) to be the Fourier transform of an element of C'(G, o).
To do this we need a new space. Let ¥, be the strip in the complex plane
given by

Fo={=7n+weC:|v]<2n — 1}
and let ¥, be the closure of ¥, in C. Let Z°(¥,) be the space of continuous
functions
h: M x Fo—>C

such that:

(a) h(z, \) is holomorphic on &, for all 7€ M and satisfies the estimate
(for all I, m e N),

SuPzefr‘p(l + [N E)

am . .
Wh(f,ﬂ + )| <eo,
(b) h(z,\) = 0 unless ¢ = 7, or z_ and
(1) h(f+’ )") = h(f—’ —)\’) ’
(i) (i, N) = —h(t_, N).
Let »(z,, M)AN = p(t_, N)dn be the Plancherel measure. p(z,, \) =

p(T_, )) is a polynomial of degree 4n — 2 in \: see Wallach [27], page 294.
We then have the following theorem of Paley-Wiener type.

THEOREM 2.2. If h(\) € Z°%(F,) then the “wave-packet”
o@ = |" B b, vpe, van + |7 By i, Mt M
18 in CY@).
Proof. This theorem follows from the results of the Rutgers doctoral
thesis of 0. Campolli written under the direction of N. Wallach. The point
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is that Theorem 2.8.3 of this thesis applies because ) is the value 7, ;(z') of
an operator 2z’ from the center of the universal enveloping algebra of the
Lie algebra of SO(4n, C). In fact 2’ = (—1)"2 where z is the operator
corresponding to the Weyl group invariant 7(z) = 2,2, - - - #,, under the
Harish-Chandra isomorphism v. Here {x,, «,, - -+, 2.} is the basis for the Lie
algebra of the maximal torus SO (4n, C) which is dual to {r, 20, +- -, 10,,_.}.
Letting £, be the highest weight of =, we have, according to a well-known
formula (see for example Arthur [1], Section 6, Lemma 7),

7rr+,l(z) = <'7(Z), e i)\/"o>
= (L + * ¢ Loy — [y — TNT)
= (@ —INLEy  + v Tony — )
= —i\ H;‘zl (@, )
= A1)t
= (=1)"».
Hence 7. ;(2) = (—1)"\. Similarly z._(2) = (—=1)"**) and 7. (z) = 0.

In our original proof of Theorem 2.2 we explicitly computed the
Eisenstein integrals Ej(y.,:®) and E(y._:«) and obtained the following
result. Let v, ._, ¥, € Hom,(V,, V,) be the projections on the spaces of
7., T_and 7, respectively. Let m:a,— A, be the exponential map and define

Tir) = Ex("l'r+: 775(7')) ’

8ir) = Bye_: n(r)) .
Then T, and S; determine the respective Eisenstein integrals. Define a
polynomial ¢,,(\) by

I o £ (KB + A\
@ (V) ok + 1)k + 1)

Then
Tyr) = ax(r)¥e, + bV + (1),

Si(r) = bV, + @)Y + )P,
with

a;(r) = ( :}7\1) {(M sinh 7 + 2n cosh7) < P %—)2n CcosS A

2n+1
+ sinh®* 7 ( > cos M’} ,

bi(r) = ETrACo) {(m sinh 7 + 2n cosh 7) < sinlh - %)m COS A

2n+1
+ sinh®# < > cos M*} ,

sinh» dr

sinh» dr
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2n
c(r) = (=" < ,1 i) COSNT .
q,,(\) \sinh# d»

With these explicit formulas the Paley-Wiener theorem is immediate.
We thank G. Zuckerman who pointed out to us the fact that 7. ((—1)"z)=»x

Chapter 111
The Selberg zeta function of the second kind

We define Z(s), the Selberg zeta function of the second kind, by an
Euler product convergent for Re s sufficiently large. Let 3, be the character
on the maximal torus of SO(4n — 2) which is the maximal weight of A%~
and B_ that of A*» ', Thus

B+(01, Opy +y Oguy) = gil01+ 0+ +02n—2+'9zn—1)
B_(ﬁl’ Oy ==+, 2'”_1) = gi01 0t tbyy s 02n—1) .
Then define:
> 1 — g gg—2mg o an—3 (f o Bn—2 90 o —2s
2s) = TLo os T, T — ;‘ﬁ - gzw g:z: .
Here & is the subgroup of the Weyl group of SO(4n — 2) consisting of
those elements that do not permute the 6,’s but make an even number of
sign changes, & is the set of primitive I' conjugacy classes, and the g¢,’s and
B, B_ are evaluated at a,. In Propcsition 3.1 we will see that f, ;2 22,
2%, 1< j=2n — 1, are the eigenvalues of the Poincaré map P(7); the 6,’s
are the negatives of the rotation angles of R(7), the holonomy element
associated to 7; and g# = N(7) = ¢, in case we think of 7 as a closed
geodesic. Thus the above definition makes sense formally in great genera-
lity. Note that ¥ may be diagonalized over the complex numbers as the
diagonal matrix with diagonal entries g2, 3%, -+, &2 . (Note that |z, >1
for1<j=<2n—1.) Incase I =S0(3, 1) = SL(2, C)/=1I we have

~ _ 1 — —anﬂ—2n2621ﬂ o

Z(S) - Hg’nnl,ngg11 _ lit—znllu—z'@e—mz? I#I :
We now calculate the logarithmic derivative of Z.
Zs) _ [E )N log | pPp e e g g 0 B | ]
Z(s) 768 bt P bt ni=1 — UMATER e s [T M2 g o B | 2] 7R

_ E E w log|plPprtmpm. . o flog Prin—3 1 Mn—2 g o IB_|#|_2]
0€S b P Lt =1 1 — #1_2”1‘&1_2”2 .. #2;314n—3/,¢—2”4n—30' °of5_ | #1_28 :

Expanding the denominator in an infinite geometric series and observing
that {Y*: ke N, 7 ¢ P} gives all the elements of ', we obtain:
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%(:)) = [Eweszr E::Fl log | (0¥ [-ftr 2+« + pugs2henofis Bansap o 8] pr| >
= 2 ues or 2o JOg | pF PR e e sl gy 0 B g _28}
= 2Ty E:FI log|p* Psin, - - - sin 6, _, pi 2"z

SRR vt i L T N 7]

THEOREM 3.1.

Swe‘*zt Trdgedi= LZEN=149) - pees
0 2 Z(en — 1+ s)

Proof. Recall the expression we had derived for TrAe* from the
Selberg trace formula:

* (2 oF —— 2 ,—(loglpl2)2/4t
Trde ™ = gy logm_ll 2sm A _1s’2m Oyn_y 2T loglpltl : e ”3/2
Pl — g P e — e e — [P (4rE)
We will expand the denominator of our expression for Tr Ae according to
the infinite geometric series

Tr Ae t* = n—142n—14 Z:W’ log | #* I*sin 4, sin 0, - - - sin 6, , 27 log | Jad &
CpPer L — Pl — P L — g

e~ loslnl®)2/4t
Xo—m——
(47t)*?

Before we expand the denominator let us observe the formula

Soo s 6—r2/4t t _ e—sr
0 (4mt)*? 4Ty

Applying this to our expression for Tr Ae ** we obtain

Swe_szt TrAe -t dt = 22n—1i2n—1iz log | F‘* |2 sin 0, sin Gy -~ sin Oons
0 g T e[ — g ]
X gmeloslm®

But

e—s log|p}2 — |#I—2s ,

- . iz Coa
[roteaasr s e P
X |l
Now we expand the denominator (note || > 1) to obtain
= 2t L S log |t Fsin g, - sin o
e gt e

If we let ¥(s) = Sme‘“‘ Tr Ae™**dt, then from our last line we see
0
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W(s — 2m + 1) = %_Z;((:)) .

Thus

W(s) = L 7 Z(2'n—1—rs)
2 Zien — 1 + s)
Now 7(s) is an integral transform of TrAe ** and we have just seen that
Z'en — 1+ 8)/Z2n — 1 + s) isalso. We just have to relate the two trans-
forms: to do this all we have to do is observe:

Sma_se—mda _ its—uzl-\(_]i) , Res<l1.
0 2 2
Now we are almost done.
1 _
_ ts 1/2 T A ta dt
70) I‘< 1+ s )S Tae
2

= 1 - Sm 2 (Swo“e‘”ztdo*> TrAedt, Res<1.

interchanging

< N + S) F( — s)gwa‘*q:e‘"% Tr Ae~* dt)do

syl

ml»—a

Res*> —a, Res<1.
At s = 0 since lim, .. Z(z) = 1, I'(1/2) = VT we obtain:

7(0) = 2 log Z(2n — 1) (where logl = 0).
V(%%

Note. In this proof we were guided by the example of Ray-Singer [21].
We now present a most beautiful theorem which we owe to Takuro Shintani.

THEOREM. Z satisfies the functional equation

Z(s)Z(4n — 2 — 5) = =10,

Proof. Now Z(s) is defined to the right of some half line. We begin by
constructing an analytic continuation of Z'(s)/Z(s). First note that since T
is discrete there exists a positive constant ¢, such that log| ;| > ¢, for all
vel, v+ 1 where p, is an eigenvalue of 7 such that |z, | > 1. Take an odd
C= function ¢(¢) on R which satisfies
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1]t >¢
t) =
o0 = {42
Set
{&@HMZSW¢@(mWﬂWh=ﬁm@HM
H(z,x) =0 T #E Ty, T .
Here s is a complex parameter.

Note. We are applying the trace formula to the one parameter family
of functions f, on G with Fourier transform H,(z, \), justified by Theorem
2.2 for Re s sufficiently large.

Now we apply the general trace formula to obtain (note the 1/27
disappears in the Fourier inversion formula):

_ oa—1/2—1 log|p*?sin6, - -- sinb,,_, _, .
D H (T, Ny) = 20ty 1 L e *log | |
* T | t— ﬂl_l Iz e |F‘2n—1 — Mon—1 |2

_Z'(en—1+3s)
Z(en — 1 + s)

Thus:

Z@n =148 _ s g\
Z(2n — 1 + s) !

T, ey
S—1 j 90

1 So ’ 25+42,)t

-, t)estidnige |
E] s + ?;)\:_, —Wg)()

This last expression is obtained by integrating the expression for H,(z,, \;)

by parts. All this is valid for Res sufficiently large. By integrating by

parts k times we obtain an expression of the form

. 1 « (k) t 6(—23+i1]~)tdt
Z'en—1+s) _ 2 (s — ih,-)kso¢ ®)

Z(2n — 1+ s) ; 0 .
J

Now the sequence of numbers (A% j =1, 2, ---} is just the eigenvalues of
the Laplacian on coclosed 2n — 1 forms as we have seen. But there is a
general formula of Gaffney [10] (valid for any compact Riemannian mani-
fold) giving the asymptotic behavior of the j*" eigenvalue of the Laplacian.
From this we deduce

i o~ eg?int where ¢ is a constant.
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Thus when k is sufficiently large the above series converge for all s. We
have thus obtained an analytic continuation of

Z'(em — 1+ s)

Zien — 1+ s)

Next we note from * (by multiplying the right-hand side by s — i\;
and taking the limit as s—i\;) that Z(2n — 1 + 8)/Z(2n — 1 + s) has a
simple pole at s = i\; with residue m; and (by multiplying by (s + i),)) a
simple pole at s = —i\; with residue —m; where m; is the multiplicity with
which 7., ; — 7._,, enters into the decomposition of LXT\SO(4n — 1, 1)).
Thus Z satisfies the Riemann hypothesis and in fact has no zeroes off its
critical line Res = 2n — 1. We see then that

Z'em —1+s)  Z'(en—1—3s)

— — = R(s)
Z2en — 1+ 8) Z@2n —1 —8)

is an odd entire function of s. Now let h(s) be an odd function which in the
strip {s:|Res < 2n — 1 + ¢, ¢ > 0} decreases sufficiently rapidly as Im s—co.
Consider the contour integral

2me JL Zi2n — 1+ 8)

where L is the following contour

Im

Ti

Re dn —2<o<4n — 2 +e¢.

—_0 ag

As T goes to infinity the above integral approaches:

——I—TSiWﬂh(s)R(s)ds + 2—1—.8"“‘” hs) Z2n =1+ 8) 4
27T 4 27T

o=ico Zen — 1 + s)

Now we substitute for Z’(2n — 1 + 5)/Z(2n — 1 + s) to find that the contour
integral is given by:

foo—
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2n—1,2n—1
22n T g

log|p* ’sind, - - - sin 6,,_, ot
2o : L |pe 7= h(s)ds
Uy — e sy — ] S— ,

+ —I—TS—im—ah(s)R(s)ds .
27T Jic—0a

27t

o—ioo

On the other hand the residue theorem implies that the integral # is equal
to (as T'— o0) 23 m;h(ix;). But now we observe that

o+ico 100
LA e neds = LT erenetnyan
27T, Jo—ico 2T, J—iw
by moving the contour.
Now we make the change of variable . = 4\ to obtain

1 S‘” 1198 12 (i)
2T J—o

But now applying the Selberg trace formula for » — h(s)\) we see

S;if_ah(s)R(s)ds ~0.

g

Since this equality holds for odd holomorphic A(s) satisfying suitable growth
conditions we conclude R(s) = 0.
We obtain then
Z'em —1+s) _ Z'(2n—1—5)
Zn —1 + 9) Zien —1—3)

Z(s)Z(4n — 2 — s) = constant. The constant is evaluated by noting it is
just (Z(2n — 1)) This proves the theorem.

Remark. If one assumes the functional equation for Z then applying
the residue theorem to the contour integral # reproduces the trace formula
for odd functions k(7). It is for this reason that we call Z the Selberg zeta
function of the second kind. The original Selberg zeta function has the
same property for even functions. From Theorem 31 we have

Z:’(2fn —1+8) _ g Y log (p¢*)*sin#, - - - sinf,, , 1 )

Zizn — 1 + ) B e e N O
To identify this formula with the formula stated in the introduction, we
give some notation and prove a proposition relating the group theory to
geometry.

To each 7 e T" we make correspond a smoothly closed geodesic in I'\G/K
as follows. 7 leaves fixed a unique geodesic in G/K denoted a: (— o, o) —
G/K which we call the axis of I'. We assume « is parametrized by arc length
sand let T denote the tangent vector field to . Let z, = «(0) and z, = 7x,.
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We have z, = a(L). The closed segment of @ from x, to x, projects to the
smoothly closed geodesic also denoted 7 on I'\G/K corresponding to 7. We
denote the quotient map G/K — I'\G/K by « and parallel translation along «
from x to 2’ by 7, ... We denote 7(x,) by ¥, and let ¥ = p(7)k(Y) be the polar
decomposition of 7.

Proposition 8.1. Under the above correspondence between elements in
the discrete group and smoothly closed geodesics,

(1) L) = log M(7)

(2) The ergenvalues of R(Y) are

) {e_iol, e‘01’ cee, e“wzn—-x, ewzn—l} .
(38) The eigenvalues of P(Y) are {#£, 1, p5° F;* 1 < j < 2n — 1} and
det]]‘ - P(7>]1/2 = I)ul - )ul_1|2 cee ‘#Zn—l - #5;—1'2 .

Proof. We take for our model of hyperbolic space the manifold H,,_,

defined by

H, , = {(t, Xy ooy La ) ER™E — ) — oo —2f, , =1,¢> O}

with the Riemannian metric induced from the Minkowski metric on R*.
Choose g, € G so that g, maps the axis of ¥ to the great hyperbola H, defined
by

H ={t, 2,0, :--,00eR":t* —ai =1,t > 0}

with ¢,(0) = x,. We further refine our choice of g, to obtain g,7g;* € A.
To calculate R(Y) we note that R(7) is given by

R(Y) = dr, o dY ™ o7, , 0 dT5t

’

Now consider the polar decomposition ¥ = p’k’ relative the maximal
compact subgroup of G leaving x, fixed. p’ is a transvection; it leaves
invariant a unique geodesic 8 through , and dp’ induces parallel translation
along 8. But B must contain the unique geodesic segment joining x, and
p’'x, because p’'x, € 8. However 7z, = p'x, and consequently &« = 8. Since
dp’ induces parallel translation along B8 it preserves the tangent direction
to B; consequently Adk’ leaves fixed the tangent direction to B at wx,.
Substituting in the above expression for R(Y) and noting dp’| T(H,,_,, x,) =
T40s, W€ Obtain

R(7) = dr, o Adk' ' odn;) .

But the angles 6,(7), 0,(7), - -, 0,,_,(Y) are obtained by conjugating Y by g G
so that gvg™' € A; see Chapter II, Section 1. Since g,Yg;' € A we can calculate
~ the rotation angles of 7 from the rotation angles of g,k'g;!, but these latter
angles are the negatives of the rotation angles of R(7) by the above formula.
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This proves (2).

To prove (1) and (3) we may again replace ¥ by g,7g;'; that is, we may
assume Y€ A. But then p(v) =e%. L(Y) is just the distance d(e, 7e,)
between ¢, =(1,0,---,0) and 7v-(1,0, ---,0) = (coshr, sinhr, 0, ---, 0).
But the Riemannian distance between two vectors x, y € H,, , is just the
hyperbolic angle between them,

d(z, y) = cosh™zx, ¥)
where {x, ) is the inner product of x and y in the Minkowski space. Thus

L(7) = cosh™*(cosh 7)
=7
and (1) is proved.

We are left then with the problem of computing P(v). We use the
following well-known formula, see Appendix 1. Suppose (z, %) is fixed under
@.. Let y(s) be the closed geodesic leaving %(0) = x with tangent vector
9'(0) = u corresponding to this fixed-point. Let e, ¢, ---, ¢, be the frame
chosen previously in 7,M and let Y,, Y, ---, Y,, be Jacobi fields along y(s)
satisfying for2 < 57 <4n — 1, '

Y;0) =¢;,

v.Y;(0)=0.

Let Y; be Jacobi fields along y(s) satisfying
Y0 =0,

V.Y,0) =e;.
Let us define four m x m matrices A = (a,;), B= (b;;), C = (¢,;), and D = (d,;):
Y(L) = ;”Zzaw'ej ’ Y/(L) = ;'n:gciiej ,
Y(L) = 2.7, bije; Yi(L) =227 die; -
Then relative to a suitable frame for T, .,(TM), P(7) has the matrix
A B
(cn):
Thus to complete the proof of Proposition 3.1 we must solve the Jacobi
equation on hyperbolic space H,, , along H,. We begin by extending the
frame e, ¢, ---, e, , along H, by parallel translation and let E; denote the

parallel translate of ¢; for 2 < j < 4n — 1. Now the Jacobi equation for a
vector field Y along a geodesic with tangent vector T is

V%v-Y = RT,YT .

Since we are dealing with a space of constant curvature —1 we have
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R, T = Y and the Jacobi equation for hyperbolic space becomes
VviY=Y.
Writing out Y(s) = 3.7 "¢c;(s)E;, we find that the general solution of the
Jacobi equation is
¢;j(s) = acoshs + Bsinhs
where & and 8 are arbitrary constants. We find that
Y,(s) = coshsE;,
Y;(s) = sinh sE; .
Hence relative to a suitable basis for T.,,,,(TM) (here R = R(7) is the
holonomy element associated to 7),
cosh LR sinh LR
sinh LR cosh LR) )

We adopt some notation for the rest of the proof. Given 4, Be M(m, C) we
write A ~ Bif A and B are similar; that is, there exists @ € M(m, C) so that
QAQ™*=B.

Then P ~ P’ where P’ is the matrix consisting of 4 x 4 diagonal blocks P;
for 1 < j <2n — 1 where P;: R*@ R — R?*® R? is given by

_ (cosh L sinh L ) (cos 0; —sind; )

P(v) = (

sinh L cosh L

Clearly P; is similar to the 4 x 4 diagonal matrix with diagonal entries
eltili, gL=i0j eIt ¢~L~i0j and hence
det(l _ P(fy)) — Hj’:l (1 _ eL+i0j)(1 . eL—ioj)(l . 6—L+.‘0,~)(1 . 6—-L—i0j)
= T2 (s — ) (Es — B7)(@#; — B — 145)
= AP({7})2 ’
and we have completed the proof of Proposition 3.1.

sinf; cosé;

Remark. Since P(7) is a symplectic matrix, if A is an eigenvalue of
P(7), X, x"*and A7 are eigenvalues also.

COROLLARY.
Z'en — 1+ ) _ o X(R()¥) log N(7)
Zem —1+s) 2"*”2”=1|det(1 — P(M)[* N(7y»

To obtain the formula in the introduction integrate each side from s to

It seems natural to ask in what generality our formula holds. That
there might be some generalization to manifolds of strictly negative curva-
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ture is suggested by the results of Margulis [19] from which one can deduce
that the series for Z(s) converges absolutely for Res > 4n — 2 (where the
dimension of M is 4n — 1).

Appendix
The Poincaré map for the geodesic flow

In this appendix we determine a formula for the Poincaré map associated
to a closed orbit of length L under the geodesic flow ¢, in the tangent sphere
bundle SM of a Riemannian manifold M in terms of Jacobi fields on M. For
the definition and elementary properties of Jacobi fields, see Cheeger-Ebin
|8], Chapter 1, Section 4.

We begin by recalling that the Riemannian connection on T'M gives us
a splitting ‘

T(TM) = T (TM) T (TM)
where TV (T M) is the space of vectors tangent to the fibers and T"°*(TM)
is the complement to T **(TM) provided by the connection. We define
Thor (TM) as the space of tangent vectors to horizontal curves in TM
originating at (x, u). We define a curve (2(t), U(t)) in TM to be horizontal
if U(t) is parallel along «(t); that is, V,U = 0 where V is the (Koszul) con-
nection associated to the Riemannian metric. Clearly T2%,(TM) is a com-
plement to T%\(TM) at T, . (TM). We write the decomposition for
weT(TM) as w = w"" + w™™ with w" e T"*(TM) and w** € T " (TM).
We have a canonical isomorphism
K:T.M— T32N(TM) = T.,.(T.M)
given by
d

K((x, w), v) = %(x, u + tv) _

0

where (x, v) € T,M. We note that this is just the usual isomorphism between
a vector space V and the various tangent spaces T,V where uc V.
We also have an isomorphism induced by the connection
H.T.M— T3, (TM) .
H((x, u), v) is the unique horizontal vector in T, .,(TM) so that

aIl.. H(, u), v) = (2, v)
where of course d]] . .: T¢w(TM)— T .M. H((x, u), v) may be described
as follows. Let a(t) be a curve on M starting at  with tangent vector v.
Let U(t) be the vector field along x(t) obtained by parallel translating u
along x(t). Then a(t) = (2(t), U(t)) is a curve in TM and H((z, u), v) is the
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tangent vector to this curve at ¢t = 0. We generalize this slightly in the
following lemma.

LEMMA A. Let x(t), 0=t <1, be an arc in M with tangent vector T
and x(0) = x and let U(t) be a vector field along x(t); that is, a section of the
pull-back bundle of TM along [0, 1]. We define a(t) = (z(t), U(t)) a curve in
TM. Then da(d/dt) € T ..).0cn(TM) and we have

da <sz?) = H((=(t), U®)), T(t)),

da(%—)vm = K(((t), U®), V,U).

Proof. @*TM is a bundle over [0,1] and consequently is trivial.
Parallel translation gives us an explicit trivialization compatible with the
connection on a*TM,

[0,1] x T,M —— a*TM .

Under the trivialization a(t) = (¢, B(¢)) where B(t) is a curve in T,M.
do gives an isomorphism compatible with the splittings into horizontal and
vertical parts (because @ is connection preserving),

([0, 1] x T,M)-%> T(@*TM) .

Since dB/dt = V.U is the vertical component for T([0, x] x T,M) the
lemma is clear.

Now given a frame e¢,e¢, ---,¢, for T.M we receive a basis for
T.,.(TM) given by

{H((x, ), ), -+, H((x, w), e,); K((x, w), e,), - -+, K((x, w), €,)} -

Now assume that » is of unit length and that ¢, = u; then clearly a
basis for T, .,(SM) is given by

{H((x’ u)’ 61)’ ] H(<x’ u); em); K((x’ u)’ 62), ) K((x; u)’ em)} .
A more convenient way to represent K((x, u), ¢;) in this case is 2 < 7 < m)

K((z, u), €;) = %(cos tu + sin te;)

t=0

In order to calculate P(7) we must determine the vector field on SM
that generates the geodesic flow which we denote Z. But Z is just the
canonical horizontal field; that is, Z(x, u) satisfies

(1) Z(x, u) is horizontal,

(2) dIl, .2, u) = u.

From the definition of H it follows that



36 JOHN J. MILLSON

Z(x, u) = H((z, u), w) .

Finally then we find that if ¢, = w and e, - - -, ¢,, is a frame for T.(M) we
wish to compute the matrix of do, relative the basis 8 for the complement
of the line spanned by Z in T, .,(SM) given by

{H((@, w), &), + -+, H((z, w), e,); K((x, ), e), -+, K((, w), e,)} = 8.

We assume (, u) is fixed under ¢, and put y(s) = 7o p,(x, u), 0 < s < L.
We shall assume some elementary properties of Jacobi fields, see Cheeger-
Ebin [8], Chapter 1, Section 4. We first calculate do, - H ((, ), €;);2< 5 <m.
Let x(t) be a geodesic on M starting at 2 with tangent vector e;att = 0and
let U(?) be the parallel translate of u along x(¢). Let a(t) = (x(t), U)),

dpso H((m, w), o) = L (at)

The curve ¢, (e(t)) fits into a variation ¥: R x R — SM given by (s, t) =
px(t), U®)). For fixed t, the projection of @,(x(t), U(¢)) is a geodesic y,(s)
leaving (t) in the direction U(t). The family y,(s) is a variation x(s, t) of
¥(s) in M through geodesics. We lift ¥ to a variation 7,(s) in SM given by
7:(8) = (¥4(s), T'(s)) where T,(s) is the tangent vector to the geodesic Y4(s)
and consequently is just the parallel translate of U(t) along y,(s). Hence
7.(s) = X(s, t) and

Llpdar)|, =L nw)| = (L)

Now we have (d7,(s)/d¢t) |,— € Tiyie) 06 (SM). We apply Lemma A to deduce
that for each s, 0 <s< L,

t=0

t=0 t=0
s=L

hor
t=

= H((y6)T), Yi(s),

dye
%‘(9)
where Y;(s) = (d/dt)y,(s) |i=o

a4V 4s) ::: = K((y(s), T(s)), Vi T(9)) .

dt
But we have Vy,,T(s) — V) Yi(s) = [Y(s), T(s)] = 0. Hence
A/ vert
Lo ™ — K((4(6), ), Voo V(5)) -
The point is that Y,(s) is the unique Jacobi field along y(s) satisfying

Y;0) =¢;,
V:Yi(0) =V, Y,0) =V, U@ =0.
We now calculate dop, o K((z, w), ¢;), 2 < j < m. We define a(t): R — T, M )
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by a(t) = costu + sinte;. Then
do, o K((x, u), €;) = —dd?%(a(t)),

t=0
Once again the curve @, (a(?)) fits into a variation 7: R x R — SM given
by (s, t) = @ (a(t)). For each t the curve y,(s) = p(o(t)) is a geodesic
emanating from z in the direction a(¢). Thus
Y(s) = exp, sa(t) .
Once again we define 7,(s) = (yt(s), Tt(s)) where T,(s) is the tangent vector

to the geodesic y,(s) and consequently is just the parallel translate of a(t)
along y,(s). We have

4 (pfat))|_, = L), = (7@

dt =0 dt dt =0
We apply Lemma A to deduce that for each s, 0 =< s < L,
AV 1™ _ H(y(s), T(s)), To(s))
dt =0
where Y;(s) = (d/dt)y:(s)|i—o
vert
D) | ™ K{(y(s), T(), Vo0 T()

= K((y(s), T(5)), Vi Y(9)) -

It is easily seen then that Y,(s) is the unique Jacobi field along ¥(s)

satisfying
Y;0) =0,
V. Y0 =e;.

Since the maps v — H((x, u), v)and v — K((x, u), v) are linear maps from
T.M to T, .(TM) we find the following formula for the matrix of P(7)
relative to 8. Let Y; and Y,;, 2 =< j <m, be the Jacobi fields described
previously. Then Y;(L), Y;(L) € T,M. Determine m — 1 x m — 1 matrices
A = (a;;), B = (by), C = (c;) and D = (dy;) by

Y(L) = E;n:zai:iej ’ Yi(L) = ;chw' €;

Y(L) = ;;zbiiej ’ Y(L) = ?zzdije:i .
Then P(7) has the following 2m — 2 X 2m — 2 matrix relative to 8:

(e o)

THE INSTITUTE FOR ADVANCED STUDY, PRINCETON, N.J.
YALE UNIvErsiTY, NEW HAVEN, CONNECTICUT

This concludes the appendix.
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