
Quantization of bending deformations of polygonsin E 3, hypergeometric integrals and the GassnerrepresentationMichael Kapovich and John J. MillsonFebruary 17, 2000AbstractThe Hamiltonian potentials of the bending deformations of n-gons in E 3 studiedin [KM] and [Kly] give rise to a Hamiltonian action of the Malcev Lie algebraPn of the pure braid group Pn on the moduli space Mr of n-gon linkages withthe side-lengths r = (r1; :::; rn) in E 3 . If e 2 Mr is a singular point we maylinearize the vector �elds in Pn at e. This linearization yields a 
at connectionr on the space C n� of n distinct points on C . We show that the monodromy ofr is the dual of a quotient of a specialized reduced Gassner representation.AMS subject classi�cation: 53D30, 53D50.1 IntroductionIn [KM] and [Kly] certain Hamiltonian 
ows on the moduli space Mr of n-gon link-ages in E 3 were studied. In [KM] these 
ows were interpreted geometrically and calledbending deformations of polygons. In [Kly], Klyachko pointed out that the Hamilto-nian potentials of the bending deformations gave rise to a Hamiltonian action of Pn,the Malcev Lie algebra of the pure braid group Pn (see x3), onMr. It is a remarkablefact, see [K1, Lemma 1.1.4], that a representation � : Pn ! End(V ), dim(V ) < 1,gives rise to a 
at connection r on the vector bundle C n� � V over C n� , the spaceof distinct points in C . Accordingly the monodromy representation of r yields arepresentation �̂ : Pn ! Aut(V ).We see then that if we can �nd a �nite dimensional representation of the Liealgebra B � C1(Mr) generated by the bending Hamiltonians under the Poissonbracket , i.e. if we can \quantize" B, then we will obtain a representation of Pn.Klyachko suggested using a geometric quantization ofMr to quantize B. This appearsto be di�cult to carry out because the bending 
ows do not preserve a polarization.Note however that the problem of quantizing a Poisson subalgebra of C1(Mr) can besolved immediately if the functions in the subalgebra have a common critical pointx 2 Mr. For in this case we may simultaneously linearize all the Hamiltonian �eldsat x. We are fortunate that simultaneous critical points for the algebra B exist if Mris singular. Indeed, a degenerate n-gon (i.e. an n-gon which is contained in a line L)is a critical point of all bending Hamiltonians.1



The point of this paper is to compute the representation �̂�;r : Pn ! Aut(T�;r)associated to a degenerate n-gon P . Here T�;r = TP (Mr) and � = (�1; :::; �n), �i 2f�1g, and r = (r1; :::; rn); ri 2 R+ , are de�ned as follows. Fix an orientation on L.The number ri is the length of the i-th edge of P . De�ne �i to be +1 if the i-th edgeis positively oriented and �i = �1 otherwise. We call � = (�1; :::; �n) the vector ofedge-orientation of P .Our formula for ��;r : Pn ! End(T�;r) is in terms of certain n� n matrices Jij(�)which are called Jordan-Pochhammer matrices. Let � = (�1; :::; �n) be an n-tuple ofcomplex numbers. De�ne matrices Jij(�) for 1 � i < j � n by0BBBBBBBB@
i� th column j � th column0 : : : 0 0 0 : : : 0 0 0 : : : 0i� th row 0 : : : 0 �j 0 : : : 0 ��j 0 : : : 00 : : : 0 0 0 : : : 0 0 0 : : : 0... ... ... ... ...j � th row 0 : : : 0 ��i 0 : : : 0 �i 0 : : : 00 : : : 0 0 0 : : : 0 0 0 : : : 0... ... ... ... ...

1CCCCCCCCA = Jij(�):
De�ne Jii = 0 and Jij(�) = Jji(�) for i > j. We have (as can be veri�ed easily)Lemma 1.1 The matrices fJij(�)g satisfy the in�nitesimal braid relations:� [Jij(�); Jkl(�)] = 0 if fi; jg \ fk; lg = ;.� [Jij(�); Jij(�) + Jjk(�) + Jki(�)] = 0, i; j; k are distinct.Consequently the assignment ��(Xij) = Jij(�) (see Section 3 for the meaning ofXij) yields a representation �� : Pn ! Mn(C ) and a 
at connection r on C n� � C n .Here we realize C n as the space of row vectors with n components. It is immediatethat the subspace C n0 � C n de�ned byC n0 = fz 2 C n :Xi zi = 0gis invariant under ��, in fact ��(Pn)(C n) � C n0 . Now we assume Pni=1 �i = 0. Then� 2 C n0 and we see that ��(Pn)(�) = 0. Thus we have a Pn-invariant �ltrationC � � C n0 � C n :De�ne W� = C n0 =C �. Now let P be a degenerate n-gon with side-lengths r =(r1; :::; rn) and edge-orientations � = (�1; :::; �n). Our �rst main theorem isTheorem A. There is a Pn-invariant almost complex structure J � on T�;r suchthat there is an isomorphism of Pn-modules T 1;0�;r �= W� for � := (p�1�1r1; :::;p�1�nrn).Here T 1;0�;r = fw 2 T�;r 
 C : J �w = p�1wg. We haveCorollary. The 
at connection on C n� � T 1;0�;r has the connection form! = X1�i<j�n dzi � dzjzi � zj 
 Jij(�)2



with � as above.We then adapt the methods of [K1] to give formulae for multivalued parallelsections of r in terms of hypergeometric integrals and to compute the monodromyof r.Before stating our �rst formula for the monodromy of r we need more notation.Let 
j, 1 � j � n, be the free generators of the free group Fn . De�ne the character� : Fn ! C � by �(
j) = e2�i�j , 1 � j � n (recall that �j = p�1�jrj). Let C ��1 bethe 1-dimensional module (over C ) in which the free group Fn acts by ��1. The purebraid group Pn acts by automorphisms on Fn so that the character � is �xed. Thus wehave the associated action of Pn on H1(Fn ; C ��1 ). We let �n = �1(C P1 � fz1; :::; zng)be the fundamental group of the n times punctured sphere. Hence �n is the quotientof Fn by the normal subgroup generated by 
1 : : : 
n. Since �(
1 : : : 
n) = 1, thecharacter � induces a character of �n. The group Pn �xes 
1 : : : 
n and consequentlyacts on �n and on H1(�n; C ��1 ). We can now stateTheorem B. The monodromy representation of r is equivalent to the represen-tation of Pn on H1(�n; C ��1 ).In x10 we de�ne the Gassner representation of the pure braid group, the reducedGassner representation and their specializations via characters of the free group. LetL is the C -algebra of Laurent polynomials on t1; ::; tn.Theorem C. The monodromy representation of r is dual to the quotient of thereduced Gassner representation Z1(�n;L) specialized at tj = e�2��jrj , where we quo-tient by the 1-dimensional subspace B1(�n; C �) �xed by Pn.Our results appear to be related to those of [DM] and [Lo] but there are signi�cantdi�erences. In [Lo], D. D. Long linearizes the action of Pn on the moduli space ofn-gon linkages in S3 obtained from the action of Pn onHom(�1(S2 � fz1; :::; zng); SU(2))=SU(2)by precomposition. The corresponding action of Pn on Mr is trivial in our case, see[KM, Remark 5.1]. In [DM], Deligne and Mostow arrive at the Gassner representa-tion by considering a variation of Hodge structure over C n� =PGL2(C ) � Mr. Theyobtain the quotient (by the 1-coboundaries) of the reduced Gassner representationspecialized at (e2�ir1 ; :::; e2�irn); we obtain the dual of the quotient of the reducedGassner representation specialized at (e�2��1r1; :::; e�2��nrn). Here we must assumePni=1 ri = 2 to be consistent with [DM]. Our representation lies in GL(n � 2;R);their representation is in U(n� 3; 1).Acknowledgements. It is our pleasure to thank Ragnar Buchweitz and RichardHain for helpful conversations.2 The moduli space of n-gon linkages in E 3.Let Poln(E 3) be the space of (closed) n-gons with distinguished vertices in theEuclidean space E 3 . An n-gon P is de�ned to be an ordered n-tuple of points(v1; :::; vn) 2 (E 3)n. The point vi is called the i-th vertex of P . The vertices are joinedin cyclic order by edges e1; :::; en where ei is the oriented segment from vi to vi+1. We3



think of ei as a vector in R3 . Two polygons P = (v1; :::; vn) and Q = (w1; :::; wn) areidenti�ed if and only if there exists an orientation-preserving isometry g of E 3 suchthat g(vi) = wi, 1 � i � n. Let r = (r1; :::; rn) be an n-tuple of positive real numbers.Then Mr is de�ned to be the moduli space of n-gons with the side-lengths r1; :::; rnmodulo isometries as above. An element of Mr will be called a closed n-gon linkage.We will also need the moduli space space Nr of \open" n-gon linkages. To obtainNr we repeat the above construction of Mr except we do not assume the end vertexvn+1 of the edge en is equal to v1.The starting point of [KM] was the observation thatMr = fe = (e1; :::; en) 2 nYi=1 S2(ri) : e1 + ::: + en = 0g=SO(3):This equality exhibits Mr as the symplectic quotient of Qni=1 S2(ri) and has manyconsequences. First Mr is a complex analytic space with isolated (quadratic) singu-larities. The smooth part of Mr is a K�ahler manifold. The singular points of Mr arethe equivalence classes of degenerate n-gons. Thus Mr is singular if and only if r isthe set of side-lengths of a degenerate n-gon.In [KM] we introduced bending deformations of closed polygonal linkages in E 3 ,see also [Kly]. Suppose P = e = (e1; :::; en). Let I � f1; :::; ng be a subset and de�nefI 2 C1(Mr) by fI(e) = kXi2I eik2:Then fI is the Hamiltonian potential of a Hamiltonian vector �eld BI . The vectoreI =Pi2I ei is constant along an integral curve of BI . By [KM, Lemma 3.5], BI(e) =(�1; :::; �n), where �i = eI � ei, i 2 I; and �i = 0 for i =2 I. The integral curves of BIare obtained as follows. De�ne an element ad(eI) 2 so(3) byad(eI)(v) = eI � vand a one-parameter group RI(t) � SO(3) byRI(t) = exp(t ad(eI)):Then the integral curve e(t) of BI passing through e is given byei(t) = RI(t)ei; i 2 Iej(t) = ej; j =2 I:This motion of a polygon P has a simple geometric interpretation if the elements ofI are consecutive. In this case eI is a diagonal and it divides the polygon into twoparts. Keep one part �xed and bend the polygon by rotating the other part aroundthe diagonal with the angular speed keIk. For this reason we call the above motiona bending deformation of the polygon. We will be speci�cally interested in the caseI = fi; jg, i < j. We abbreviate ffi;jg to fij and Bfi;jg to Bij . We have:fij(e) = kei + ejk2:Lemma 2.1 Let e 2Mr be a degenerate polygon. Then Bij(e) = 0 for all i; j.4



Proof: The bending �eld Bij is given byBij(e) = (0; :::; (ei+ej)�ei; 0; :::; (ei+ej)�ej ; 0; :::) = (0; :::; ej�ei; 0; :::; ei�ej; 0; :::):If e is degenerate then ei and ej are linearly dependent, so ei � ej = 0. �Remark 2.2 In fact BI(e) = 0 for all I if e is degenerate.De�ne ~Nr :=Qni=1 S2(ri) where S2(ri) is the round 2-sphere of the radius ri. Wealso de�ne ~Mr � ~Nr by ~Mr = fe 2 ~Nr : nXi=1 ei = 0g:Hence Nr is the quotient of ~Nr by SO(3) and Mr is the quotient of ~Mr by SO(3).3 The Malcev Lie algebra of the pure braid group.Let Pn be the pure braid group on n strands in C (see [C, x1]). Let C n� denote thesubset of C n consisting of distinct n-tuples. Then Pn is isomorphic to the fundamentalgroup of C n� .Let Pn be the Malcev Lie algebra of Pn, see [ABC]. Kohno found the followingpresentation for Pn in [K2] (see also [I, Proposition 3.2.1]).Lemma 3.1 The Lie algebra Pn is the quotient of the free Lie algebra over Q gen-erated by Xij; 1 � i; j � n, subject to the relations:1. Xii = 0, 1 � i � n.2. Xij = Xji, 1 � i; j � n3. [Xij; Xkl] = 0 if fi; jg \ fk; lg = ;.4. [Xij; Xij +Xjk +Xki] = 0, i; j; k are distinct.We will now see that any �nite dimensional representation of Pn induces a �nitedimensional representation of Pn on the same vector space. This remarkable fact isan immediate consequence of the following lemma of Kohno [K1, Lemma 1.1.4].Lemma 3.2 Suppose V is a �nite dimensional vector space and Aij; 1 � i; j � n,are elements of End(V ) such that Aii = 0 and Aij = Aji. Let r be the connection onthe trivial V bundle over C n� with connection form! = X1�i<j�n dzi � dzjzi � zj 
 Aij:Then r is 
at if and only if the relations (3) and (4) for Pn are satis�ed by the Aij's.
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Thus there is a 1-1 correspondence between Lie algebra homomorphisms � : Pn !End(V ) and 
at connections r on C n� � V of the above form. Suppose we are given� as above. Since �1(C n� ; z) �= Pn (z is a base-point), the monodromy representationof r gives an induced representation of Pn to Aut(V ).Let F : C n� ! V be a smooth map. Then F induces a parallel section of r if andonly if F satis�es the equation (of the V -valued 1-forms on C n� )dF = X1�i<j�n dzi � dzjzi � zj 
 Aij(F ):4 A Hamiltonian action of Pn on Mr.We de�ne the function fij on ~Nr byfij(e) = kei + ejk2:The next proposition was proved in [Kly]. Since it is central to our paper we give aproof here.Proposition 4.1 1. fij = fji.2. ffij; fklg = 0, if fi; jg \ fk; lg = ;.3. ffij; fij + fjk + fkig = 0, if i; j; k are distinct.Proof: The assertions (1) and (2) are obvious. The third assertion will be a conse-quence of the following discussion. Since ~Nr is a symplectic leaf of the Lie algebra(R3 ;�) equipped with the Lie Poisson structure it su�ces to prove (3) for the func-tions fij extended to (R3)n using the same formula. Let gij : (R3)n ! R be given bygij(e) = ei � ej and hijk : (R3)n ! R be given by hijk(e) = ei � (ej � ek).Lemma 4.2 fgij; gjkg = �hijk.Proof: It su�ces to prove the lemma for i = 1; j = 2; k = 3. We use coordinates(xi; yi; zi); 1 � i � n, on (R3)n. Thenfxi; yig = zi; fyi; zig = xi; fzi; xig = yi; 1 � i � n :We have fg12; g23g = fx1x2 + y1y2 + z1z2; x2x3 + y2y3 + z2z3g == fx1x2; y2y3g+fx1x2; z2z3g+fy1y2; x2x3g+fy1y2; z2z3g+fz1z2; x2x3g+fz1z2; y2y3g == x1y3z2 � x1y2z3 � x3y1z2 + x2y1z3 + x3y2z1 � x2y3z1 = �e1 � (e2 � e3): �Corollary 4.3 ffij; fjkg = �4ei � (ej � ek).
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Proof: fij = fii + fjj + 2gij. But fii and fjj are Casimirs. �We now prove the 3-rd assertion.ffij; fij + fjk + fkig = ffij; fjkg+ ffij; fkig = ffij; fjkg+ ffji; fikg =ffij; fjkg+ffji; fikg = �4ei � ej� ek� 4ej � ei� ek = �4ei � ej� ek +4ei � (ej� ek) = 0:�Since the function fij is SO(3)-invariant it induces a function (which is againdenoted by fij) on Mr. The Poisson bracket of these functions remain the same andwe obtainTheorem 4.4 There exists a Hamiltonian action of the Lie algebra Pn on the sym-plectic manifold ~Nr. This action induces an action on Mr.>From Lemma 3.1 and Proposition 4.1 we see that if we can �nd a �nite-dimensionalrepresentation of the Lie subalgebra of C1(Mr) generated by ffij; 1 � i < j � ngthen we will get a representation of Pn. As explained in the introduction we obtainsuch a representation on Te(Mr) for a degenerate n-gon e.5 Linearization of the bending �elds at degeneratepolygons.This section is the heart of the paper. We compute Aij 2 End(Te(Mr)), the lineariza-tion of the bending �eld Bij at a degenerate polygon e 2 Mr. Now assume that e isdegenerate, so we may write e = (r1�1u; :::; rn�nu)for some vector u 2 S2 and �i = �1.Let M be a manifold, m 2 M . We recall the de�nition of the linearizationAX 2 End(Tm(M)) of a vector �eld X at a point m where X(m) = 0. Choose aconnection r on T (M). Let u 2 Tm(M), thenAX(u) := (ruX)(m)Since X(m) = 0, AX is independent of the choice of connection.For the case in hand the above de�nition must be modi�ed since Mr is singularat e. There is a commutative algebra version of the above construction that goes asfollows. Assume M is a real a�ne variety, m 2 M and X is a vector �eld on Msatisfying X(m) = 0. Let m be the maximal ideal of m. Then (since X(m) = 0)we have Xm � m whence Xm2 � m2 and X induces an element of End(m=m2) =End(T �m(M)). By duality we obtain AX 2 End(Tm(M)). The reader will verify thatif m is a smooth point of M then the two de�nitions coincide.We now compute the linearization of Bij at e inMr. Recall that we have a diagram~Mr �! ~Nr# #Mr �! Nr7



where ~Nr = S2(r1) � ::: � S2(rn) and ~Mr = fe 2 ~Nr : Pni=1 ei = 0g. De�ne gij :~Nr ! R by gij(e) = kei + ejk2. Hence gijj ~Mr is SO(3)-invariant and descends to thefunction fij on Mr. Let ~Bij be the Hamiltonian vector �eld of gij. Then~Bij(e) = (0; : : : ; ej � ei; 0; : : : ; ei � ej; 0; : : : )and hence ~Bij vanishes at e and is tangent to ~Mr. The induced �eld on ~Mr will bedenoted B0ij. Then B0ij projects toBij onMr. We note dimTe( ~Nr) = 2n, dimTe( ~Mr) =2n� 2 and dimTe(Mr) = 2n� 4.Remark 5.1 Since e is a singular point of Mr we havedimTe(Mr) = 2n� 4 > dimMr = 2n� 6:We will �rst compute the linearization of ~Bij at e in ~Nr (e is a smooth point on ~Nrso we use the �rst procedure) to obtain ~Aij 2 End(Te( ~Nr)). Then ~Aij will preserve thesubspace Te( ~Mr) � Te( ~Nr) whence we obtain an induced element A0ij 2 End(Te( ~Mr)).But there is an exact sequenceVe ! Te( ~Mr)! Te(Mr)where Ve = f� : 9v 2 R3 such that �i = ei � v; 1 � i � ng, we note that dimVe = 2.We will verify that A0ij(Ve) � Ve (in fact Aij(Ve) = 0). Hence A0ij will descend toTe(Mr). The resulting element of End(Te(Mr)) will be Aij, the linearization of Bijat e.Accordingly we begin by computing the linearization ~Aij of ~Bij on Te( ~Nr). Thus~Aij will be 2n� 2n matrix (instead of a 2n� 4� 2n� 4 matrix).Another advantage in passing to ~Nr is that Te( ~Nr) is now a direct sum of thetangent bundles of the factorsTe( ~Nr) = �ni=1Tei(S2(ri)):The Riemannian connection on ~Nr is a direct sum of the Riemannian connections onthe summands. Thus we may write (for � 2 Te( ~Nr))~Aij(�) = (0; :::;r�(ej � ei); 0; :::;r�(ei � ej); 0; :::):We will suppress the zeroes in the above row vectors henceforth.Lemma 5.2 ~Aij(�) = (u� �i; u� �j) � �jrj ��jrj��iri �iri �Proof: In the above formula for ~Aij(�) we use the Riemannian connection r on S2.We will compute using the 
at connection �r on T (R3)jS2 and then project back intoT (S2) to get r. We have �r�(ej � ei) = �j � ei + ej � �i�r�(ei � ej) = �i � ej + ei � �j:8



Evaluating at e we obtain�r�(ej � ei)je = �iri�j � u+ �jrju� �i = �jrju� �i � �iriu� �j:Since the right-hand side is in Te(S2) we have alsor�(ej � ei)je = �jrju� �i � �iriu� �j:Finally r�(ei � ej)je = �r�(ej � ei)je and the lemma follows. �We now relate the action of Pn on Te( ~Nr) we have just computed to the action onTe(Mr). We recall that ~Mr = fe 2 ~Nr :Pni=1 ei = 0g whence Te( ~Mr) = f� 2 Te( ~Nr) :Pni=1 �i = 0g. We have the 2-dimensional subspace Ve of tangents to the SO(3)-orbitthrough e described above. Thus we have a �ltration F� given byVe � Te( ~Mr) � Te( ~Nr)and a canonical isomorphism Te( ~Mr)=Ve �= Te(Mr):We now show that Pn preserves the above �ltration.Lemma 5.3 1. PnTe( ~Nr) � Te( ~Mr).2. PnVe = 0.Proof: (1) is immediate. We prove (2). Suppose � 2 Ve. We claim�j � ei + ej � �i = 0; 1 � i < j � n:Indeed,�j�ei+ej��i = (ej�v)�ei+ej�(ei�v) = (ej�v)�ei+(ej�ei)�v+ei�(ej�v):But e is degenerate, so ei � ej = 0. �We collect our results inTheorem 5.4 1. There is a Pn-stable �ltrationVe � Te( ~Mr) � Te( ~Nr):2. Te(Mr) �= Te( ~Mr)=Ve.3. There is an isomorphism � : Te( ~Nr)! Tu(S2)
 Rnsuch that ����1(Xij) = adu
 Jij(�iri; �jrj).4. �(Te( ~Mr)) = Tu(S2)
Rn0 and �(Ve) = Tu(S2)
Rv(�; r). Here Rn0 = f(x1; :::; xn) :Pni=1 xi = 0g and v(�; r) = (�1r1; :::; �nrn).Here Rn is realized as the space of row vectors with n components.9



6 The action on the holomorphic tangent space.The point of this section is that Te( ~Nr) has a Pn-invariant almost complex structurethat descends to Te(Mr). We will compute the corresponding action of Pn on theholomorphic tangent space.De�ne an almost complex structure J 2 End(Te( ~Nr)) byJ(�) = � such that �i = u� �i; 1 � i � n :Lemma 6.1 1. J is Pn-invariant.2. The �ltration F� is invariant under J .Proof: The �rst assertion is immediate. It is also clear that Tt( ~Mr) is invariant underJ . It remains to check that Ve is invariant under J . Suppose � 2 Ve. Hence there existsv 2 R3 such that �i = �iriu�v, 1 � i � n. Then J�i = u�(�iriu�v) = �iriu�(u�v).Hence if we put w = u� v thenJ�i = �irru� w; 1 � i � n :Therefore J� 2 Ve. �Remark 6.2 The almost complex structure J is not the one induced by the complexstructure on ~Nr = Qni=1 S2(ri). We have changed the complex structure on S2(ri) toits conjugate for each i such that ei is a back-track (i.e. �i = �1).We can decompose Te( ~Nr)
C into the +i-eigenspace of J denoted by T �e ( ~Nr) andthe �i-eigenspace denoted by T��e ( ~Nr). Accordingly we haveT �e ( ~Nr) = f� 2 Te( ~Nr)
 C : u� �j = p�1�jgSimilarly we denote the +i-eigenspaces of J acting on Te( ~Mr) 
 C and Ve 
 C byT �e ( ~Mr) and V �e respectively. We denote the quotient T �e ( ~Mr)=V �e by T �e (Mr). Clearlythe latter space is the +i-eigenspace of J acting on Te(Mr)
 C .Now we recall that we have an isomorphism� : Te( ~Nr)! Tu(S2)
 Rncomplexifying we obtain � : Te( ~Nr)
 C ! Tu(S2)
R C n :We see that � conjugates J to adu
 1 and we have an induced isomorphism (againdenoted by �) � : T �e ( ~Nr)! T 1;0u (S2)
C C n :Under � the action of Xij transforms to p�1I 
 Jij(�iri; �jrj). We note thatdimC T 1;0u (S2) = 1 and we obtain a canonical isomorphism : T �e ( ~Nr)! C n :This isomorphism has the property: (T �e ( ~Mr)) = C n0 ;  (V �e ) = C v(�; r):We have completed our computation of the action of Pn.10



Theorem 6.3 1. There is a canonical isomorphism  : T �e ( ~Nr)! C n2.  induces the action of Xij 2 Pn on C n by p�1Jij(�iri; �jrj).3. C n admits a Pn-invariant �ltration by  (T �e ( ~Mr)) = C n0 ,  (V �e ) = C v(�; r).4. There is an Pn-invariant complex structure J on Te(Mr). The induced actionof Pn on the +i-eigenspace of J in Te(Mr)
 C corresponds to the action of Pnon the quotient C n0 =C v(�; r).Here C n is realized as the space of row vectors with n components.7 The associated hypergeometric equation.As discussed in the introduction we use the linear operators Aij 2 End(C n) to obtaina 
at holomorphic connection r on the trivial T �e ( ~Nr)-bundle E over M = C n� . Theconnection form ! of r is ! = X1�i<j�n dzi � dzjzi � zj 
 Aij:A (multivalued) holomorphic section of E corresponds to a row vector F = (F1; :::; Fn)of (multivalued) holomorphic functions. The hypergeometric equation comes from thecondition that F be parallel for the connection r:dF = F!or equivalently dFi = Xj;j 6=i(�jFi � �iFj)dzi � dzjzi � zj (1)with �j = p�1�jrj. We will refer to (1) as the hypergeometric equation.We observe that the operators Aij leave invariant the subspace C n0 and annihilatethe line V� = C (�1 ; :::; �n). We obtain a diagram of 
at bundles over C n� :C n� � C n0 �! C n� � C n#C n� � C n0 =V�The monodromies of these bundles will be the representations of Pn correspondingto the actions of Pn on Te( ~Nr), Te( ~Mr), Te(Mr).8 Solving the hypergeometric equation by hyper-geometric integrals.Let �1; :::; �n be complex numbers with �j =2 Z; 1 � j � n. Let (�; z1; :::; zn) 2 (C n+1)�and �(�; z1; :::; zn) be the hypergeometric integrand�(�; z1; :::; zn) := (� � z1)�1 : : : (� � zn)�n:11



Let � := �� : Fn ! C � be the character de�ned by �(
j) = exp(2�p�1�j), 1 � j � n.Recall that f
1; :::; 
ng is a generating set for Fn , the free group of rank n. Here weidentify Fn with the fundamental group �1(M; b), where M = C �fz1 ; :::; zng, so thatthe conjugacy class of 
j is represented by a su�ciently small loop which goes oncearound zj in the counterclockwise direction. Note that �(
j) 6= 1, 1 � j � n. Forany character � : Fn ! C � we let L� be the local system over M given byL� = ~M � C =((x; z) � (
x; �(
)z)):We de�ne a multivalued parallel section � of L� by �(x) = [x; 1] (where [x; z] denotesthe equivalence class of (x; z)). Note that the lift of � to the universal cover satis�es�(
x) = [
x; 1] = [x; �(
)�1] = �(
)�1�(x):The following lemma is obvious:Lemma 8.1 The L�-valued 1-forms �j, 1 � j � n, de�ned by�j(�) = (� � z1)�1 : : : (� � zn)�n d�� � zj 
 �are single-valued on M .Hence �j gives rise to a class [�j] in the de Rham cohomology group H1dR(M;L�).Let 
 2 H1(M;L��1). Let Gj be the Kronecker pairing h�j; 
i considered asa function of z1; :::; zn. This Kronecker pairing is traditionally represented as anintegral. To make this precise let 
 = Pki=1 ai 
 �i, where each ai, 1 � i � k, is a1-simplex and �i is a parallel section of L�1jai. Then h�j; 
i is given byGj(z1; ::; zn) = kXi=1 Zai(� � z1)�1 : : : (� � zn)�nh�; �ii d�� � zj :We will use the following more economical notation:Gj(z1; ::; zn) = Z
(� � z1)�1 : : : (� � zn)�n d�� � zj 
 � :Now we let z = (z1; :::; zn) vary. Let � : C n+1� ! C n� be the map that forgets the�rst component. Then ��1(z) is isomorphic to C � fz1; :::; zng. By [DM, 3.13], the
at line bundle L� on ��1(z) is the restriction of a 
at line bundle ~L� on C n+1� . Asz varies, the forms �1; :::; �n give rise to relative holomorphic 1-forms on C n+1� withcoe�cients in ~L�. We recall that a relative holomorphic form on the total space Eof a holomorphic �ber bundle p : E ! B is an element of the quotient di�erentialgraded algebra 
�(E)=(p�
�(B)+):Here 
q denotes the holomorphic q-forms and (p�
�(B)+) denotes the di�erentialideal in 
�(E) generated by the pull-backs to E of holomorphic forms on B of positivedegree. A relative holomorphic q-form � is relatively closed if d� is in the above ideal.12



The forms �1; :::; �n are relatively closed, hence they induce holomorphic sections[�1]; :::; [�n] of the vector bundle H1 over C n� with �ber over z given byH1(��1(z); ~L�j��1(z)):Precisely, [�i](z) is the class of the 1-form �i(z) on ��1(z) in the above cohomologygroup. The bundle H1 has a 
at connection, the Gauss-Manin connection, whosede�nition we now recall. Note �rst that a local trivialization of � induces a localtrivialization of H1. Then a smooth section of H1 is parallel for the Gauss-Maninconnection if it is constant when expressed in terms of all such induced local trivial-izations. The bundle H1 of the �rst homology groups with coe�cients in ~L��1 admitsan analogous 
at connection. Now let p : ~C n� ! C n� denote the universal cover of C n� .We obtain a pull-back �ber bundle ~� : E ! ~C n� of n-punctured complex lines over ~C n�and pull-back 
at vector bundles ~H1 and ~H1. Choose a base-point z0 = (z01 ; :::; z0n)in C n� . We use M to denote C � fz01 ; :::; z0ng henceforth. Choose a base-point ~z0 in~C n� lying over z0. We may identify the �ber of ~H1 over ~z0 with H1(M;L��1). Hencegiven 
 2 H1(M;L��1) there is a unique parallel section ~
 of ~H1 such that ~
(~z0) = 
.We can now de�ne a global holomorphic function Gj(z) on ~C n� byGj(z) = Z~
(� � z1)�1 : : : (� � zn)�n d�� � zj 
 �:Here we have used the same notation for corresponding (under pull-back) objects onC n� and ~C n� . We may also write Gj(z) = h[�j(z)]; ~
iwhere h; i is the �berwise pairing between ~H1 and ~H1. We haveLemma 8.2 dGi(z) = nXj=1(Z
 @@zj ( �� � zi )d� 
 �)dzj:Proof: We have dGi(z) = hr[�i(z)]; ~
iwhere r is the Gauss-Manin connection. We will need another formula for the Gauss-Manin connection, see [KO] or Remark 8.3 below. Before stating the formula we needmore notation. Let F q
q(E) denote the subspace of holomorphic q-forms on E thatare multiples of pull-backs of q-forms from the base ~C n� by elements of O(E). Thenwe have a canonical isomorphism (because the �bers of ~� have complex dimension 1)
2(E)dF 1
1(E) + F 2
2(E) �= 
1(~C n� ; ~H1):Now the formula for r is r[�i] = [d�i]:13



Here d�i denotes the exterior di�erential of �i where �i is considered as a 1-form onE (modulo F 1
1(E)) with values in the line bundle p� ~L�. The symbol [d�i] denotesthe class of d�i modulo dF 1
1(E) + F 2
2(E). The lemma follows from the formulad�i � nXj=1 @@zj ( �� � zi )dzj ^ d� 
 �together with the observation that integration over ~
 factors through [ ]. �Remark 8.3 The above formula for r can be proved as follows. First note that theformula does indeed de�ne a connection, to be denoted r0 on H1. To show that rand r0 agree it su�ces to show they agree locally. Since they are both invariantlyde�ned it su�ces to prove that they agree on trivial bundles. But it is clear that inthis case a section of H1 is parallel for r0 if and only if it is constant.The proof of the next lemma is a modi�cation of [K1, Proposition 2.2.2].Lemma 8.4 The functions G = (G1; :::; Gn) satisfydGi = Xj;j 6=i(�jGi � �jGj)dzi � dzjzi � zj 
 � or dGT = !GT :Proof: We will drop the 
� for the course of the proof:Gi(z) = Z
 � d�� � zi :Whence by Lemma 8.2dGi = � nXj=1 [Z
 �j�(� � zj)�1(� � zi)�1d�]dzj + [Z
 �(� � zi)�2d�]dzi= �Xj 6=i [Z
 �j�(� � zj)�1(� � zi)�1d�]dzj � [Z
(�i � 1)�(� � zi)�2d�]dzi:We simplify the �rst term using1� � zi � 1� � zj = 1zi � zj ( 1� � zi � 1� � zj )to obtain= �Xj 6=i �jzi � zj [Z
 � d�� � zi � Z
 � d�� � zj ]dzj � [Z
(�i � 1)�(� � zi)�2d�]dzi == �Xj 6=i �jGizi � zj dzj +Xj 6=i �jGjzi � zj dzj � [Z
(�i � 1)�(� � zi)�2d�]dzi:Now we haved(�(� � zi)�1) = (�i � 1)�(� � zi)�2d� +Xj 6=i �j�(� � zi)�1(� � zj)�1d�:14



Thus by Stokes' Theorem� Z
(�i � 1)�(� � zi)�2d� = Z
Xj 6=i �j�(� � zi)�1(� � zj)�1d� =Z
Xj 6=i �j� 1zi � zj ( 1� � zi � 1� � zj )d� =Xj 6=i �jzi � zjGi �Xj 6=i �jzi � zjGjhence �[Z
(�i � 1)�(� � zi)�2d�]dzi =Xj 6=i dzizi � zj (�jGi � �jGj) :We obtain dGi =Xj 6=i dzi � dzjzi � zj (�jGi � �jGj) : �Remark 8.5 The simpli�cation using Stokes' Theorem above is equivalent to observ-ing that �(� � zi)�1dzi 
 � 2 F 1
1(E); 1 � i � n;and we work modulo dF 1
1(E) in computing r.We now de�ne Fi := �iGi, 1 � i � n.Lemma 8.6 F = (F1; :::; Fn) is a solution of the hypergeometric equation (1).Proof: dFi = �idGi =Xj 6=i dzi � dzjzi � zj (�i�jGi � �i�jGj) ==Xj 6=i �j(�iGi)� �i(�jGj)dzi � dzjzi � zj ==Xj 6=i (�jFi � �iFj)dzi � dzjzi � zj : �We have provedTheorem 8.7 Let 
 be an element of H1(M;L��1) and � a 
at multivalued sectionof L�. For � = (�1; :::; �n) 2 C n de�ne a holomorphic function on ~C n� byFi := �i Z~
(� � z1)�1 : : : (� � zn)�n d�� � zi 
 �:Then F = (F1; :::; Fn) is a solution of the hypergeometric equation.
15



9 The monodromy representation of the hyperge-ometric equation and the action on homology.We have seen that for 
 2 H1(M;L��1) we obtain a solution S = (F1; :::; Fn) of thehypergeometric equation by the formulaFi := �i Z~
(� � z1)�1 : : : (� � zn)�n d�� � zi 
 �:It is important to recall that Pnj=1 �j = 0. The di�erential forms�j = �j(� � z1)�1 : : : (� � zn)�n d�� � zi 
 �are de Rham representatives of the cohomology classes [�j]; 1 � j � n; in H1(M;L��1).Note that d((� � z1)�1 : : : (� � zn)�n 
 �) = �1 + : : : �nhence we have the relation [�1] + : : :+ [�n] = 0 (2)Lemma 9.1 The span of the cohomology classes [�j]; 1 � j � n, has dimension n�1.Proof: First since Pnj=1 �j = 0 we have �(
1
2 : : : 
n) = 1. Thus L� extends to a 
atline bundle over C P1 � fz1; : : : ; zng. Also, �j extends meromorphically over in�nitywith a simple pole at in�nity.Next we extend the 
at line bundle L� to a holomorphic line bundle Lhol on C P1so that (� � zj)�j 
 � is a local basis around zj. Then (� � z1)�1 : : : (� � zn)�n 
 � isa holomorphic section of Lhol which has no zeroes or poles.We can now prove the lemma. We have a 
at line bundle L� over M (with trivialmonodromy around1). The argument of [DM, x2.7] proves that we can compute thegroup H1(M;L�) as the 1-st cohomology group of the complex (
�(C P1 ; �D;L�); d)of holomorphic L�-valued forms onM which have at worst poles at z1; :::; zn;1. Herethe (additive) divisorD is de�ned by D = z1+:::+zn+1. Now �j 2 
1(C P1 ; �D;L�)and 
0(C P1 ; �D;L�) = ff�
 � : so that f has at worst poles at Dg:First note that Span(�1; :::; �n) � 
1(C P1 ; �D;L�) has dimension n since the forms�j have singularities at distinct points of C .Suppose that there exists f�
 � 2 
0(C P1 ; �D;L�) and c1; :::; cn such thatd(f�
 �) = c1�1 + ::: + cn�n :We claim that f cannot have any poles. Indeed, assume f has a pole of order k � 1at zi. Then f(�) = c(� � zi)k + : : :16



We are assuming df� + fd� = nXi=1 ci�ior df� + (f nXi=1 �i� � zid�)� = nXi=1 ci�i: (3)Equating the coe�cients of (�� zi)�k�1 in the equation (3) from each side we obtain�kc + �ic = 0, or �i = k. This contradicts the assumption that each �i is pureimaginary. It remains to check that f is not a polynomial. Assume f has a pole oforder k � 1 at 1, whence f(�) = a0 + a1� + ::: + ak�k. We equate the coe�cientsat �k�1d� on each side of (3) to obtain kak + (Pni=1 �i)ak = 0 or kak = 0. Thiscontradiction proves the claim. Hence f � c and hencedf = c nXi=1 �iwhich means that the dimension of the subspace of coboundaries in Span(�1; :::; �n)is 1. �In the group cohomology computations that follow 
1; :::; 
n will be a generatingset of Fn and b1; :::; bn will be its image under abelianization in Zn. Here the looprepresenting 
i is obtained by connecting the small circle ai going around zi to thebase-point � 2 C �fz1 ; :::; zng. We recall that Pn acts on Fn preserving the conjugacyclasses of the generators 
j. Hence the induced action on Zn is trivial and Pn �xesany character � : Fn ! C � . Hence Pn acts on H1(Fn ; C �). Here we let C � denote the1-dimensional space on which Fn acts via �. We next needLemma 9.2 Suppose that � : Fn ! C � satis�es �(
i) 6= 1 for all i. ThendimCH1(Fn ; C �) = n� 1.Proof: The Euler characteristic E(Fn ; C 1) = 1 � n. Hence E(Fn ; C �) = 1 � n. Onthe other hand, H0(Fn ; C �) = 0. �Corollary 9.3 dimCH1(M;L��1) = n� 1 and the classes [�1]; :::; [�n�1] form a basisfor H1(M;L�)We can construct an explicit basis w1; :::; wn�1 for H1(M;L�1) following [DM, x2]as follows. We write wi = 
i 
 �i + 
i+1 
 �i+1, where �i; �i+1 are multivalued 
atsections along 
i; 
i+1 respectively and the jump experienced by �i (at the base-point)after parallel translating along 
i cancels that of �i+1 along 
i+1.De�ne 
at sections Si, 1 � i � n� 1, of ~C n� � C n0 bySi := (Si1; :::; Sin); where Sij = �j Z ~wi �j:We see then that S1; :::; Sn�1 are multivalued parallel sections of C n� � C n0 .17



The desired representation � : Pn ! Aut(C n0 ) is obtained by parallel translationof S1; :::; Sn�1 along loops in C n� . The resulting automorphisms leave invariant theline C � where � = (�1; :::; �n).Before stating the main result of this section we need to de�ne a special classw1 in H1(M;L�1� ). Let a1 � C be a circle whose interior contains all the puncturesz1; :::; zn. Since �1 + : : : �n = 0, the monodromy of L�1� around a1 is trivial. Hencethere is a nonzero parallel section �_ of L�1� ja1. We let w1 be the homology classrepresented by a1 
 �_.Let � : Pn ! AutH1(M;L�1� ) be the homomorphism induced by the inclusionPn � Aut(Fn) (recall that Pn acts trivially on the sheaf of parallel sections of L�1� ).Lemma 9.4 (1) Rw1 �i = ��i, in particular w1 6= 0.(2) The class w1 is �xed by Pn.Proof: To prove (1) we apply the residue theorem and note that�(�; z)j�=1 = 1and the residue of (� � zi)�1d� at � = 1 is �1. To verify (2) we identify Pn with asubgroup of the mapping class group of M . Then we choose representatives for theelements of Pn so that they act by the identity on the closure of the exterior of thecircle a1. �We now haveTheorem 9.5 (i) The monodromy representation of the 
at bundle C n� �C n0 is equiv-alent to � .(ii) Under the above equivalence the invariant line V� � C n0 corresponds to theline Cw1 � H1(M;L�1� ).(iii) We obtain an induced equivalence of the monodromy representation of C n� �C n0 =V� and the induced action of Pn on H1(C P1 � fz1; :::; zng; L�1� ).Proof: We have an isomorphism 	 from H1(M;L�1� ) onto the space of parallel sectionson ~C n� � C n0 given by 	(w) = Sw whereSw = (Z ~w �1; :::; Z ~w �n) = (h[�1]; ~wi; : : : ; h[�n]; ~wi):We claim that 	 intertwines the representations � and � (see above) of Pn. Themonodromy representation � : Pn ! Aut(C n0 ) is de�ned bySw(g�1z) = Sw(z)�(g):In order to go further we will need to lift the Pn action on ~C n� to the total spaceof ~� : E ! ~C n� . We note that from the �ber bundle � : C n+1� ! C n� we get anexact sequence Fn ! Pn+1 ! Pn. We may split this sequence by mapping Pn to thesubgroup of Pn+1 which consists of those elements that do not involve the �rst stringof a braid { recall that � forgets the �rst point. Let ~C n+1� be the universal cover ofC n+1� . Then Pn+1 acts on ~C n+1� . But E = ~C n+1� =Fn , whence Pn = Pn+1=Fn acts onE as the group of deck transformations of the cover E ! C n+1� , and we obtain the18



required lift ~g of elements g 2 Pn to Aut(E). We now can give a formula for themonodromy representation � , namely~w(gz) = ~g��(g)�1 ~w(z)or ~w(g�1z) = ~g�1� �(g) ~w(z):We can now prove the claim. Observe that since �i is an invariantly de�ned 1-formwith values in L� on C n+1� we have�i(gz) = (~g�1)��i(z)or �i(g�1z) = (~g)��i(z):Hence Sw(z)�(g) = Sw(g�1z) = (Z ~w(g�1z) �1(g�1z); :::; Z ~w(g�1z) �n(g�1z)) =(Zg�1� �(g) ~w(z) ~g��1(z); :::; Zg�1� �(g) ~w(z) ~g��n(z)) =(Z�(g) ~w(z) �1(z); :::; Z�(g) ~w(z) �n(z))and the claim is proved. Hence (i) follows.To verify (ii) it su�ces to observe that Sw1 = (��1; : : : ;��n), which follows fromLemma 9.4. From (i) and (ii) we deduce that the monodromy representation of r onC n=V� is equivalent to the action of Pn on H1(M;L�1� )=Cw1 . But it is clear from theexact sequence of the pair (M; C P1�fz1; :::; zng) that we have a natural isomorphismH1(M;L�1� )=Cw1 �= H1(C P1 � fz1; :::; zng;L�1� ). �Remark 9.6 Since we have seen that Te( ~Mr) contains an invariant line, the corre-sponding representation of Pn must be on H1(M;L�1), not on H1(M;L) (the latterhas an invariant hyperplane).10 The Gassner Representation.We will follow [Bi] and [Mo] for our treatment of the Gassner representation. Webegin with a quick review of the Fox calculus.Let G be a �nitely generated group and M a G-module. Let C [G] be the groupring.De�nition 10.1 A derivation D : C [G] !M is a C -linear map satisfyingD(fh) = (D(f))�(h) + fD(h)where � : C [G] ! C is the augmentation. We let Der(G;M) denote the space ofderivations. 19



Remark 10.2 The restriction of each derivation D to G is a 1-cocycle � 2 Z1(G;M).Conversely, given a 1-cocycle � 2 Z1(G;M) we de�ne a derivation D byD( nXi=1 cigi) = nXi=1 ci�(gi):Thus Der(G;M) and Z1(G;M) are canonically isomorphic. We will identify themhenceforth.In the case G is the free group Fn on the generators fx1; ::; xng there is a uniquederivation @@xi 2 Der(Fn ; C [Fn ]) given by@@xi (xj) = �ij; 1 � i; j � n:Then Der(Fn ; C [Fn ]) is free over C [Fn ] with the basis @@x1 ; : : : ; @@xn . Note that the pro-jection p : Fn ! H1(Fn) �= Zn induces a ring-homomorphism p : C [Fn ] ! C [H1(Fn)]and a push-forward map on derivationsp� : Der(Fn ; C [Fn ])! Der(Fn ; C [H1(Fn)]):We may identify C [H1(Fn)] with the C -algebra L of Laurent polynomials in t1; :::; tn.The space Der(Fn ;L) is free over L with the basis p� @@x1 ; : : : ; p� @@xn . We will drop p�henceforth.The main point in the construction of the Gassner representation is that there isa homomorphism � : Pn ,! Aut(Fn). This homomorphism is described in terms offormulas in [Bi, Corollary 1.8.3]. There is an elementary description of � in terms of\pushing a loop along the braid", see [Mo, Page 87]. In both cases the action of Pnon Fn is a right action, i.e. there is �� such that ��(p1p2) = ��(p2)��(p1). Therefore, thehomomorphism � is actually given by �(p) := ��(p�1). Next we note that we have anaction of Pn on Der(Fn ;L): g �D(x) = D(�(g)�1x):Since Pn acts trivially on L, g �D is still a derivation and the operator g� is L-linear.Remark 10.3 In [Bi] and [Mo] the action of Pn on Der(Fn ;L) is de�ned by g �D(x) = D(��(g)x). But ��(g) = �(g)�1 and hence g �D = g �D. The composition oftwo right actions is a homomorphism!We can now de�ne the Gassner representation.De�nition 10.4 The Gassner representation � : Pn ! AutL(Der(Fn ;L)) assigns toeach g 2 Pn the operator g� on Der(Fn ;L), where Der(Fn ;L) is considered as a freeL-module of rank n.It is traditional to represent �(g) as an element (aij) of GLn(L) using the basis@@x1 ; : : : ; @@xn , see [Bi, Page 119], [Mo, Page 194]:aij = @@xj ��(g)xijxi=ti :20



The Gassner representation is reducible. We will see shortly that Der(Fn ;L)contains the Pn-�xed line B1(Fn ;L) and the Pn-invariant hyperplane Der(�n;L).The line does not intersect the hyperplane, nor it is complementary to it (L is not a�eld). We begin by describing the line.We have seen that Der(Fn ;L) �= Z1(Fn ;L). Consequently, Der(Fn ;L) containsB1(Fn ;L), the Eilenberg-MacLane 1-coboundaries. Since C0(Fn ;L) �= L and Pn actstrivially on L, Pn will also act trivially on B1(Fn ;L).Lemma 10.5 B1(Fn ;L) is a free rank 1 submodule of Z1(Fn ;L) with the basisPni=1(1� ti) @@xi .Proof: Recall that the coboundary � : C0(Fn ;L)! C1(Fn ;L) is given by�`(xi) = `� xi` = `� ti` = (1� ti)`But (1 � ti)` = `�1(xi), thus � is L-linear and B1(Fn ;L) = L(�1). We conclude byobserving that �1 = nXi=1 (1� ti) @@xi �We now describe the hyperplane. The element x1 = x1 : : : xn 2 Fn is �xed by Pn.We de�ne Der(Fn ;L)1 := fD 2 Der(Fn ;L) : Dx1 = 0gLemma 10.6 (i) Der(Fn ;L)1 is a free summand of Der(Fn ;L) of rank n� 1.(ii) The quotient map Fn ! �n induces an isomorphism Der(�n;L) !Der(Fn ;L)1 of Pn-modules.Proof: Let fy1; :::; yng be the basis for Fn given by yi = x1 : : : xi, 1 � i � n. ThenDer(Fn ;L) is free on @@y1 ; : : : ; @@yn and Der(Fn ;L)1 is free on @@y1 ; : : : ; @@yn�1 . Thestatement (ii) is clear. �De�nition 10.7 The reduced Gassner representation is the restriction of the actionof Pn from Der(Fn ;L) to Der(�n;L):� : Pn ! AutL(Der(�n;L)):We may represent �(g), g 2 Pn as elements of GLn�1(L) relative to the basis@@y1 ; : : : ; @@yn�1 . Observe that B1(Fn ;L) does not intersect Der(�n;L), indeed`�1(x1) = `(1� t1 : : : tn) 6= 0:Remark 10.8 We will see below that there exist homomorphism images ofDer(Fn ;L) such that the image of B1(Fn ;L) is contained in the image of Der(�n;L).Hence B1(Fn ;L) is not a complement to Der(�n;L).Note also that there is a representation of Pn on H1(Fn ;L) = Z1(Fn ;L)=B1(Fn ;L).We do not know whether or not H1(Fn ;L) is a free L-module.We now have 21



De�nition 10.9 Let � = (�1; :::; �n) with �j 2 C � , 1 � j � n and M be an L-module. Then the specialization M� of M at � is de�ned by M� = M
L C � .Here C � is the complex line equipped with the L-module structure tiz = �iz, z 2 C .More concretely, M� is the quotient of M by the submodule of elements f(tj ��j)m; 1 � j � n;m 2 Mg.Suppose that T 2 EndL(M). Then T induces an element T� = T
1 of End(M�).Now assume that M is free on m1; :::; mn. Then m1 
 1; :::; mn 
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