
THE IDEAL OF RELATIONS FOR THE RING OF INVARIANTS

OF n POINTS ON THE LINE

BENJAMIN HOWARD, JOHN MILLSON, ANDREW SNOWDEN AND RAVI VAKIL*

Abstract. The ring of projective invariants of n ordered points on the projective line is one of the most
basic and earliest studied examples in Geometric Invariant Theory. It is a remarkable fact and the point of
this paper that unlike its close relative the ring of invariants of n unordered points this ring can be completely
and simply described. In 1894 Kempe found generators for this ring, thereby proving the First Fundamental
Theorem for it (in the terminology introduced by Weyl). In this paper we compute the relations among
Kempe’s invariants, thereby proving the Second Fundamental Theorem (again in the terminology of Weyl),
and completing the description of the ring 115 years later.

This paper introduces a number of new tools to the problem, and uses the graphical algebra formal-
ism to intermediate between representation-theoretic arguments (for symmetric and Lie groups), and the
symmetry-breaking of the Speyer-Sturmfels degeneration.
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1. Introduction

We consider the ring of invariants of n points on the projective line, defined as the projective coordinate
ring of the GIT quotient of (P1)n by the group SL(2). This is a classical archetype of GIT and a common
first example in the theory. To form the quotient, one must choose weights w = (w1, . . . , wn); it is then
given by

(P1)n
99K (P1)n//wSL(2) = ProjRw

where Rw =
⊕∞

k=0 R
(k)
w , with R

(k)
w = Γ((P1)n,O(kw1, . . . , kwn))SL(2). (Note that we use the notation R(k)

for the k piece of a graded ring R.) The ring of invariants Rw turns out to be generated in its lowest nonzero
degree, so the GIT quotient has a natural projective embedding. We denote the weight (1, 1, . . . , 1) by 1n.

Theorem 1.1 (Main Theorem, informal version). If w 6= 16, the ideal of relations between lowest degree
invariants is generated by quadratics.

Detailed motivation and background for this problem are given in the announcement [HMSV2]. We
describe there how small cases have long been known to yield beautiful classical geometry. In this paper,
we show that this rich structure extends to any number of points with any weighting: the relations for the
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moduli space are generated by a particularly simple type of quadratic, with the single exception of the Segre
cubic for 6 points. In a precise sense, the ideal is cut out by essentially one equation, inherited from the
n = 8 case. If Kempe’s theorem is the analogue of Weyl’s “First Main Theorem” for SL2 (see [W]), then
this is the analogue of his “Second Main Theorem.”

This is the culmination of a number of papers on this topic, so we wish to be clear about its relationship to
the others. [HMSV1] (subsuming two earlier arXiv preprints) opened up this question: through blunt toric
degeneration and explicit local calculation, hints that the relations were simple quadrics were observed. It
was shown there that certain quadrics (not as simple as in this paper) cut out the space. The other important
paper (in preparation) is on the interplay of the geometry and representation theory in the moduar fivefold
parametrizing eight points on the line. (The remaining papers are less important; one on S6 describes
some pretty algebra that fell out of our analysis. [HMSV3] will be subsumed into the representation-theory
part of the modular fivefold paper. [HMSV2] is the announcement of the results in this paper and in the
forthcoming fivefold paper. [HMSV4] is a technical companion to this paper, extending the results to more
general base rings.)

The current paper is the main one of the series. It introduces fundamentally new techniques to the
problem, and is not simply a refinement of our preliminary ideas of [HMSV1]. The quadric here is simpler
than those speculated about in [HMSV1]. The argument uses the formalism of graphical algebras to balance
on one hand representation theory arguments (of both symmetric and Lie groups), with on the other hand
information from symmetry-breaking (from a better toric degeneration, discovered by Speyer and Sturmfels
from tropical motivation).

1.1. Integrality issues. For simplicity, we prove our results over Q, but our results apply more generally,
as we show in [HMSV4]. In preparation for this, we prove intermediate results over more general base
rings, which we hope will not distract readers interested in characteristic 0. In particular, this paper proves
Theorem 1.1 over Z[ 1

12! ], but the precise version (Theorem 1.2) only over Q.

1.2. The graphical formalism. We use a graphical interpretation of the ring of invariants, which allows
us to deal effectively with both the Sn-symmetries and the broken symmetries of toric degenerations. To
a directed graph Γ on vertices labeled 1 through n (in bijection with the points), with valence vector

kw = (kw1, . . . , kwn), we associate an invariant in R
(k)
w :

XΓ =
∏

−→
ij

(xiyj − xjyi).

Here the product is taken over the edges
−→
ij of Γ and xi and yi are projective coordinates for P1. Note that

if Γ has a loop — that is, an edge with the same source and target — then XΓ = 0. (Throughout this paper,
graphs are allowed to have loops and multiple edges between the same vertices.) A fundamental result from

classical invariant theory states that the XΓ span R
(k)
w . Kempe showed that for w = 1n and n even the ring

Rw is generated in degree 1 (Theorem 2.1). Thus, in this situation, Rw is generated by those XΓ where Γ
is a matching, that is, a graph in which each vertex belongs to precisely one edge. A similar result holds for
any n and w.

1.3. Relations. The theorem of Kempe mentioned above provides generators for the ring Rw. The purpose
of this paper is to determine the relations between these generators. A number of obvious relations exist;
we catalog some of them below. An important phenomenon shows itself already in these simple examples:
relations on n points can be extended to give relations on more than n points. This is a key theme in our
treatment and is discussed in detail in §7.1.

The most obvious relation is the sign relation: we have X−→
ab

= −X−→
ba

. This can be regarded as a relation

between two invariants with n = 2 and w = 12. It extends to invariants with arbitrary n and w as follows:
if Γ is any graph and Γ′ is obtained from Γ by switching the direction of a single edge then XΓ = −XΓ′ .

The next most simple relation appears when n = 4 and w = 14:

= +
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This is the classical Plücker relation. It extends to each R
(k)
w as well: given a graph Γ with valence vector

kw and two edges
−→
ab and

−→
cd of Γ we have the identity

(1.1) XΓ = XΓ1 + XΓ2

where Γ1 and Γ2 are the graphs obtained from Γ by replacing {
−→
ab,

−→
cd} with {

−→
ad,

−→
cb} and {

−→
ac,

−→
bd} respectively.

We will use the phrase “to Plücker two edges
−→
ab and

−→
bc of a graph Γ” to mean “to replace XΓ by XΓ1 +XΓ2 .”

The sign and Plücker relations are both linear relations; in fact, they span all linear relations.
Some higher degree relations are conveniently thought of in terms of colored graphs. By a k-colored graph

we mean a graph in which each edge has been assigned one of k colors. By a multi-matching of degree
k we mean a k-colored graph in which each vertex appears in precisely one edge of each color. Let Γ be

a multi-matching of degree k on n vertices. We define the element XΓ of (R
(1)
1n )⊗k to be the pure tensor⊗

XΓ(i) where the product is over the colors i and Γ(i) is the subgraph of Γ on the edges of color i. In

terms of colored graphs, the map (R
(1)
1n )⊗k → R

(k)
1n “forgets the color.”

The Segre cubic relation is described with colored graphs as follows:

(1.2) =

(For those readers for whom color is not available, we will follow the convention that the solid lines are
green, the dashed red and the dotted blue.) Each edge should be directed in the same way on both sides of
the equation. This relation holds because the graphs on each side have the same set of edges — only the

colors are different. The Segre cubic relation extends to cubic relations on R
(1)
1n for any even n > 6. For

example, we have the following relation on eight points starting from the Segre cubic on six points:

(1.3) =

There is a “new” relation for n = 8, binomial and quadratic:

(1.4) =

As with all previously discussed relations, the above relation extends to relations on more points. One way
to extend the above relation is to add some number of doubled edges to each side; we call such relations the
simplest binomial relations. Examples are given in [HMSV2, §4].

1.4. The main theorem. We now state Theorem 1.1 more precisely in the main case of n even and unit
weights.

Theorem 1.2 (Main theorem, main case). For even n 6= 6 the ideal I1n of relations (the kernel of

Sym R
(1)
1n � R1n) is generated by the simplest binomial relations. The symmetric group Sn acts transi-

tively on these relations, so any one of them generates I1n as an Sn-ideal.

(The ideal I16 is principal and generated by the Segre cubic relation (1.2) over Z.)

Remark 1.3. The discussion of [HMSV1, §2.17] explains how to reduce the case of arbitrary weight to the
“main case.” Thus as a corollary we have Theorem 1.1, and more precisely, the quadratics are explicitly
given by “clumping vertices” (loc. cit.). Thus for the remainder of the paper, we will deal only with this
“main case” of w = 1n and n even.

We essentially conjectured Theorems 1.1 and 1.2 in [HMSV1, §1.5]. We saw the two main theorems of
that paper as evidence: first, that a class of relations called the “simple binomial relations,” containing
the simplest binomial relations, cuts out the quotient scheme-theoretically, and second, that the ideal is
generated by relations of degree at most four. These two results are subsumed by Theorem 1.2 in the main
case, and Theorem 1.1 (in its more precise form, Remark 1.3) in general.
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Remark 1.4. Given that Theorem 1.2 states that I1n , for even n 6= 6, is generated by a single quadratic up
to Sn-symmetry, one may wonder whether the same holds when n is odd. A short representation-theoretic
argument shows that if n is 5, 7 or 9 then this is indeed the case (see [HMSV2, Fig. 3(h)] for a simple
generator with n = 5), but if n is odd and at least 11 then the space of quadratic relations is not a cyclic
Sn-module, so I1n is not principal as an Sn-ideal.

1.5. Representation-theoretic description. Here is a representation-theoretic description of the quadrat-

ics (in the main case) in characteristic 0 that is both striking and relevant. The Sn-representation on R
(1)
1n is

irreducible and corresponds to the partition n/2+n/2. The representation Sym2 R
(1)
1n is multiplicity free and

contains those irreducibles corresponding to partitions with at most four parts, all even (Proposition 6.5).

The space of quadratic relations is the subspace of Sym2 R
(1)
1n spanned by those irreducibles corresponding

to partitions with precisely four parts. Being multiplicity-free, this is necessarily a cyclic Sn-module. The
reader may wonder why we privilege a particular generator; the answer is that this relation is in some
imprecise sense forced upon us by the graphical formalism.

1.6. Outline of proof. We now outline the proof, noting where the arguments are ad hoc or less satisfactory.
The challenge is to relate three structures which often operate at cross purposes: the generation of new
relations from relations on fewer points; the action of Sn on everything; and the graphical description of
the algebra, including the use of colored graphs to describe relations.

In §2, we set the stage by giving our preferred description of the invariant ring. We replace the integer
n by a finite set L of cardinality n, as this makes many constructions more transparent. In §3–4 we use a
Speyer-Sturmfels toric degeneration to get some control on the degrees and types of generators, temporarily
breaking the SL-symmetry. We show that the degenerated ring is generated in degree one and that the
relations between the degree one generators are generated by quadratic relations and certain explicit cubic
relations. In §5 we lift these explicit cubic relations to the original invariant ring. Having deduced that the
ideal of relations is generated by quadratics and these particular (“small generalized Segre”) cubics, we are
done with the toric degeneration. Our next goal is to show that the particular cubics lie in the ideal QL

generated by quadratic relations.
In order to take advantage of the SL-action, in §6 we study the tensor powers of the degree one invariants

as representations, introducing a useful “partition filtration.” Our results will (for example) allow us to
write invariants and relations in terms of highly disconnected graphs, which is the key to our later inductive
arguments. The last result of this section is disappointing: it is the only place in the article where computer
calculation is used. However, the calculations are quite mild — they concern cubic invariants on six points
and amount to simple linear algebra problems in vector spaces of dimension at most 35 — and we feel that
a dedicated human being could perform them in a matter of hours.

In §7, we show that for n ≥ 10 all relations are induced from those on fewer points (precisely, n − 2,
n− 4 or n− 6 points), modulo quadratic relations. The cases n ≥ 12 are direct and structural, but the case
n = 10 is ad hoc and inelegant because “the graphs are too small” to apply the structural techniques. As a
consequence, we find that if the ideal is generated by quadratics for n− 2, n− 4 and n− 6 points then it is
for n points as well.

In §8, we show that the ideal is generated by quadratics when n 6= 6. This implies Theorem 1.1 by
Remark 1.3. Thanks to the previous section, showing generation by quadratics reduces by induction to
showing the result for the three “base cases” where n is 8, 10 and 12. We accomplish this by further
reducing the 10 and 12 point cases to the 8 point case and then appealing to earlier work for the 8 point
case. The reduction from the 10 and 12 point case to the 8 point case is one of the most difficult and least
conceptual parts of the paper, so the reader may wish to skip this section on a first reading. One might
hope that these results, being finite computations, could be relegated to a computer, but the computations
are large enough so that this is not possible with current technology using naive algorithms.

Finally, in §9 we show that the quadratic relations are spanned by the simplest binomial relations using
the representation theory of SL, completing the proof of Theorem 1.2.

1.7. The projective coordinate ring of Xn//G. The third author has observed that many of the formal
concepts in this paper — such as outer multiplication and the simple binomial relations — in fact apply to
the study of the projective coordinate ring of Xn//G for any projective variety X with an action of a group
G. He has constructed a formalism for dealing with the resulting structures and formulated a few general
finiteness conjectures. One of the more surprising realizations is that the graphical formalism discussed
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above applies to any variety, in a certain sense. This general point of view may even shed more light on the
present case: in this formalism, Theorem 1.2 can be reinterpreted as stating that a certain “ring,” made
up of the rings R1n with varying n, is finitely presented. If such finitely presented “rings” were coherent
(a weakening of the noetherian property) then one would immediately obtain universal degree bounds on
syzygies, as we have for relations. This work will appear in a forthcoming paper.

1.8. Notation and conventions. We follow some conventions in an attempt to make the notation less
onerous. Throughout, L will be a finite set. By an even set we mean finite set of even cardinality. Semigroups
will be in script, e.g., G , S , R. Graphs are denoted by uppercase Greek letters, e.g., Γ, ∆. Trivalent trees

will be denoted by Ξ. An edge of a directed (resp. undirected) graph from vertex x to y is denoted
−→
xy (resp.

xy). In general, S (in various fonts) will refer to constructions involving general directed graphs, and R will
refer to regular graphs. We work over Z (see §1.1) in general.

Acknowledgments. We thank Shrawan Kumar, Chris Manon and Lawrence O’Neil for useful discussions.

2. The invariant ring RL

In §2 we define the ring of invariants RL for a finite set L, and give some of its properties.

2.1. The semi-group GL and the rings SL and RL. Let L be a finite set. Denote by GL the set of
directed graphs on L. Give GL the structure of a semi-group by defining Γ · Γ′ to be the graph on L whose
edge set is the disjoint union of the edge sets of Γ and Γ′. For an element Γ of GL we denote the corresponding
element of the semi-group algebra Z[GL] by XΓ. (Readers interested in characteristic 0 may freely replace
any occurrence of Z or Z[1/n] by Q throughout.)

For a, b ∈ L let
−→
ab denote the graph in GL with a single directed edge from a to b. Clearly GL is the free

commutative semi-group on the
−→
ab, and Z[GL] is the polynomial ring on the X−→

ab
.

Define the ring SL as the quotient of Z[GL] by the following three types of relations, described in §1.2.

• Loop relation: If Γ has a loop then XΓ = 0.
• Sign relation: If Γ is obtained from Γ′ by reversing the direction of an edge then XΓ = −XΓ′ .
• Plücker relation: If a, b, c and d are elements of L, then X−→

ab
X−→

cd
= X−→

ad
X−→

cb
+ X−→

ac
X−→

bd
.

The sign relation implies the loop relation when 2 is inverted. We still write XΓ for the image of XΓ in the
ring SL.

Recall that a graph Γ on L is said to be regular of degree d if each vertex of Γ belongs to precisely d
edges. Define RL to be the subgroup of SL generated by the XΓ with Γ regular. Clearly RL is a subring of
SL. Grade RL by declaring XΓ to be of degree d if Γ is regular of degree d. If |L| is odd, then every regular
graph on L has even degree, so RL is concentrated in even degrees. (The “first and second main theorems
of invariant theory,” mentioned implicitly in §1.2, imply that SL is the SL2-invariant part of the Cox ring of
(P1)L and that RL is the SL2-invariant part of the projective coordinate ring of (P1)L with respect to the
line bundle O(1)�L.)

These constructions are functorial in L: A map of sets φ : L → L′ induces a homomorphism GL → GL′

of semi-groups and thus a homomorphism Z[GL] → Z[GL′ ] of semi-group rings. This ring homomorphism
respects the sign and Plücker relations and so induces a ring homomorphism SL → SL′ . If the fibers of L all
have the same cardinality then RL is mapped into RL′ , and we thus obtain a map RL → RL′ . As a special
case, we see that SL = Aut(L) acts on RL.

2.2. Translation from directed graphs to undirected graphs. To avoid confusion with signs, it will
often be convenient to translate from directed graphs to undirected graphs. Let L be an even set. We
denote by ML the set of directed matchings on L. An orientation on L is defined as a map ε : ML → {±1}
satisfying ε(σΓ) = sgn(σ)ε(Γ) for σ ∈ SL and Γ ∈ ML. There are two orientations on L.

Fix an orientation of L. For an undirected matching Γ we put YΓ = ε(Γ̃)XeΓ where Γ̃ is any directed

matching with underlying undirected matching Γ. The YΓ span the space R
(1)
L and satisfy the loop relation

and the “undirected Plücker relation”
YΓ1 + YΓ2 + YΓ3 = 0,

whenever Γ2 and Γ3 are obtained by modifying two edges of Γ1 appropriately. We often prefer to work with
the YΓ instead of the XΓ since there are no directions to keep track of. However, one must keep in mind
that the action of the symmetric group on the YΓ is twisted by the sign character from the most obvious
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action: σYΓ = sgn(σ)YσΓ for σ ∈ SL. We often use the YΓ without explicitly mentioning the choice of an
orientation.

2.3. Kempe’s generation theorem. The purpose of this paper is to give a presentation for the ring RL.
To do this we must first find a set of generators. This problem was solved (for the main case) by Kempe
[Ke].

Theorem 2.1 (Kempe). Let L be an even set. Then the ring RL is generated in degree one. Equivalently,
the YΓ (or XΓ) with Γ a matching generate RL.

Proof. We recall the proof of [HMSV1, Theorem 2.3], which is simpler than Kempe’s original proof, to
motivate later arguments. For any regular graph Γ on L, we express YΓ as a polynomial in elements of the
form YΓ′ with Γ′ a matching. Partition L arbitrarily into two sets of equal cardinality, one called “positive”
and the other “negative.” We then have three types of edges: positive (both vertices positive), negative
(both negative) and neutral (one positive and one negative). After applying the Plücker relation to a positive
and a negative edge, one is left with only neutral edges:

+

+ −

−

=

+

+ −

−

+

+

+ −

−

(We have neglected signs in the above identity.) As Γ is regular, it has a positive edge if and only if it has a
negative one. Thus by repeatedly applying Plücker relations to positive and negative edges we end up with
an expression YΓ =

∑
±YΓi

where the Γi have only neutral edges, and are hence bipartite. Hall’s marriage
theorem states that in a regular bipartite graph one can find a matching. Thus each Γi can be factored into
matchings, which completes the proof. �

2.4. Kempe’s basis theorem. Fix an embedding of L into the unit circle in the plane. We say that a
graph Γ on L is non-crossing if no two of its edges cross when drawn as chords. The following well-known
theorem of Kempe (also from [Ke]) will be used in the proofs of Proposition 3.1 and Lemma 9.3.

Theorem 2.2 (Kempe). The XΓ with Γ non-crossing span SL. The only linear relations among these
elements are the sign and loop relations. Thus if one chooses for each undirected loop-free non-crossing
graph a direction on the edges then the corresponding XΓ form a basis for SL. The same is true for RL if
one considers regular non-crossing graphs.

In fact, there is a procedure called the straightening algorithm which expresses an arbitrary XΓ in terms
of the non-crossing basis. The algorithm is simple: take any pair of edges in Γ which cross and Plücker
them. The algorithm terminates because the total lengths of the edges in each the two graphs resulting from
a Plücker operation is less than that in the original graph. This nearly proves the theorem; for details see
[HMSV1, Propositions 2.5, 2.6].

2.5. Some definitions. We now define some notation that will be used constantly:

• RL is the ring of invariants, as defined above.

• VL is the first graded piece R
(1)
L of RL; it is spanned by the YΓ with Γ a matching.

• IL is the ideal of relations, that is, the kernel of the map Sym(VL) → RL.

• QL is the ideal of Sym(VL) generated by I
(2)
L ; it is a sub-ideal of IL.

3. The toric degenerations grΞ SL and grΞ RL

In §3, we discuss toric degenerations of the rings SL and RL. These were first described in [SS], and one
was used in [HMSV1]. By a “toric ring” we mean a ring isomorphic to a semi-group algebra, where the
semi-group is the set of lattice points in a strictly convex rational polyhedral cone; by a “toric degeneration”
of a ring we mean a toric ring obtained as the associated graded of a filtration on the original ring. The
main points of §3 are the following:

(1) To each trivalent tree Ξ with leaf set L we give a toric degeneration of the rings SL and RL, denoted
grΞ SL and grΞ RL respectively.

(2) We give a presentation of the ring grΞ SL.
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(3) We discuss the theory of weightings on trivalent trees.
(4) We identify the rings grΞ SL and grΞ RL with semi-group algebras of “weightings.”

3.1. Trivalent trees. By a trivalent tree we mean a connected undirected graph Ξ, without cycles, all of
whose vertices have valence one or three. We call vertices of valence three trinodes, and vertices of valence
one leaves. We say leaves x and y form a matched pair if they share a neighbor (trinode). We say that a
trivalent tree is matched if it has more than four vertices and every leaf belongs to a (necessarily unique)
matched pair. A matched trivalent tree necessarily has an even number of leaves.

•

•

• •

•

•

•

•

a

b

c d

e

f

g

h

Figure 1. A trivalent tree. Vertices c, d and f are trinodes; the rest are leaves. The
vertices a and b form a matched pair, as do the vertices g and h. The tree is not matched
because e does not belong to a matched pair.

3.2. The toric rings grΞ SL and grΞ RL. Let Ξ be a trivalent tree with leaf set L. For a graph Γ on L,
define the level of Γ (relative to Ξ) as

levΞ Γ =
∑

−→
ab

(the distance from a to b in Ξ)

where the sum is over the edges of Γ, and distance is the number of edges in the “geodesic.” Clearly levΞ

induces a semi-group morphism levΞ : GL → Z≥0. Define an increasing filtration FΞ on Z[GL] by letting
F i

ΞZ[GL] be the subspace of Z[GL] spanned by the XΓ with levΞ Γ ≤ i. (The notation levΞ will not be used
further.) Let F i

ΞSL be the image of F i
ΞZ[GL] under the surjection Z[GL] → SL, giving a filtration of the ring

SL. Let grΞ SL denote the associated graded ring. We will show that grΞ SL is a toric ring (Proposition 3.3).
For a graph Γ of level n, let XΓ denote the image of XΓ in F n

Ξ SL/F n−1
Ξ SL. Clearly the XΓ span grΞ SL.

Let F i
ΞRL be the filtration on RL induced from its inclusion into SL. Let grΞ RL be the associated graded

ring. It is naturally the subring of grΞ SL spanned by the XΓ for which Γ is regular.

3.3. Presentation of the ring grΞ SL. Let JΞ denote the ideal in Z[GL] generated by the following (cf.
§2.1):

• Loop relation: If Γ has a loop then XΓ = 0.
• Sign relation: If Γ′ is obtained from Γ by reversing the direction of an edge then XΓ = −XΓ′ .
• Toric Plücker relation: If a, b, c and d are elements of L satisfying:

(3.1)
the path from a to b in Ξ meets the path from c to d,
and the path from a to c meets the path from b to d (see Figure 2)

then X−→
ab

X−→
cd

= X−→
ac

X−→
bd

.

(The notation JΞ is only used in §3.3.)

•

•

• •

•

•

a

d

b

c

=

•

•

• •

•

•

a

d

b

c

Figure 2. The toric Plücker relation X−→
ab

X−→
cd

= X−→
ac

X−→
bd

. Both pairs of geodesics overlap

on the horizontal edge of the trivalent tree Ξ. Note that
−→
ad and

−→
bc do not overlap.

The purpose of this section is to prove the following, used in §3.5 to identify grΞ SL with a semi-group
algebra of “weightings.”
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Proposition 3.1. The map Z[GL] → grΞ SL given by XΓ 7→ XΓ is surjective with kernel JΞ.

The kernel I of the map Z[GL] → SL is generated by the sign and Plücker relations. The kernel of the
map Z[GL] → grΞ SL is the ideal generated by the leading terms of all elements of I . In general, of course,
this is not the same as the ideal generated by the leading terms of a generating set of I . Proposition 3.1
says that in this situation, however, this is the case.

Proof. The map is clearly surjective and contains the sign relation in its kernel. We now check that the toric
Plücker relation lies in its kernel as well. Let a, b, c and d belong to L and satisfy (3.1). The equation

X−→
ab

X−→
cd

= X−→
ac

X−→
bd

+ X−→
ad

X−→
bc

holds in SL (the normal Plücker relation). The two graphs
−→
ab ·

−→
cd and

−→
ac ·

−→
bd have the same level, say n,

since when drawn in Ξ they use the same edges with the same multiplicity (see Figure 2). The remaining

graph
−→
ad ·

−→
bc has level less than n (again, see Figure 2). Thus all terms in the above relation lie in F n

Ξ SL.

Reducing modulo F n−1
Ξ SL we obtain

X−→
ab

X−→
cd

= X−→
ac

X−→
bd

which shows that the toric Plücker relation lies in JΞ.
We now show that non-crossing graphs span Z[GL]/JΞ. Embed L into the unit circle in the plane in such

a way that Ξ can be drawn inside the circle without any crossings. Let Γ be a graph on L which contains

crossing edges
−→
ab and

−→
cd. The paths ab and cd then meet in Ξ. The same reasoning as in the non-toric case

now applies: applying the toric Plücker relation to this pair of edges yields an identity XΓ = XΓ′ where the
total lengths of edges in Γ′ is less than that of Γ (here length is computed as distance in the plane, not the
trivalent tree). Continuing in this manner, we get an expression XΓ = XΓ′ where Γ′ is non-crossing.

It is now formal to conclude that Z[GL]/JΞ → grΞ SL is an isomorphism. We elaborate on this. Choose a
set Z of directed non-crossing graphs such that for each undirected non-crossing graph Γ there is a unique
way to direct the edges of Γ such that the resulting graph belongs to Z. The previous paragraph shows that
if Γ is any graph of level n we can find Γ′ ∈ Z such that XΓ = ±XΓ′ + Y holds in SL, where Y ∈ F n−1

Ξ SL.
Applying this result to Y repeatedly, we find that the XΓ with Γ in Z and level at most n form a basis of
F n

Ξ SL (we already know they are linearly independent). It thus follows that the XΓ with Γ in Z are linearly
independent in grΞ SL. Since the surjection Z[GL]/JΞ → grΞ SL takes a spanning set to a set of linearly
independent vectors, it must be an isomorphism. �

3.4. Weightings. A weighting ξ on a trivalent tree Ξ is an assignment of a non-negative integer to each
edge of Ξ. Define the weight triple of a trinode v of Ξ to be the weights of the three edges connected to
v. (We write it as an ordered triple even though it is not ordered.) Consider the following two equivalent
conditions on weight triples (a, b, c):

(W1) The triple (a, b, c) satisfies the triangle inequalities (a, b and c can form the sides of a triangle) and
a + b + c is even.

(W2) There exists a triple (x, y, z) of non-negative integers such that a = x + y, b = x + z and c = y + z.

Note that the triple (x, y, z) is uniquely determined by (a, b, c). We say that a weighting is admissible if the
weight triple at each trinode satisfies these conditions.

Let Γ be an undirected graph on the leaves of Ξ. We say that an edge e of Ξ meets an edge ij of Γ if
e occurs in the geodesic joining i and j. We define a weighting ξΓ of Ξ by assigning to an edge of Ξ the
number of edges of Γ which it meets. We call ξΓ the weighting of Ξ associated to Γ (see Figure 3).

Define (toric) Plücker equivalence to be the equivalence relation ∼ on the semi-group of undirected graphs
G un

L on L generated by the following two conditions:

• Given a, b, c, d in L satisfying (3.1), ab · cd ∼ ac · bd.
• If Γ ∼ Γ′ and Γ′′ is any graph then Γ · Γ′′ ∼ Γ′ · Γ′′.

The following result gives a correspondence between graphs and weightings.

Proposition 3.2. Associating a weighting of Ξ to a graph induces a bijection between the Plücker classes
of undirected graphs on the leaves of Ξ and the admissible weightings of Ξ.
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2
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Figure 3. A graph on the leaves of a trivalent tree and its associated weighting.

Proof. Let Γ be a graph and let ξ be its associated weighting. We first show that ξ is admissible. Let v be
a trinode of Ξ and let (a, b, c) be its weight triple. Consider the picture

•

• •

•

v

p q

r

a b

c

y z

x

Here a is the number of edges of Γ that meet edge pv; b and c are defined similarly. We let x be the number
of edges of Γ which, when drawn as geodesics on Ξ, go through both p and q; we let y and z be the analogous
quantities. Clearly a = x + y, b = x + z, and c = y + z. Thus we have shown that the weighting ξ satisfies
condition (W2) at each trinode and is therefore admissible.

If we apply a toric Plücker relation to Γ then its associated weighting does not change: the two pairs
of edges in the toric Plücker relation contain the same edges when drawn as geodesics. Thus associating a
weighting to a graph yields a well-defined map from the Plücker classes of graphs to the set of admissible
weightings. We now show that this map is bijective.

We first prove that it is surjective. We are given an admissible weighting ξ and we must produce a graph
Γ such that ξ is its associated weighting. To do this it suffices to prove the following: given an admissible
weighting ξ there exist two leaves i and j of Ξ such that when the geodesic joining i and j is subtracted
from ξ the resulting weighting is still admissible. For, if this is the case, then we can let ij be an edge of Γ,
subtract the geodesic joining i and j from ξ and proceed by induction.

Thus let ξ be an admissible weighting of Ξ. Let i be any leaf of Ξ for which ξ does not vanish on the
edge containing i. We produce the vertex j by the following greedy algorithm. Put v0 = i and let v1 be the
unique trinode connected to i. Assume now that we have defined v0 through vk. If vk is a leaf then stop
and put j = vk. Otherwise vk is connected to two vertices other than vk−1. Let vk+1 be the one for which
the corresponding edge has higher weight; if the two edges have the same weight then pick vk+1 arbitrarily.
We have thus produced a pair of leaves i and j; note that the vk are the trinodes in geodesic joining i and
j. We must show that when this geodesic is subtracted from ξ the resulting weighting is still admissible.

Let ` be lie strictly between 0 and k so that v` is a trinode. We have the picture

• •

•

•

v`−1 v`

v`+1

a

b

c

By definition of v`+1 we have b ≥ c. We know (a, b, c) satisfies (W1). Clearly (a − 1, b − 1, c) still satisfies
the parity condition. We must show that it still satisfies the triangle inequalities, which amounts to proving
c ≤ a + b − 2. This inequality could fail in two ways: 1) a = 0 and c equals b or b − 1; or 2) a = 1 and
b = c. The first case is ruled out by the way we selected v`−1 and an easy induction argument. The second
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case is ruled out since a + b + c is even. This proves that the greedy algorithm indeed works and completes
the proof that our map is surjective. Note that in building the graph from the weighting there are many
arbitrary choices.

We now prove that the map is injective, i.e., that if Γ and Γ′ have the same weighting ξ then they are
Plücker equivalent. To show this we show that Γ is Plücker equivalent to any of the graphs constructed out
of ξ by using the greedy algorithm. It suffices to prove that if v0, . . . , vk is a sequence coming out of the
greedy algorithm then we can apply toric Plücker relations to Γ so that v0 and vk are connected in Γ. For
then we may remove this edge from Γ and the corresponding path in ξ and proceed by induction.

Thus let v0, . . . , vk come out of the greedy algorithm. We prove by induction on ` that Γ is Plücker
equivalent to a graph containing an edge which passes through v0 and v` (we say that an edge of Γ passes
through two vertices of Ξ if its corresponding geodesic does). This is clear for ` = 1. Thus assume it is true
for ` and we show that it is true for ` + 1. We have the picture

. . .• • • • •

• • •

v0 v1 v2 v` v`+1

x1 x2 x`

Here xi is the unique vertex connected to vi besides vi−1 and vi+1. We have assumed that Γ contains an
edge e passing through v0 and v`; we must show that Γ is Plücker equivalent to a graph containing an edge
passing through v0 and v`+1. Now, e itself either passes through v`+1 or x`. In the former case we are done.
Thus we may assume that e passes through x`.

By the definition of the greedy algorithm we have

ξ(v`x`) ≤ ξ(v`v`+1), ξ(vivi+1) 6= 0.

Thus there exists an edge of Γ passing through v` and v`+1. If every edge which passed through v` and
v`+1 also passed through x` then, by the inequality, every edge which passed through x` and v` would also
pass through v`+1; it would follow that no edge could pass through v`−1 and v`. However, this would imply
ξ(v`−1v`) = 0, a contradiction. Thus there exists an edge e′ of Γ which passes through v`+1 and v` but not
through x`. If v0 is a vertex of e′ then we are done. Otherwise, applying the toric Plücker relation to e and
e′ yields a graph containing an edge passing through v0 and v`+1. This complete the proof. �

3.5. The rings grΞ SL and grΞ RL as semi-group algebras of weightings. Let Ξ be a trivalent tree
with leaf set L. Embed L into the unit circle in such a way that Ξ can be drawn inside the unit circle
without crossings. Choose a total order on L which is compatible with its embedding into the circle in the
sense that if a ≤ b ≤ c then one encounters b when traveling clockwise from a to c. For a, b ∈ L define εab

to be 1 if a < b, −1 if a > b and 0 if a = b. For a directed graph Γ on L define εΓ to be the product of the

εab over the edges
−→
ab of Γ. We write Γun for the undirected graph associated to Γ. Finally, let SΞ denote

the set of admissible weights on Ξ. It is a semi-group since the sum of two admissible weightings is again
admissible. We can now prove:

Proposition 3.3. There is a unique isomorphism of rings grΞ SL → Z[SΞ] mapping XΓ to εΓξΓun .

Proof. We define an auxiliary ring by modifying the sign relation in the presentation of grΞ SL given in §3.3.
Define the ideal Jun

Ξ of Z[GL] by the following types of relations:

• Loop relation: If Γ has a loop then XΓ = 0.
• Modified sign relation: If Γ′ is obtained from Γ by reversing the direction of an edge then XΓ = XΓ′ .
• Toric Plücker relation: As in §3.3.

Denote the image of XΓ in Z[G ]/Jun
L by X

un

Γ . Note that X
un

Γ makes sense for an undirected graph Γ, and

that if Γ and Γ′ are Plücker equivalent undirected graphs then the toric Plücker relation implies X
un

Γ = X
un

Γ′ .
By comparing the definition of Jun

L to the presentation of grΞ SL given in Proposition 3.1, we find that the
map

grΞ SL = Z[GL]/JΞ → Z[GL]/Jun
Ξ , XΓ 7→ εΓX

un

Γ

is well-defined and an isomorphism. From the equivalence of weightings and Plücker classes of undirected
graphs given in Proposition 3.2, we find that the map

Z[GL]/Jun
Ξ → Z[SΞ], X

un

Γ 7→ ξΓun
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is a well-defined isomorphism. The proposition now follows. �

We translate this result to the regular case. Call a weighting ξ on Ξ regular of degree d if for each leaf
v we have ξ(ev) = d, where ev is the unique edge containing v. Let RΞ be the semi-group of admissible
regular weightings on Ξ. We then have:

Corollary 3.4. There is a unique isomorphism of graded rings grΞ RL → Z[RΞ] which takes XΓ to εΓ ·ξΓun .

Proposition 3.3 and Corollary 3.4 show that grΞ SL and grΞ RL are semi-group algebras and therefore
toric rings. (It is not difficult to see that SΞ and RΞ are the set of lattice points in a strictly convex rational
polyhedral cone, but this will not be of importance to us.)

3.6. Reduced weightings. We close §3 with a discussion of reduced weightings, which we use in §4–5.
Let Ξ be a trivalent tree. By a reduced weighting on Ξ we simply mean a weighting on Ξ — the terms are
synonymous but used to distinguish the usage of “admissible.” We say that a reduced weighting is admissible
if it satisfies the triangle inequality (as in (W1)) at each trinode; the parity condition is not enforced. We
say that a reduced weighting ξ is regular of degree ≤ d if ξ(ev) ≤ d for all leaves v, where ev is the edge

meeting leaf v. Let RΞ be the set of all ordered pairs (ξ, d) with d a non-negative integer and ξ an admissible
reduced weighting which is regular of degree ≤ d. We define the degree of (ξ, d) to be d.

Let Ξ be a matched trivalent tree and let Ξ− be the trivalent tree obtained by deleting the leaves of Ξ
and the edges that they touch. We call Ξ− the truncation of Ξ.

Proposition 3.5. With notation as above, there is a canonical isomorphism of semi-groups RΞ → RΞ−

preserving degree. The image of a weighting ξ on Ξ is the pair (ξ ′, d) where d is the degree of ξ and ξ′ is the
weighting on Ξ− given by ξ′(x) = 1

2ξ(x).

The proof is easy. See Figure 4 for an illustration.

1 1 1 1 1 1 11 11

2 0 2 2 2

2 2 4 2

1 0 1 1 1

1 1 2 1

Figure 4. An illustration of Proposition 3.5. The admissible weighting ξ on the left is
regular of degree 1, the associated reduced admissible weighting ξ− on the right is regular
of degree ≤ 1.

4. The toric ideal is generated by quadratics and toric generalized Segre cubics

We have described a family of toric degenerations of RL, depending on a choice of trivalent tree. The
purpose of §4 is to choose a specific family of trees (the Y-trees) to ensure the degenerated ring (i) is
generated in degree one, (ii) has relations generated in degrees two and three, and (iii) is such that there is
a precise description of the degree three relations:

Theorem 4.1. Let Ξ be a Y-tree (defined in §4.1). Then grΞ RL is generated in degree one, and the
relations between degree one elements are generated by quadratic relations and the generalized toric Segre
cubic relations (defined in §4.4).

(Manon [M] independently solved the presentation problem for a large class of weighted trivalent trees,
including this one; however, we will need the form of (iii).)

4.1. The Y- and caterpillar trees. For r ≥ 3, define the rth Y-tree as:

• • • •• •

• • • •

• • • • • • • •

•

•

•

•
2 3 r−2 r−1

There are r “Y’s” in the tree, and 2r leaves. We call the vertex at i the ith base vertex. We call an edge
between two base vertices a base edge. By a stalk we mean one of the internal edges in one of the Y’s. By
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the ith stalk, for 2 ≤ i ≤ r−1, we mean the one above the ith base vertex. We call the two remaining stalks
at either end of the tree the 1st and rth stalk. The Y-tree is a matched tree (§3.1). Sometimes we bend the
first and last horizontal edges so that all the Y’s are in a row, as in Figure 4. The rth caterpillar tree is the
truncation of the rth Y-tree:

• • • •• •

• • • •

2 3 r−2 r−1

We use the same terminology (base edges, stalks, etc.) for caterpillar trees. Note that the third caterpillar
tree is just a trinode.

4.2. Generators of grΞ RL. We now prove the first half of Theorem 4.1.

Proposition 4.2. Let Ξ be a Y-tree. Then the ring grΞ RL is generated in degree one.

Proof. (This proof essentially applies to any matched tree.) We follow the spirit of our proof of Kempe’s
theorem (Theorem 2.1). Assign to each leaf of Ξ a sign in such a way that in each matched pair of leaves one
leaf is positive and the other is negative. Suppose Γ is a regular undirected graph of degree k. Each edge of
Γ is then either positive, negative or neutral. We will show that Γ is Plücker equivalent (§3.4) to a graph
with only neutral edges. As in the proof of Theorem 2.1, this implies that it is a product of matchings,
expressing XΓ as a product of degree one elements. This proof is more difficult than that of Theorem 2.1
because we are now only allowed to apply the Plücker relation to pairs of edges of Γ which meet (i.e., whose
geodesics meet) in the tree Ξ.

Step 1: Given a positive and negative edge of Γ which meet in Ξ, apply the toric Plücker relation. In the
resulting graph the two new edges are both neutral and so the number of non-neutral edges has decreased.
We can thus continue this process until we have reached a graph which is Plücker equivalent to Γ and
contains no overlapping positive and negative edges.

Step 2: Suppose there are still non-neutral paths, but no two of opposite parity meet each other. Let e
be the leftmost base edge of Ξ which separates non-neutral edges of Γ of opposite parity and let e′ be the
edge to the left of e. The edge e′ will be a base edge unless e is the first base edge, in which case it will
be the first stalk. All non-neutral edges of Γ which are entirely to the left of e are of the same type, say
positive. All edges of Γ which pass through e are neutral.

There is a positive edge ab of Γ which contains e′. We claim there is an edge cd of Γ which contains e and
where d is positive and to the right of e. Assuming the claim (which we prove below), then ab and cd must
meet (either at e′ or at the stalk between e′ and e); now apply the toric Plücker relation to this pair. The
resulting positive path contains e. This brings the leftmost cluster of positive paths closer to the negative
paths. By continuing this process, we will eventually cause the two clusters to meet, at which point we
return to Step 1 and reduce the number of non-neutral edges. Continuing in this manner, we will eventually
remove all non-neutral edges.

Proof of claim: We now prove the claim that there must exist an edge cd of Γ containing e and for which
d is positive and to the right of e. Suppose there are 2m leaves to the left of e. Let A (resp. B, C) be
the number of positive (resp. negative, neutral) edges of Γ entirely to the left of e. Let D (resp. E) be the
number of neutral edges containing e for which the positive (resp. negative) leaf is to the left of e. Then

2A + C + D = mk, 2B + C + E = mk

as the first (resp. second) counts k times each positive (resp. negative) leaf to the left of e, and there are m
such leaves. We thus find 2A + D = 2B + E and as B = 0 and A 6= 0 by assumption we conclude E 6= 0, as
claimed. �

4.3. Relations in a semi-group algebra. We now turn our attention to relations in grΞ RL. We begin
with a general discussion of relations in a semi-group algebra. Let R be a semi-group equipped with a
homomorphism deg : R → Z≥0, so that the semi-group algebra Z[R] is graded. Assume that R is generated

by V = deg−1(1), so that the natural map Sym(Z〈V 〉) → Z is a surjection (here Sym(Z〈V 〉) is the polynomial
ring in indeterminates V while Z[R] is the semi-group algebra of R). Call the kernel I of this surjection
the ideal of relations of Z[R].

Let ξ = (ξ1, . . . , ξn) and ξ′ = (ξ′1, . . . , ξ
′
n) be two elements of V n such that

∑
ξi =

∑
ξ′i. We then write

ξ ∼ ξ′ and say that ξ and ξ′ are related. For an element ξ of V let [ξ] denote the corresponding element
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of Sym(Z〈V 〉); for an element ξ of V n let [ξ] denote the monomial [ξ1] · · · [ξn]. Given related ξ and ξ′

the element [ξ] − [ξ′] belongs to I . We call such relations binomial relations. One easily verifies that I is
generated by binomial relations.

We say that a relation ξ ∼ ξ′ has degree ≤ k if ξi = ξ′i holds for all but k indices. We say that ξ ∼ ξ ′ has
essentially degree ≤ k if there exists a sequence of relations

ξ = ξ(0) ∼ ξ(1) ∼ . . . ∼ ξ(p) = ξ′

for which each ξ(i) ∼ ξ(i+1) has degree ≤ k. This notation is only relevant to us when k is 2 or 3 and we

then use the terms “essentially quadratic” and “essentially cubic.” If ξ ∼ ξ ′ has essential degree ≤ k then

the element [ξ] − [ξ′] of I lies in the ideal generated by the kth graded piece of I .
Note that we consider our tuples as ordered, so that (ξ1, ξ2) = (ξ2, ξ1) constitutes a non-trivial relation.

However, as the symmetric group is generated by transpositions, it follows that if ξ ′ is a permutation of the

tuple ξ then the relation ξ ∼ ξ′ is essentially quadratic.

4.4. The toric generalized Segre cubic relation. We have the following relation between degree one
reduced weightings on the third caterpillar tree:

(4.1)
1

0

1 0

1

1 1

1

0
=

1

1

1 1

1

1 0

0

0

(We will omit + signs in such equations, interpreting them as binomial relations in Z[R].) One obtains this
relation by converting the usual graphical Segre cubic (1.2) into a relation between weightings on the third
Y-tree and then passing to the associated reduced weighting on the third caterpillar tree. One may verify
by hand that this single relation generates all relations among admissible reduced weightings on the third
caterpillar tree.

We now introduce a class of toric relations that generalize (4.1). We call a reduced weighting of Ξ− of
degree ≤ 1 a reduced matching. Recall that the set VΞ of reduced matchings generates RΞ (Proposition 4.2).
Let X , Y and Z be reduced matchings on the rth caterpillar tree such that X and Y take value 1 on the rth
stalk and Z takes value 0 on the rth stalk. Let X ′, Y ′ and Z ′ be reduced matchings on the sth caterpillar
tree such that X ′ and Y ′ take value 1 on the first stalk and Z ′ takes value 0 on the first stalk. We then have
the relation

1

1

1X X ′ 1

1

1Y Y ′ 0

0

0Z Z ′

=
1

1

0X Z ′ 0

1

1Z X ′ 1

0

1Y Y ′

We call these toric generalized Segre cubic relations.

4.5. The type vector of a triple. Let ξ = (ξ1, ξ2, ξ3) be a triple of reduced matchings on the rth caterpillar

tree. Define the type of ξ at the ith base vertex to be one of A, B or ∅, as follows. We call ξ type A at i if
it looks like

1

1

1 1

1

1 0

0

0

at the ith vertex (the order of the triple is irrelevant). We call ξ type B at i if it looks like

1

1

0 0

1

1 1

0

1

there. In all other cases we call ξ type ∅ at i. We define the type vector of ξ, denoted t(ξ), to be the ordered

tuple of the r − 2 types of ξ. The type of a triple is a quadratic invariant — if ξ ∼ ξ ′ is an essentially

quadratic relation between triples, then t(ξ) = t(ξ ′). The toric generalized Segre cubic changes the type.
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4.6. Reformulation of Theorem 4.1. Rather than proving the statement about relations in Theorem 4.1
directly, we will prove the following:

Proposition 4.3. Let Ξ be the rth caterpillar tree (r ≥ 3). Then the ideal of relations IΞ of grΞ RL = Z[RΞ]
is generated by relations of degree two and three. Furthermore, “type” is the only quadratic invariant on V 3

Ξ ,
that is, if ξ ∼ ξ′ is a relation with ξ, ξ′ ∈ V 3

Ξ then ξ ∼ ξ′ is essentially quadratic if and only if t(ξ) = t(ξ ′).

Theorem 4.1 follows easily from this, since generalized toric Segre cubics allow one to switch the type of
a triple between A and B at any base vertex.

We now give an overview of the proof of Proposition 4.3. First of all we split relations into two types
defined in §4.8, “breakable” and “unbreakable.” Breakable means that some degree one piece of the relation
vanishes at some base edge. The first idea in the proof is that, given a relation, one can chop the tree into
pieces such that the relation is unbreakable on each piece. One can then use a gluing argument to reduce
to the unbreakable case. We then prove that an unbreakable relation is essentially quadratic. We do this
by introducing a normal form for monomials and showing that any monomial can be changed into normal
form by a series of quadratic relations. We use the notion of a “balanced” monomial, a tuple of matchings
which assume roughly the same value on each edge of the tree. A key result (Proposition 4.4) is that any
tuple can be balanced by quadratic relations.

4.7. Balancing. We say that a tuple of integers (xi) is balanced if |xi − xj | is always 0 or 1. We say that a
tuple ξ ∈ V n is balanced if for each base edge e of Ξ the tuple of integers (ξi(e)) is balanced.

Proposition 4.4. Given any tuple ξ in Vn there exists an essentially quadratic relation ξ ∼ ξ ′ with ξ′

balanced.

Proof. It suffices to prove the proposition for n = 2, as one can repeatedly balance pairs of integers to
balance a set of integers. Thus suppose that n = 2. First we show that the proposition holds for the third
caterpillar tree. In the general case of the rth caterpillar, we break Ξ into its trinodes, balance the weightings
on each of these separately and then “glue.”

Third caterpillar: We indicate a reduced matching ξ on the third caterpillar tree by a triple (a, b, c) where
a is the weight of the first (left) stalk, b is the weight of the second (vertical) stalk and c is the weight of the
third (right) stalk. The triple (a, b, c) satisfies the triangle inequalities and has b ≤ 1. If b = 0 then a = c.
If b = 1 then one of a or c is nonzero, and |a − c| ≤ 1. Suppose ξ1 = (a1, b1, c1) and ξ2 = (a2, b2, c2) are
reduced matchings and |a1 − a2| ≥ 2 or |c1 − c2| ≥ 2. Without loss of generality we take a1 + 2 ≤ a2. Since
c1 ≤ a1 + 1 and c2 ≥ a2 − 1 we have c1 ≤ c2. We know that c2 ≥ 1 since a2 ≥ 2.

If c1 < c2 then define ξ′1 = (a1 + 1, b1, c1 + 1) and ξ′2 = (a2 − 1, b2, c2 − 1). Then ξ′1 + ξ′2 = ξ1 + ξ2 so
(ξ′1, ξ

′
2) ∼ (ξ1, ξ2). The resulting pair (ξ′1, ξ

′
2) is now closer to being balanced since |(a1 + 1) − (a2 − 1)| =

|a1 − a2| − 2 and |(c1 + 1) − (c2 − 1)| ≤ |c1 − c2|.
If c1 = c2 then a2 = a1 + 2 and c1 = c2 = a1 + 1. Define ξ′1 = (a1 + 1, b1, c1) and ξ′2 = (a2 − 1, b2, c2).

Then ξ′1 and ξ′2 are reduced admissible matchings and (ξ′1, ξ
′
2) ∼ (ξ1, ξ2). Again, we get strictly closer to a

balanced pair with such an assignment.
A finite number of steps as above will related the original pair (ξ1, ξ2) to a balanced pair.
Breaking and gluing: Suppose now that we have a pair (ξ1, ξ2) of reduced admissible matchings on the

rth caterpillar. Break the caterpillar up into an ordered tuple of r − 2 caterpillar trees with three vertices
by cutting each base edge in two. These are arranged from left to right and indexed as 2, . . . , r − 1. The
matchings ξi on the original caterpillar define matchings on each copy of the third caterpillar. Let ej , fj

and gj denote the first, second and third stalk on the jth trinode and define ξi,j = (ξi(ej), ξi(fj), ξi(gj)) for
i = 1, 2 and 2 ≤ j ≤ r − 1. Now apply our previous result on the third caterpillar — each pair (ξ1,j , ξ2,j) is
equivalent to a balanced pair (ξ′1,j , ξ

′
2,j).

Define t2 = 1. Now, because the pairs are balanced, for 3 ≤ j ≤ r − 1 we have either c′1,j = a′
1,j+1 and

c′2,j = a′
2,j+1, or c′1,j = a′

2,j+1 and c′2,j = a′
1,j+1. In the former case set tj = tj−1 while in the latter case set

tj = 3 − tj−1. We will use the tuple (t2, . . . , tr−1) of 1’s and 2’s to glue these balanced pairs on individual
trinodes to obtain a balanced pair on the rth caterpillar.

We now define a pair of admissible weightings (ξ′1, ξ
′
2) on the rth caterpillar by a gluing procedure. Let

the edges of the rth caterpillar be labeled as s1, s2, b2, s3, b3, . . . , br−2, sr−1, sr, where sj is the jth stalk
and bk is the base edge between the kth and (k + 1)st base vertices. To begin, we define ξ ′1 (resp. ξ′2) on
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s1, s2, b2 to agree with ξ′1,2 (resp. ξ′2,2). For 3 ≤ j ≤ r − 3 set

(ξ′1(bj−1), ξ
′
1(sj), ξ

′
1(bj)) = ξ′tj

, (ξ′2(bj−1), ξ
′
2(sj), ξ

′
2(bj)) = ξ′2−tj

.

Finally define

(ξ′1(br−2), ξ
′
1(sr−1), ξ

′
1(sr)) = ξ′tr−1

, (ξ′2(br−2), ξ
′
2(sr−1), ξ

′
2(sr)) = ξ′2−tr−1

.

The above assignments are well-defined, (ξ′1, ξ
′
2) is balanced and (ξ′1, ξ

′
2) ∼ (ξ1, ξ2). �

4.8. Reduction of Proposition 4.3 to the unbreakable case. We say that a matching ξ on Ξ is breakable
if there exists a base edge e with ξ(e) = 0, and unbreakable otherwise. We say that a tuple of matchings
ξ ∈ V n

Ξ is unbreakable if each ξi is. In §4.9 we will prove the following proposition:

Proposition 4.5. Let ξ ∼ ξ ′ be a relation with ξ, ξ′ ∈ V n
Ξ and ξ unbreakable. Then ξ ∼ ξ′ is essentially

quadratic.

In this section we prove the following:

Proposition 4.6. Proposition 4.5 implies Proposition 4.3.

Proof. As remarked in §4.4, Proposition 4.3 is true for the third caterpillar tree. This will be the base case
of an inductive argument.

Let x ∼ y be a relation of length n. Using quadratic relations, we may assume that both x and y are
balanced. If each xi is unbreakable then each yi is as well (since x and y are balanced) and we are done.
Assume then that there is a base edge e for which xi is breakable at e for some i.

Cut the edge e in half to produce two new trees Ξ′ and Ξ′′. We regard e as an edge of both of these trees.
Both of these trees can be regarded as smaller caterpillar trees. Also, giving a weighting on Ξ is equivalent
to giving weightings on Ξ′ and Ξ′′ which agree at e.

Now, let x′ and x′′ be the restrictions of x to Ξ′ and Ξ′′ (and similarly for y). The key point is that
because e is breakable and x and y are balanced these restricted weightings are matchings, that is, they
assign e either 0 or 1. In other words, we have x′, y′ ∈ Vn

Ξ′ and x′′, y′′ ∈ Vn
Ξ′′ .

Proceeding by induction, we can assume that all relations are essentially cubic on Ξ′ and Ξ′′, or essentially
quadratic if the types agree. We can then pick a sequence of cubic (resp. quadratic) relations between x′

and y′ and between x′′ and y′′ and concatenate them to form a sequence of cubic (resp. quadratic) relations
between x and y. By “concatenate,” we mean that one should first order the tuples so that those taking
value zero at the edge e should be glued together (the order does not matter), and those taking value one
at e should be glued together (the order does not matter). In the final step — that is, after x′ has been
replaced with y′ (up to permutation) and x′′ has been replaced with y′′ (up to permutation) — one can
finally permute the y′′ matchings taking value zero at e, and permute those taking value one at e, and
lastly permute the concatenated matchings, so that the result is equal to y. (Recall that permutations are
essentially quadratic since they are generated by 2-cycles.) �

4.9. Proof of Proposition 4.5. Let ξ be an unbreakable matching. There are four possibilities for ξ at
one of the internal trinodes. We label them as follows:

0

n n
An

1

n n
Bn

1

n n + 1
Cn

1

n + 1 n
Dn

In all cases n is non-zero. We order them as follows: An ≤ Bn ≤ Cn ≤ Dn ≤ An+1. There are also four
possibilities for ξ at the trinodes on the left end:

0

1 1

E

1

0 1

F

1

1 1

G

1

1 2

H

The right end is similar (flip each over). We order these: E ≤ F ≤ G ≤ H .
We can express an unbreakable matching as a string using the above alphabet and some obvious rules.

Let ξ and ξ′ be two unbreakable matchings. We define a partial ordering on unbreakable matchings, by
ξ ≤ ξ′ if this is the case when restricted to each trinode. Equivalently, ξ ≤ ξ ′ if the following holds:
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• Both ends of ξ are at most the respective ends of ξ ′.
• For each base edge e we have ξ(e) ≤ ξ′(e).
• If e and e′ are consecutive base edges for which ξ(e) = ξ′(e) and ξ(e′) = ξ′(e′) then ξ(s) ≤ ξ′(s)

where s is the stalk in between e and e′.

We say that an unbreakable tuple of matchings ξ ∈ V n
Ξ is in normal form if ξ is balanced and ξ

1
≤ ξ

2
≤

· · · ≤ ξ
n
. Proposition 4.5 now follows from the following proposition:

Proposition 4.7. Every unbreakable element of V n
Ξ is related to a unique normal form, and this relation

is essentially quadratic.

The following is the key lemma:

Lemma 4.8. Let (ξ, ξ′) ∈ V 2
Ξ be unbreakable and balanced. Then there exists (η, η′) ∈ V 2

Ξ balanced and
unbreakable such that ξ + ξ′ = η + η′ and for each internal edge e we have

η(e) = min(ξ(e), ξ′(e)), η′(e) = max(ξ(e), ξ′(e)).

Proof. The idea is the same as in the proof of Proposition 4.4: break apart at a base edge (or at an end),
permute, and glue back together to achieve the desired order. �

We now prove Proposition 4.7.

Proof of Proposition 4.7. Let ξ ∈ V n
Ξ be a given unbreakable tuple. We may assume that ξ is balanced. By

repeatedly using Lemma 4.8 we find that ξ is quadratically related to an unbreakable element ξ ′ ∈ V n
Ξ which

has the property that ξ′i(e) ≤ ξ′j(e) for i ≤ j and all internal edges e.
For uniqueness, it suffices to show uniqueness for third caterpillars and for the ends. Consider the third

caterpillar at a base vertex. Suppose the sum of the n weightings (ai, bi, ci), 1 ≤ i ≤ n, on the third
caterpillar is equal to (a, b, c) (left, stalk, right). Suppose these weightings are increasing in the order we
have defined. This means the ai’s are increasing, starting as the floor of a/n and ending as the ceiling of
a/n. This determines the value of each ai. Similarly the value of each ci is determined (beginning with floor
of c/n, ending with ceiling of c/n). Wherever ai 6= ci we must have bi = 1, so these bi’s are determined.
However if ai = ci, then bi could be either 0 or 1. The set {i | ai = ci} consists of at most two intervals I, J .
These intervals are determined by the ai, ci (which are determined by the normality condition). Within the
interval I , the bi’s must be increasing. Similarly in the interval J , the bi’s must increase. Thus the bi’s are
all determined by the normality condition. The argument for the ends is similar. �

5. The ideal is generated by quadratics and generalized Segre cubics

In §5, we lift the generalized Segre toric cubics to the ring RL and prove the following:

Theorem 5.1. For any even set L the ideal IL is generated over Z by quadratics and the small generalized
Segre cubic relations.

We will introduce the generalized Segre cubics, and the small generalized Segre cubics, shortly. The-
orem 5.1 will follow easily from our toric results once we make these definitions. In one of our ad hoc
arguments in the 10 point case we will need a slightly refined version of Theorem 5.1 given in Remark 5.3.
The proof of this theorem is the only place we use the toric results.

5.1. Brief additional comments on colored graphs. We will use the language of colored graphs, intro-
duced in §1. We consider both directed and undirected colored graphs. If Γ is a directed multi-matching
on L whose edges have been colored with colors from the set C then XΓ is defined as an element of V ⊗C

L

as in §1. If L is oriented and Γ is a regular undirected multi-matching one can also make sense of YΓ as an
element of V ⊗C

L . Clearly the XΓ (or YΓ) span V ⊗C
L . Furthermore, the XΓ satisfy the sign and “colored”

Plücker relations, and these generate all the linear relations among them. (The colored Plücker relation is
just the usual Plücker relation on a pair of edges, with the restriction that these two edges be of the same
color.) We have thus given a description of V ⊗C

L in terms of colored graphs. There is a similar description

for Symk(VL). The only difference is that in Symk(VL) the particular color of an edge is not relevant. What
matters is whether two edges have the same color — two colored graphs represent the same element of
Symk(VL) if one is obtained from the other by permuting the colors.
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5.2. Generalized Segre cubic data. Let L be an even set. By a generalized Segre datum we mean a pair
Σ = (Γ, U ) where Γ is an undirected graph on L whose edges have been colored one of red, green or blue
and U = {UR, UG, UB} is a partition of L into three even subsets (called parts), such that

• Every vertex of Γ has valence one for each of the three colors.
• Between any two parts there are either two edges or no edges. If there are two edges then these

edges have the color of the “opposite” part. For instance, any edge from UG to UB must be red.

See Figure 5 for a schematic presentation. We call the edges between the parts special. We call Σ small if
UR, UG or UB has cardinality two.

UR

UG UB

Figure 5. Schematic presentation of a generalized Segre datum.

Let Σ be a generalized Segre datum. Suppose e and e′ are edges of Γ of the same color and have a vertex
in a common part. Given such a pair, let YΓ + YΓ′ + YΓ′′ = 0 be the colored Plücker relation on e and e′.
Then it is easily verified that Σ′ = (Γ′, U ) and Σ′′ = (Γ′′, U ) are both generalized Segre data. Define the
space of generalized Segre data to be the Z-module spanned by generalized Segre data modulo relations of
the form Σ + Σ′ + Σ′′ = 0.

5.3. Generalized Segre cubic relations. Let Σ = (Γ, U ) be a generalized Segre datum. Let Γ̃ be a

directed colored graph with underlying undirected graph Γ. We let ε(Γ̃) be the product of the ε(Γ̃i), where

Γ̃i is the directed matching of color i in Γ̃. (Here ε is a chosen orientation on L, see §2.2.) Form a new

directed colored graph Γ̃′ as follows. The graph Γ̃′ will be a recoloring of Γ̃, so we just specify a new color

for each edge. We use the colors purple and black. The red (resp. blue, green) edges of Γ̃ in UR (resp. UB,

UG) are black in Γ̃′ and all other edges of Γ̃ are purple in Γ̃′. It is clear that every vertex has black valence
one and thus purple valence two.

Define YΣ ∈ Sym3(VL) and Y ′
Σ ∈ R

(1)
L ⊗ R

(2)
L by

YΣ = YΓ = ε(Γ̃)XeΓ, Y ′
Σ = ε(Γ̃)

(
XeΓ′

black
⊗ XeΓ′

purple

)
.

These only depend on Σ and not the choice of Γ̃. There is a well-defined map R
(1)
L ⊗R

(2)
L → Sym3(VL)/Q

(3)
L

given by writing the element of R
(2)
L in terms of degree one elements and then formally multiplying to get

an element of Sym3(VL). (This is only defined modulo quadratic relations QL, because of the choice of how

to write R
(2)
L in terms of degree one elements.) We may therefore regard both YΣ and Y ′

Σ as elements of

Sym3(R
(1)
L )/QL. Define

Rel(Σ) = YΣ − Y ′
Σ,

regarded as an element of Sym3(VL)/Q
(3)
L . As the two terms in Rel(Σ) are recolorings of the same graph,

Rel(Σ) is a relation, that is, it maps to zero in RL. We call such relations generalized Segre cubic relations.

We use the same name for lift of some Rel(Σ) to I
(3)
L ⊂ Sym3(VL). A generalized Segre cubic relation is

shown in Figure 6. Note that for σ ∈ SL we have σ Rel(Σ) = sgn(σ) Rel(σΣ).
One easily verifies that Rel gives a homomorphism

Rel : {the space of generalized Segre cubic data} → I
(3)
L /Q

(3)
L .

This allows us to interpret relations as graphs with extra structure, which has two advantages. First, it
gives a source of linear relations between (also thought of as operations we can perform on) generalized
Segre relations: Plücker relations on the generalized Segre data which respect the extra structure. Second,
one can read off certain properties of the generalized Segre relation from the original graph. For instance,
if Σ is a generalized Segre cubic datum for which Γ is disconnected, then the associated generalized Segre
relation arises from a relation on fewer points (see Proposition 7.3 for a precise statement).
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2

1

4

3

6

5
=

Figure 6. A generalized Segre relation on six points. Here UG = {1, 2}, UR = {3, 4} and
UB = {5, 6}. This is equal to the image of the usual Segre cubic relation in IL/QL.

5.4. Degenerate Segre cubic relations. We call a generalized Segre datum Σ degenerate if:

(1) one of the pairs of special edges is missing; or
(2) in one of the parts the two pairs of special edges do not connect.

By (2) we mean that one part, say UG, can be partitioned into two pieces A and B such that no edges go
between A and B, the blue special edges go into A and the red special edges go into B. A generalized Segre
relation is called degenerate if it comes from a degenerate generalized Segre datum.

Proposition 5.2. A degenerate generalized Segre relation lies in QL.

Proof. First consider a degenerate datum satisfying (1). Say that the red special edges are missing. We
show how to move from YΣ to Y ′

Σ using quadratic relations. First switch the red edges and the green edges
of Γ which occur in UG (this relation lies in QL). Then switch the red edges and blue edges of Γ in UB. The
resulting graph now looks like Γ′ if we make the red edges black and the other edges purple.

Now say that Σ is a degenerate datum satisfying (2). Say that in UG the red and blue special edges do
not connect and let UG = AqB be a decomposition as described above. Let Γ′ be the graph obtained from
Γ by switching the red and green colors in A, let U ′

G = B, let U ′
R = UR ∪ A and let U ′

B = UB . Let Σ′ be
the generalized Segre datum (Γ′, {U ′

R, U ′
G, U ′

B}). Then Σ′ is degenerate of type (1) and so Rel(Σ′) ∈ QL.
Consider the difference

Rel(Σ) − Rel(Σ′) = (YΣ − YΣ′) + (Y ′
Σ − Y ′

Σ′).

Now Y ′
Σ = Y ′

Σ′ . Also, YΣ − YΣ′ ∈ QL (the blue subgraphs of YΣ and YΣ′ are identical, and the remainder of
the graph gives a quadratic relation). Thus Rel(Σ) ∈ QL. �

5.5. Proof of Theorem 5.1. It follows from Theorem 4.1 that IL is generated by quadratics and lifts of
the generalized toric Segre cubics. Thus to prove Theorem 5.1, it suffices to show that the generalized Segre
cubics are lifts of the generalized toric Segre cubics, which is what we now do.

Let L be an even set. Pick a Y-tree Ξ with leaf set L and let Ξ− be the associated reduced (caterpillar)
tree. Consider a generalized toric Segre cubic relation on Ξ−:

1

1

0X Z ′ 0

1

1Z X ′ 1

0

1Y Y ′

=
1

1

1X X ′ 1

1

1Y Y ′ 0

0

0Z Z ′

(5.1)

Implicit in this diagram is a decomposition of Ξ− into three pieces:

p p q q

The labels indicate how these three pieces are glued together (after gluing, p and q disappear). Corresponding
to this decomposition is a decomposition of L into three pieces, the left piece P , the right piece P ′ and the
center piece, which has two elements x and y (the two vertices of the Y-tree Ξ which connect to the stalk of
the trinode in the center of the above diagram). We regard X , Y and Z as reduced degree one weightings
on the left caterpillar tree, where X and Y take value 1 on p while Z takes value 0 there. Similarly, we
regard X ′, Y ′ and Z ′ as reduced weightings on the right caterpillar tree, where X ′ and Y ′ take value 1 on
q while Z ′ takes value 0 there.
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Now, we can regard X , Y and Z as non-reduced degree one weightings on the Y-tree with vertex set
P ∪ {p+, p−}. Similarly, we can regard X ′, Y ′ and Z ′ as non-reduced degree one weightings on the Y-tree

with vertex set P ′ ∪ {q+, q−}. We lift these six weightings to matchings, which we denote by X̃, etc. In the

graph X̃ there are two elements of P , say a and b, which connect to p+ and p−. We let X̃0 be the restriction

of X̃ to P \ {a, b}. We let c and d be the two vertices in Ỹ connecting to p+ and p− and let Ỹ0 be the

restriction of Ỹ to P \ {c, d}. In Z̃ the vertices p+ and p− are connected to each other. We similarly define
primed versions.

We now define a small generalized Segre cubic datum Σ. The partition is given by UB = P ′, UR = {x, y}
and UG = P . The graph Γ is given as follows:

• The blue graph is the union of X̃0, Z̃ ′ and the edges ax and by.

• The green graph is the union of Z̃, X̃ ′
0 and the edges a′x and b′y.

• The red graph is the union of Ỹ0, Ỹ ′
0 and the edges xy, cc′ and dd′.

These three matchings are lifts for the three reduced weightings appearing on the left side of (5.1). It is
clear that this is a valid small generalized Segre cubic datum.

We must now show that the generalized Segre cubic relation Rel(Σ) associated to the generalized Segre
cubic datum defined above lifts the relation (5.1). Now, the relation associated to the datum is

(
X̃0 · ax · by · Z̃ ′

)(
Z̃ · a′x · b′y · X̃ ′

0

)(
Ỹ · cc′ · dd′ · xy · Ỹ ′

)

=
(
X̃0 · Ỹ0 · ax · a′x · by · b′y · cc′ · dd′ · X̃ ′

0 · Ỹ
′
0

)(
Z̃ · xy · Z̃ ′

)
.

Here the parentheses should each be interpreted as single graphs — for example, the first parenthetical is the

concatenation of X̃0, ax, by and Z̃ ′. The quadratic term ∆ on the right side would be the purple subgraph

in the graphical notation. Now, the above relation belongs to I
(3)
L /Q

(3)
L . To get an element of I

(3)
L , we must

rewrite ∆ in terms of degree one elements. Because the toric ring grΞ RL is generated in degree one, we can
write

∆ =

n∑

i=1

ΦiΦ
′
i

where each Φi and Φ′
i has degree one, Φ1Φ

′
1 has toric weight equal to that of ∆ and ΦiΦ

′
i has toric weight

strictly less than that of ∆ for i > 1. We may take Φ1 = X̃0 · ax · a′y · bb′ · X̃ ′
0 and Φ′

1 = Ỹ0 · cx · c′y · dd′ · Ỹ ′
0 ,

since the product of these two graphs is equal to ∆ in the toric ring.
It now follows that Rel(Σ) is represented by the relation

(
X̃0 · ax · by · Z̃ ′

)(
Z̃ · a′x · b′y · X̃ ′

0

)(
Ỹ · cc′ · dd′ · xy · Ỹ ′

)
=

(
n∑

i=1

ΦiΦ
′
i

)(
Z̃ · xy · Z̃ ′

)
.

The leading term (in terms of the grading) of this relation is
(
X̃0 · ax · by · Z̃ ′

)(
Z̃ · a′x · b′y · X̃ ′

0

)(
Ỹ · cc′ · dd′ · xy · Ỹ ′

)
= (Φ1Φ

′
1)
(
Z̃ · xy · Z̃ ′

)
.

The two sides are the same as the two sides of (5.1). This shows that the leading term of our generalized Segre
relation Rel(Σ) is equal to the generalized toric Segre relation we started with, which proves Theorem 5.1.

Remark 5.3. It follows from the proof that, if we totally order L, then IL is generated by quadratic relations
and those small generalized Segre cubic relations coming from data for which UG < UR < UB and |UR| = 2.
We will use this stronger form of Theorem 5.1 in the proof of Proposition 7.9.

6. The structure of VL and its tensor powers

In §6, we study the partition filtration on
⊗n

VL, Symn(VL) and
∧n

VL for n ≤ 3 and the SL-action on
the associated graded pieces. This provides us with essential structural properties of the Plücker relation; for
example: the elements (YΓ)2 with Γ a matching span Sym2(VL) (see the discussion following Proposition 6.1)
and useful generalizations.
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6.1. The partition filtration. Let L be an even set. By a partition of L we mean a collection of non-empty
disjoint subsets of L whose union is L. We say that a partition is into even parts if each of the subsets is
even. We similarly speak of partitions of |L| into even parts. Given a partition U of L we denote by |U |
the corresponding partition of |L|. We partially order the set of partitions of L and |L| by refinement. For
example 2 + 2 + 2 + 2 is smaller than 4 + 2 + 2, but 4 + 4 and 6 + 2 are not comparable.

Given a regular colored graph Γ on L we obtain a partition UΓ of L by taking the vertex sets of the
connected components of Γ. The partition UΓ necessarily has even parts. We use this to define a filtration,
indexed by the partitions of |L| into even parts, on any Z-module U which is spanned by graphs. We
denote this filtration, which we call the partition filtration, by FpU . (Warning: this filtration is indexed by

a partially ordered set, not a totally ordered set.) For instance, if p is a partition of |L| then Fp Symk(VL)
is the span of the XΓ (or YΓ) for which |UΓ| ≤ p. We denote the associated graded subquotient by grp U .
To be precise, grp U is the quotient of FpU by the span of the Fp′U with p′ < p. The partition filtration is
preserved by the action of SL, so this group naturally acts on grp U .

6.2. Degree one spaces. The n = 1 case is easy: the only non-zero piece of the partition filtration on VL

occurs for p = 2 + · · · + 2 and then grp = VL is the irreducible representation of SL corresponding to the
partition n/2 + n/2 (§1.5).

6.3. Degree two spaces. We now study the partition filtration on V ⊗2
L , Sym2(VL) and

∧2
VL.

Proposition 6.1. We have, over Z[ 12 ]:

grp(V
⊗2
L ) =






Sym2(VL) if p = 2 + · · · + 2,∧2
VL if p = 4 + 2 + · · · + 2,

0 otherwise.

The space V ⊗2
L is spanned by regular 2-colored graphs. Such graphs are disjoint unions of cycles of even

size. Proposition 6.1 says that V ⊗2
L is spanned by graphs which are unions of 2-cycles and at most one

4-cycle. Furthermore, Sym2(VL) is spanned by graphs which are unions of 2-cycles: the elements (YΓ)2 with
Γ a matching span Sym2(VL).

We begin our proof of Proposition 6.1 with the following result:

Lemma 6.2. The space V ⊗2
L is spanned over Z[ 12 ] by graphs which are unions of 2-cycles and 4-cycles.

Proof. It suffices, by induction, to show that every regular 2-colored graph on at least six vertices can be
written as a sum of graphs which are not connected. In other words, letting UL be the subspace of V ⊗2

L

spanned by disconnected graphs, it suffices to show that V ⊗2
L /UL is zero. Thus let Γ be a graph on L, which

we can assume to be connected (otherwise it already belongs to UL). We must show YΓ = 0 in V ⊗2
L /UL.

Pick four consecutive vertices a, b, c and d of Γ. The Plücker relation on the edges ab and cd is

0 =

a

b c

d

+

a

c b

d

+

a

b c

d

The rightmost term belongs to UL. We therefore have YΓ = −YΓ′ in V ⊗2
L /UL where Γ′ is obtained by

transposing two consecutive vertices in Γ. In words, we may transpose consecutive vertices at the cost of a
sign, modulo UL.

Now consider six consecutive vertices a, b, c, d, e and f in Γ. Applying the Plücker relation on the edges
ab and ef we find

0 =

a

b

c d

e

f

+

a

e

d c

b

f

+

a

b

c d

e

f

Again, the rightmost term belongs to UL and thus can be discarded. This shows that we may pick four
consecutive vertices and reverse their order at the cost of picking up a sign. However, we may now move
the affected vertices back to the original position using six transpositions, not introducing a new sign. We
thus find that YΓ = −YΓ in V ⊗2

L /UL, which shows that 2YΓ belongs to UL. �
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In the proof of Lemma 6.2 we only ever use six consecutive vertices. By keeping track of the graphs we
discarded during the course of the proof we obtain an identity, shown in Figure 7, that we will use on a few
later occasions.

(−2) = + +

+ + +

− − −

Figure 7. A graphical identity on 6 points. More accurately, this should be regarded as a
family of identities between various tensors YΓ ⊗ Y∆ in V ⊗2

L for any L; we have only drawn
the edges on each side which are different.

Lemma 6.2 states that V ⊗2
L is spanned by graphs with only 2- and 4-cycles. To prove Proposition 6.1, we

must therefore show that two 4-cycles can converted into two 2-cycles and one 4-cycle. This is a question
about graphs on eight points; in fact, it suffices to show gr4,4(V

⊗2
L ) = 0 when L has cardinality eight. We

prove this after the following lemma.

Lemma 6.3. Let L be an even set and let Γ be a regular 2-colored graph on L. Put p = |UΓ|. Assume that
Γ has a 4-cycle and let Γ′ be the graph obtained by switching the colors of Γ on this 4-cycle. Then YΓ = −YΓ′

holds in grp(V
⊗2
L ).

Proof. Let Γ be given and say that the vertices in the 4-cycle are labeled {1, 2, 3, 4}. By squaring the identity

(−1)
1

2 3

4

= +

we obtain

= + + +

The middle two terms on the right side of this identity are Γ and Γ′. The other terms have a more refined
partition and so map to 0 in grp(V

⊗2
L ). This proves the lemma. �

Lemma 6.4. Let L be a set of cardinality eight. Then gr4,4(V
⊗2
L ) = 0 over Z[ 12 ].

Proof. In this proof we write Fp for Fp(V
⊗2

L ), and similarly for grp. Let τ be the involution on V ⊗2
L which

transposes factors. In terms of colored graphs, τ switches the colors. We will show that τ acts by +1 and
by −1 on gr4,4, which will establish the lemma.

We first show that τ acts by −1 on gr4,4. By Lemma 6.2 we have F4,4 = V ⊗2
L and F6,2 = F4,2,2. Thus

gr4,4 can be described as the space of all degree two multi-matchings on L modulo the disconnected ones.
It therefore suffices to show that τ acts by −1 on a connected graph. Consider such a graph Γ, say the
following one:

2

3

4

56

7

8

1
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By the same reasoning as in the proof of Lemma 6.2 we may switch consecutive vertices at the cost of a
sign, when working modulo disconnected graphs. Thus we may pick vertex 1 and move it counterclockwise
around the cycle to the position of vertex 8. This uses seven transpositions and so introduces a sign. The
resulting cycle is the same as the original but with the colors switched. We thus have τΓ = −Γ modulo
disconnected graphs, which shows that τ acts by −1 on gr4,4.

We now show that τ acts by +1 on gr4,4. To do this, it suffices to show that τ fixes the graph

modulo gr4,2,2. This follows immediately from Lemma 6.3: switching the color in one square introduces a
sign modulo gr4,2,2, so switching the color in both squares introduces no sign. �

We now complete the proof of Proposition 6.1.

Proof of Proposition 6.1. Combining Lemma 6.2 with Lemma 6.4 shows that grp(V
⊗2
L ) = 0 unless p =

2 + · · · + 2 or p = 4 + 2 + · · · + 2. We thus have a filtration

0 ⊂ F2+···+2(V
⊗2
L ) ⊂ F4+2+···+2(V

⊗2
L ) = V ⊗2

L .

Let τ be the transposition of factors on V ⊗2
L , as in the proof of Proposition 6.4. It is clear that τ acts as

the identity on F2+···+2 since this space is spanned by graphs which are unions of 2-cycles. On the other
hand, Lemma 6.3 shows that τ acts by −1 on F4+2+···+2/F2+···+2. From this it follows that Sym2(VL) =

F2+···+2 = gr2+···+2 and that the quotient map V ⊗2
L → gr4+2+···+2 factors to give an isomorphism

∧2
VL →

gr4+2+···+2. �

6.4. The action of SL on degree two spaces. Having described the spaces grp(V
⊗2
L ), we now turn to

their structure as SL-modules. Our main result is the following. Note that characteristic 0 notions and
arguments from the representation theory of SL make sense over Z[1/|L|!] with the obvious changes.

Proposition 6.5. In the following table, each SL-module is multiplicity free. The set of irreducibles it
contains corresponds to the given set of partitions.

SL-module Set of partitions of |L|

Sym2(VL) at most four parts, all even
∧2 VL exactly four parts, all odd

V ⊗2
L union of previous two sets

R
(2)
L at most three parts, all even

I
(2)
L exactly four parts, all even

These statements hold over Z[1/|L|!].

For instance, I
(2)
L is a direct sum of those irreducible representations of SL corresponding to partitions

of |L| into exactly four even parts. To prove the proposition it suffices to work over the complex numbers
C. We use Schur-Weyl theory: for a vector space A we have a decomposition

A⊗L ∼=
⊕

λ

Mλ ⊗ Sλ(A)

where the sum is over all partitions λ of |L|, Mλ denotes the irreducible representation of SL attached to a
partition λ and Sλ is the Schur functor corresponding to λ. Here A⊗L denotes the tensor product of copies
of A indexed by L. The above decomposition respects the action of SL and is functorial with respect to A.

Let P be the two-dimensional vector space over C with basis {x, y}. Let
∧2 P → C be the isomorphism

taking x ∧ y to 1. We define SL(P ) = Sp(P ) to be the group of linear transformations of P preserving this
alternating form.

Since VL is the space of degree one invariants, it is equal, by definition, to (P⊗L)SL(P ). The action of SL

on VL in this description is the obvious one. We thus have an SL-equivariant isomorphism

VL ⊗ VL = (P⊗L ⊗ P⊗L)SL(P )×SL(P ) = ((P ⊗ P )⊗L)SL(P )×SL(P ).
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The SL-action is the diagonal action on the first two spaces and the usual one on the last space. The above
isomorphism is also equivariant with respect to the transposition of factors τ . We now apply the Schur-Weyl
decomposition to obtain

VL ⊗ VL
∼=
⊕

λ

Mλ ⊗ Sλ(P ⊗ P )SL(P )×SL(P ).

The space P ⊗ P has a natural symmetric inner product coming from the alternating inner product on P .
This inner product is preserved by the group SL(P ) × SL(P ), and it is not hard to see that the resulting
map SL(P ) × SL(P ) → SO(P ⊗ P ) is surjective. The transposition τ on P ⊗ P preserves the inner product
but has determinant −1. Thus τ and SO(P ⊗ P ) generate O(P ⊗ P ). Now, the space Sym2(VL) is just the
τ invariant part of VL ⊗ VL, so

Sym2(VL) ∼=
⊕

λ

Mλ ⊗ Sλ(P ⊗ P )O(P⊗P ).

Similarly,
∧2

VL is just the subspace of VL ⊗ VL on which τ acts by −1 and so
∧2

VL
∼=
⊕

λ

Mλ ⊗ Sλ(P ⊗ P )O(P⊗P ),−

where the minus sign means to take the subspace on which O(P ⊗ P ) acts by its sign representation. The
first three lines of the table in Proposition 6.5 now follow from the n = 4 case of following lemma. This
lemma appears as statements (1) and (2) in the proof of [Ku, Lemma 2.2].

Lemma 6.6 (S. Kumar). Let λ be a partition and let V be a vector space of dimension n with a non-
degenerate symmetric inner product.

• Sλ(V )O(V ) is one-dimensional if λ has at most n parts, all even, and is zero otherwise.
• Sλ(V )O(V ),− is one-dimensional if λ has exactly n parts, all odd, and is zero otherwise.

We now turn our attention to the space R
(2)
L , the degree two invariants. We have an SL-equivariant

isomorphism R
(2)
L = (Sym2(P )⊗L)SL(P ), so

R
(2)
L

∼=
⊕

λ

Mλ ⊗ Sλ(Sym2(P ))SL(P ).

Use the alternating inner product on P to define a symmetric inner product on Sym2(P ) via

〈vv′, ww′〉 = 〈v, w〉〈v′, w′〉 + 〈v, w′〉〈v′, w〉.

The group SL(P ) preserves this inner product and it is not hard to show that the map SL(P ) → SO(Sym2(P ))
is surjective. We thus have

R
(2)
L =

⊕

λ

Mλ ⊗ Sλ(Sym2(P ))SO(Sym2(P )).

The fourth line of the table in Proposition 6.5 now follows from the following lemma:

Lemma 6.7. Let λ be a partition of an even number and let V be a three dimensional vector space with a
non-degenerate symmetric inner product. Then Sλ(V )SO(V ) is one-dimensional if λ has at most three parts,
all of which are even, and is zero otherwise.

Proof. By the second part of Lemma 6.6 we have Sλ(V )O(V ),− = 0, as three odd numbers cannot have an even
sum. We thus have Sλ(V )SO(V ) = Sλ(V )O(V ) and the result follows from the first part of Lemma 6.6. �

The final line of the table in Proposition 6.5 follows from R
(2)
L

∼= Sym2(VL)/I
(2)
L .

6.5. Degree three spaces. We now turn our attention to the cubic spaces V ⊗3
L and Sym3(VL). We say

that a 3-regular graph on L is a benzene cycle if it is a cycle in which the edges alternate between being
single and doubled (Figure 8). We use this term because molecules of benzene are depicted with such graphs
(on six points), as in the figure. We use the term benzene chain for a chain of edges which alternate between
being single and doubled. A benzene 2-cycle is interpreted to mean a triple edge. The main result of this
section is the following:

Proposition 6.8. The space Sym3(VL) is spanned over Z[ 12 ] by graphs which are unions of benzene 2-, 4-

and 6-cycles. In particular, grp(Sym3(VL)) = 0 unless the parts of p are at most 6.
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Figure 8. A benzene 6-cycle.

We deduce Proposition 6.8 from the following:

Proposition 6.9. Let L be a set of cardinality at least 8 and let ∆ be a fixed matching on L. Then VL is
spanned by those YΓ for which the graph ∆Γ is not connected.

Proof. Let Γ be a given matching. Think of ∆ as having blue edges and Γ as having black edges, so ∆Γ is a
regular 2-colored graph. We must show that by using only black Plücker relations we can write it as a sum
of disconnected graphs. (We assume that ∆Γ is connected to begin with.)

Let a, b, c and d be four consecutive vertices in ∆Γ, where ab is a black edge. We have the black Plücker
relation

0 =

a

b c

d

+

a

c b

d

+

a

b c

d

The rightmost graph is disconnected. Thus, working modulo such graphs, we may transpose blue edges at
the cost of a sign. Now let a, b, c, d, e and f be six consecutive vertices where ab is a black edge. We have
the black Plücker relation

0 =

a

b

c d

e

f

+

a

e

d c

b

f

+

a

b

c d

e

f

As before, the rightmost graph is disconnected. This shows that we may take four consecutive vertices and
reverse their direction, at the cost of a sign, assuming the outer two edges are blue. In the same way, by
considering eight consecutive vertices we see that a consecutive string of six vertices may be flipped at the
cost of a sign, assuming that the outer two edges are blue.

Now let a, b, c, d, e and f be six consecutive vertices, the outer two edges of which are blue. We write
[a, b, c, d, e, f ] to denote this situation. By the above, we have

[a, b, c, d, e, f ] = −[f, e, d, c, b, a] = [f, e, a, b, c, d]

= −[b, a, e, f, c, d] = [b, a, d, c, f, e] = −[a, b, c, d, e, f ]

so YΓ = −YΓ modulo matchings for which ∆Γ is disconnected, establishing the proposition. �

By keeping track of the discarded graphs in the above proof we obtain a complicated identity, shown in
Figure 9, that we will use on a few later occasions. As an immediate corollary of the above proposition we
have the following.

Corollary 6.10. Let Γ be a regular 3-colored graph and let Φ be a benzene cycle in Γ. Then in V ⊗3
L one

can write YΓ as a linear combination of YΓi
’s where in each Γi the subgraph Φ is replaced with a union of

benzene 2-, 4- and 6-cycles. This holds over Z[ 1
2 ].

Proof. Assume Φ has at least eight vertices (otherwise there is nothing to prove). Let ∆ be the doubled
edges of Φ and let Φ′ be the single edges of Φ, so that Φ = ∆Φ′. Use Proposition 6.9 to rewrite YΦ′ as a
sum of YΦ′

i
with ∆Φ′

i disconnected. This will rewrite YΓ as a sum of YΓi
where in each YΓi

the benzene
cycle Φ has been replaced with a union of smaller benzene cycles. Continuing in this way, one deduces the
proposition. �

We can now prove Proposition 6.8.

Proof of Proposition 6.8. Let Γ be a regular 3-colored graph on L, thought of as having colors red, green
and blue. Consider the red-green subgraph of Γ. We may apply Proposition 6.1 to rewrite this graph as a
sum of graphs which are unions of 2-cycles. Thus we may as well assume that the red-green subgraph of
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(−2)

= + + +

+ + + +

+ + + −

Figure 9. A graphical identity. The blue edges here are not relevant to the identity: they
are just drawn to emphasize the disconnectedness of the graphs on the right side. Thus this
is a linear relation between YΓ’s where the Γ are matchings on 8 points. This identity can
be obtained by applying the procedure of Proposition 6.9 to the term on the left side, or by
applying the straightening algorithm to the final term on the right side.

Γ is made up of 2-cycles. By now considering the blue edges as well, we see that Γ is a union of benzene
cycles. We may now appeal to Corollary 6.10 to break up large benzene cycles into smaller ones. �

6.6. The action of SL on degree three spaces. We now examine the spaces grp(Sym3(VL)) more closely
when L is small and determine their structure as SL-modules. We assume throughout that |L|! is invertible.
We denote by ML the Z[SL]-module with a basis given by the set of undirected matchings on L.

Proposition 6.11. As an SL-representation the space ML is multiplicity free and contains those irreducibles
corresponding to partitions of |L| into even parts.

This proposition is well-known and essentially equivalent to the decomposition of the plethysm Symn Sym2.
In any case, we only need to use this when L has cardinality four or six, where it can easily be established by
hand. We now begin our study of grp(Sym3(VL)). For the sake of brevity, we will denote this space simply
by grp in this section. We will also write Sn in place of SL where n = |L|. Our first result is the following:

Proposition 6.12. The space gr2+···+2 is multiplicity free and contains only those irreducible representations
of Sn which have an even number of parts.

Proof. The space gr2+···+2 is the image of the map ε ⊗ ML → Sym3(VL) which takes a matching Γ to Y 3
Γ .

The result now follows from Proposition 6.11. �

We will only need to use the above proposition for n ≤ 6. We now determine the spaces grp completely for
n = 4 and 6. As a warm-up, consider the n = 2 case: gr2 is one-dimensional, and it is the sign representation
of S2. Reason: the space Sym3(VL) is spanned by YΓ where Γ is the graph on L with a tripled edge. The
group S2 fixes Γ and so acts on YΓ through the sign character. All other grp in this case are zero. We now
turn to n = 4.

Proposition 6.13. (a) The space gr2,2 is free over Z[ 1
4! ] and three-dimensional. As an S4-representation

it decomposes into two irreducibles corresponding to the partitions 2 + 2 and 1 + 1 + 1 + 1.
(b) The space gr4 is free over Z[ 1

4! ] and one-dimensional. The representation of S4 on it is trivial.
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Proof. The space gr4 is spanned by benzene 4-cycles. We have the identity

0 = + +

obtained by Plückering the blue edges. We thus see that if Γ is benzene 4-cycle in which ab is a doubled edge
then YΓ + Y(ab)Γ = 0 in gr4, which can be rephrased as (ab)YΓ = YΓ. In particular, two benzene 4-cycles are
equal in gr4 (up to a possible sign) if they have the same doubled edges. By cubing

= +

we obtain

0 = +

in gr4 (all other terms belong to F2,2). This shows that we can switch which edges are the doubled edges.
We have thus shown that gr4 is one dimensional. Since we already know that some transpositions act by
the identity, it follows that S4 acts trivially on gr4.

Now, Sym3(VL) is four-dimensional. We know that gr4 is one-dimensional and so gr2,2 must be three-
dimensional. By Proposition 6.12 we know that gr2,2 is a quotient of the direct sum of the irreducible
representations of S4 corresponding to 2 + 2 and 1 + 1 + 1 + 1. Since this direct sum has dimension 3, it
follows that gr2,2 must equal it. �

Finally we consider the case n = 6. As stated in §1.6, the computer calculations in the proof are very
mild and could probably be done by hand in a matter of hours.

Proposition 6.14. (a) The space gr2,2,2 is free over Z[ 1
6! ] and 15-dimensional. As an S6-representation it

decomposes into three irreducibles, corresponding to the partitions 3+3, 2+2+1+1 and 1+1+1+1+1+1.
(b) The space gr4,2 is free over Z[ 1

6! ], 15-dimensional and decomposes into two irreducibles: one corresponding
to 5 + 1 and the other to 4 + 1 + 1.
(c) The space gr6 is free over Z[ 1

6! ] and five-dimensional. It is irreducible and corresponds to 3 + 3.

(d) Let Q be a set of cardinality six and let c, d and e be three distinct elements of Q. Then gr6(Sym3(VQ))
is spanned by benzene 6-cycles in which cd or ce appears as a doubled edge. (We call the set Q here, rather
than L, since that is what it will be called in the one place where we apply this statement.)

Proof. The code for the computer calculations required here can be found on the webpage [HMSV5].
(a) A computer calculation shows that F2,2,2 = gr2,2,2 is 15 dimensional. By Proposition 6.12, the space

gr2,2,2 is a quotient of the direct sum of the irreducible representations of S6 corresponding to the partitions
given in the statement of this proposition. Since this direct sum is also 15 dimensional the quotient map is
an isomorphism.

(b) A computer calculation shows that F4,2 is 30 dimensional, and so gr4,2 = F4,2/F2,2,2 is 15 dimensional.
Now observe that there is a map F4 ⊗ F2 → F4,2 which takes an element of F4 on the vertices {1, 2, 3, 4}
and appends a tripled edge on the vertices {5, 6}. One sees using this that that gr4,2 is a quotient of

IndS6

S4×S2
(gr4 ⊗ gr2). By the Littlewood-Richardson rule, the induction is a direct sum of the two irreducible

representations of S6 corresponding to the partitions given in the statement of the proposition. Since this
sum is also 15 dimensional the quotient map is an isomorphism.

(c) We have a non-canonical S6-equivariant decomposition Sym3(VL) ∼= gr2,2,2 ⊕ gr4,2 ⊕ gr6. On the other

hand, a character computation shows that Sym3(VL) ∼= gr2,2,2 ⊕ gr4,2 ⊕M3+3 (where M3,3 is the irreducible
representation corresponding to 3 + 3). Thus gr6 = M3+3.

(d) This is a straightforward computer calculation. �

7. Retrogeneration of the ideal

In this section, we prove that for |L| sufficiently large, the ideal of relations is retrogenerated (generated
by quadratics and relations on fewer points):

Theorem 7.1. Let L be an even set of cardinality at least 10. Then IL = Iretro
L . For |L| ≥ 12 this holds

over Z[ 12 ] while for |L| = 10 it holds over Z[ 1
10! ].
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The ideal Iretro
L of retrogenerated relations will be defined in §7.1. We use general structural arguments

to prove Theorem 7.1 when |L| ≥ 12 but when |L| = 10 the small size of the graphs involved forces us to give
an inelegant ad hoc argument. We suggest that a reader consider skipping the arguments in the |L| = 10
case on a first reading.

7.1. Outer multiplication and the retrogenerated ideal I retro
L . Let L and L′ be even sets. We have

an outer multiplication map

� : V ⊗n
L ⊗ V ⊗n

L′ → V ⊗n
LqL′ , YΓ ⊗ YΓ′ 7→ YΓqΓ′ .

In words, one takes a colored graph Γ on L and a colored graph Γ′ on L′, with the same set of colors, and
obtains a colored graph on L q L′ by taking the disjoint union of Γ and Γ′. We will often omit the symbol
� and write the outer product using juxtaposition.

Outer multiplication does not descend to symmetric powers, as shown by the following example:

� =

� =

Let L and L′ be the two sets of four vertices occurring on the left sides. The two left sides above define equal
elements of Sym2(VL)⊗ Sym2(VL′). However, the two right sides are different elements of Sym2(VLqL′) —
their difference is the simplest binomial relation (1.4).

One sees from the above example that outer multiplication does not descend to symmetric powers for
the following reason: if Γ is an n-colored graph on L and one permutes the colors in each connected
component of Γ to obtain a new n-colored graph Γ′ then YΓ and YΓ′ do not represent the same element
of Symn(VL) in general. Now, if Γ and Γ′ are as in the previous sentence then YΓ − YΓ′ lies in the ideal
QL of Sym(VL) generated by quadratic relations. (Reason: any permutation of colors can be obtained by
successive transpositions of colors, and the relations thus arising are clearly quadratic.) We hence find that
outer multiplication descends to a map

� : Symn(VL)/Q
(n)
L ⊗ Symn(VL′)/Q

(n)
L′ → Symn(VLqL′)/Q

(n)
LqL′

and that I
(n)
L /Q

(n)
L ⊗ Symn(VL′)/Q

(n)
L′ is mapped into I

(n)
LqL′/Q

(n)
LqL′ under �, that is, the outer product of

anything with a relation is still a relation. A motivating example appeared in the introduction: the Segre
relation on 6 points (1.2) induces a relation on 8 points (1.3).

For a given L, we define the ideal of retrogenerated relations, denoted I retro
L , to be the ideal of Sym(VL)/QL

generated by the images of I
(n)
L′ /Q

(n)
L′ ⊗ Symn(VL′′)/Q

(n)
L′′ under � as (L′, L′′) varies over all partitions of

L into two disjoint proper even subsets and n varies over all positive integers. We also write I retro
L for the

inverse image of Iretro
L under Sym(VL) → Sym(VL)/QL. We have inclusions QL ⊂ Iretro

L ⊂ IL. (Theorem 8.1
will show that these three ideals are all the same.) We say a relation (in IL) is retrogenerated if it lies in
Iretro
L .

A basic fact is that outer multiplication does not increase the “essential degree” of a relation:

Proposition 7.2. Let L = L′ q L′′ be a partition of L into two proper even subsets. Let x ∈ I
(n)
L′ /Q

(n)
L′

belong to the ideal generated by relations of degree ≤ k and let y ∈ Symn(VL′′ )/Q
(n)
L′′ . Then the outer product

x � y belongs to the ideal of Sym(VL)/QL generated by relations of degree ≤ k.

Proof. Write x =
∑

airi where ri is a relation of degree ≤ k and ai belongs to Sym(VL′)/QL′ and write
y =

∑
yi where each yi is a product of degree one elements. The outer product of x � y is a sum of terms

of the form airi � yj . Say ri has degree k′ ≤ k so that ai has degree n − k′, and write yj = b1 · · · bn.
Then airi � yj = (ai � (b1 · · · bn−k′))(ri � (bn−k′+1 · · · bn)) — this is the basic compatibility between outer
multiplication and usual multiplication and is trivial to verify. We have thus shown that airi � yj is a
multiple of ri � (bn−k′+1 · · · bn), a relation of degree k′ ≤ k. �

Outer multiplication, simple binomial relations and the retrogenerated ideal are quite formal constructions
and are present when studying Xn//G for any X and G. They are described nicely by the formalism of
third author mentioned in §1.7. By contrast, the following two propositions are specific to the present case.



28 BENJAMIN HOWARD, JOHN MILLSON, ANDREW SNOWDEN AND RAVI VAKIL

Proposition 7.3. Let Σ = (Γ, U ) be a generalized Segre datum for which Γ is disconnected. Then Rel(Σ)
belongs to Iretro

L .

Proof. Write Γ = Γ1 q Γ2. If one of Γ1 or Γ2 is entirely contained within one of the parts UR, UG or UB

then the relation Rel(Σ) is manifestly retrogenerated. For instance, if Γ1 is contained within one of the parts
then Γ2 with the partition induced from U forms a generalized Segre datum Σ2 and Rel(Σ) is the outer
product of YΓ1 and Rel(Σ2). If neither Γ1 nor Γ2 is contained solely within one part then each contains a
pair of special edges and the datum Σ is forced to be degenerate (of the second case given in §5.4). The
relation Rel(Σ) thus belongs to QL ⊂ Iretro

L by Proposition 5.2. �

The next proposition is a key point in our inductive arguments.

Proposition 7.4. The ideal I retro
L ⊂ Sym(VL)/QL is generated over Z[ 12 ] by the images of I

(3)
L′ /Q

(3)
L′ ⊗

Sym3(VL′′)/Q
(3)
L′′ under � as (L′, L′′) varies over all partitions of L into two disjoint subsets where L′′ has

cardinality 2, 4 or 6.

Proof. Proposition 7.2 shows that I retro
L is generated by elements of the form r � YΓ where r belongs to

I
(3)
L′ /Q

(3)
L′ and YΓ belongs to Sym3(VL′′)/Q

(3)
L′′ , as (L′, L′′) varies over all partitions of L into two disjoint even

subsets. Proposition 6.8 shows that we can write YΓ =
∑

aiYΓi
where ai belongs to Z[ 12 ] and each Γi is a

union of benzene 2-, 4- and 6-cycles. It follows that YΓi
is itself an outer product YΓi1 � · · ·�YΓin

where each
YΓij

is a benzene 2-, 4- or 6-cycle. Since � is associative, we have r �YΓi
= (r �YΓi1 � · · ·�YΓi(n−1)

)�YΓin
,

which expresses r � YΓi
as the outer product of a graph on 2, 4 or 6 fewer points with a graph on 2, 4 or 6

points. Thus r � YΓ is a sum of such graphs, which establishes the proposition. �

7.2. Square rotation relations. To prove Theorem 7.1 we introduce the square rotation relations, needed
only in this proof. A square rotation datum is a pair Π = (Γ, U) where U is a subset of L of cardinality 4
and Γ is an undirected graph on L with edges colored purple and black such that:

• The vertices of L \ U have black valence one and purple valence two.
• The vertices of U have black valence zero and purple valence one.

Let Π be a given square rotation datum. Suppose that a pair of edges e and e′ in Γ have the same color.
Let Γ + Γ′ + Γ′′ = 0 be the Plücker relation on e and e′. Then Π′ = (Γ′, U) and Π′′ = (Γ′′, U) are both
square rotation data. We define the space of square rotation data to be the Z-span of the square rotation
data modulo the relations Π + Π′ + Π′′ = 0.

Let Π be a square rotation datum. We have the following quadratic relation on the four points in U :

(7.1) =

Multiplying both sides by Γ we obtain an element of R
(1)
L ⊗ R

(2)
L which maps to zero in RL. We may thus

regard it as an element of I
(3)
L /Q

(3)
L , similar to what we did for generalized Segre relations. We call such

relations square rotation relations. We have a linear map

Rel : {the space of square rotation data} → I
(3)
L /Q

(3)
L

mapping a square rotation datum to its associated relation.

7.3. Retrogeneration of square rotation relations. The result is:

Proposition 7.5. If L has cardinality at least 12 then any square rotation relation is retrogenerated.

We use a lemma to prove the proposition. Let Π be a given square rotation datum. The purple subgraph
of Γ has valence two everywhere except at the four vertices in U . It thus breaks up into a union of cycles
and two paths terminating in U . We call these two paths the special paths. The length of a special path is
the number of vertices it contains.

Lemma 7.6. (a) A square rotation relation with both special paths of even length lies in QL.
(b) A square rotation relation with one special path of even length is quadratic.
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Proof. (a) The way we obtain a square rotation relation from the square rotation datum is to simply append
the graph Γ to the relation (7.1). Now, on each side of (7.1) there are two purple edges. Change the color
of these edges to grey. The hypothesis on the lengths of the special paths says that we can color every
other edge in the special paths grey (keeping the first and last edges purple) so that each vertex belongs to
one grey and one purple edge. We may assume that the purple cycles occurring in Γ have even size (as we
can force this using Plücker relations), so we can pick a purple-grey alternating coloring of them. Thus we
have factored the purple subgraph of Γ in such a way that all the purple edges appearing in (7.1) have been
colored grey. But now the relation is evidently essentially quadratic (i.e., belongs to QL) since it is taking
place solely on the black-grey graph.

(b) If one special path has even length and one has odd length then Γ has an odd purple cycle. We can
thus Plücker the odd special path and the odd cycle so that both special paths have even length. We now
use part (a). �

We now prove Proposition 7.5.

Proof of Proposition 7.5. Let a square rotation datum be given. By the above lemma, we can assume
that each of the special paths has odd length. Using arguments similar to those occurring in the proof of
Proposition 6.1, we can force the special paths to have lengths three. Thus each special path contains a
single vertex not belonging to U . Call these two vertices x and y. We now use Proposition 6.1 to convert the
purple cycles in Γ into 2-cycles. We thus have a benzene chain joining x with y. The graph Γ now looks like
the following (with the possibility that there are some additional black-purple benzene cycles not pictured):

x

y

1

2

3

4

Here the numbered vertices constitute the set U . The special paths are 1-x-2 and 3-y-4. If there are in fact
benzene cycles in Γ then the relation is retrogenerated (the proof of this is similar to that of Proposition 7.3).
We can thus assume that there are no benzene cycles and so the graph really does look like the above one.
Since we have at least 12 vertices, the benzene chain will have at least four single black edges, so we can
apply Corollary 6.10 or identity of Figure 9 to break up the benzene chain and get a disconnected graph.
The associated relation will therefore be retrogenerated. �

7.4. Retrogeneration of the ideal on 12 points (Theorem 7.1 with |L| = 12). We begin with two
lemmas.

Lemma 7.7. Let Σ = (Γ, U ) be a generalized Segre datum, and let U ⊂ UG be a set of four vertices such
that the blue-green graph of Γ has a 4-cycle contained in U . Let Γ be the graph obtained by rotating the colors
in this 4-cycle and let Σ = (Γ, U ). Then Rel(Σ) ≡ Rel(Σ) modulo quadratic and square rotation relations.

Proof. We must show that
Rel(Σ) − Rel(Σ) = YΓ − Y ′

Γ − YΓ + Y ′
Γ

belongs to the ideal generated by quadratic and square rotation relations. Clearly, YΓ − YΓ ∈ QL since the
red subgraph in each is the same, while Y ′

Γ − Y ′
Γ

is a square rotation relation by definition. �

Lemma 7.8. Let Σ = (Γ, U ) be a generalized Segre datum and let U ⊂ UG be a set of four vertices such that
the blue-green graph of Γ has a 4-cycle contained in U . Let {Γi} be the three graphs obtained by replacing
the 4-cycle on U by two 2-cycles (there are three ways to do this). Let {Σi} be the corresponding generalized
Segre data. Then 2 Rel(Σ) ≡

∑
Rel(Σi) modulo quadratic and square rotation relations.

Proof. Recall the identity

+ = + +

of the proof of Lemma 6.3. This identity holds in V ⊗2
L , that is, it follows from the colored Plücker relations.

This shows that in the space of generalized Segre data, we have Σ + Σ =
∑3

i=1 Σi where Σ was defined

in the previous lemma. By the previous lemma, we have Rel(Σ) = Rel(Σ) modulo quadratic and square
rotation relations. This proves the current lemma. �

We now complete the proof of Theorem 7.1 when |L| ≥ 12.
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Proof of Theorem 7.1 when |L| ≥ 12. By Theorem 5.1, it suffices to show that small generalized Segre cubic
relations are retrogenerated. Thus let Σ be a given small generalized Segre datum. We assume without loss
of generality that UR has cardinality two, and that Σ is non-degenerate.

We begin by considering the blue-green subgraph of UG. This is a union of cycles and a single chain going
between the two special blue edges. By using Proposition 6.1, or more accurately the identity of Figure 7,
we can convert this graph into a union of 2-cycles and 4-cycles and make the chain have length three (so
that the two special blue edges are joined by a single green edge). We can now use the above two lemmas
to convert the 4-cycles into 2-cycles, modulo retrogenerated relations.

We have thus reduced to the case where the blue-green subgraph of Γ in UG is made up of 2-cycles (except
for the path of length three involving the two special blue edges). We now consider the red edges. Except
for the special blue edges, the graph Γ|UG

is a union of benzene chains with the blue and green edges being
paired. There are two incoming special red edges and two red edges connected to the two special blue edges.
From each of these edges a benzene chain emanates which must terminate at one of the other edges. These
four red edges are thus contained in two benzene chains. If the two special red edges are contained in the
same benzene chain then the graph is degenerate and the relation lies in QL. It therefore suffices to consider
the case where each special red edge connects to a special blue edge via a benzene chain.

Now, we may run the entire argument given above inside UB as well. We thus conclude that Γ|UB
is a

union of benzene chains with the blue and green edges being paired. The two special red edges connect with
the two special green edges by benzene chains. The picture is thus something like:

12

3

4
10 9

5

6

78

11

12

Here UG = {1, 2, 3, 4}, UB = {5, 6, 7, 8, 9, 10} and UR = {11, 12}. If there are other benzene cycles present,
then the relation is immediately retrogenerated. Also, the two benzene chains connecting the left and right
side could be crossed; that is, the chains could go from 1 to 7 and 2 to 8 instead of as they do. However,
one can always rectify this by Plückering two red edges such as 89 and 67 — one of the resulting graphs has
the chains uncrossed while the other is degenerate. So the above graph is the only sort we need consider.

Now, we can repartition the vertices so that all the blue-green doubled edges are contained in UG. For
example, with the above graph we would repartition so that UG = {1, 2, 3, 4, 5, 6, 9, 10}, UB = {7, 8} and
UR = {11, 12}. The resulting Segre datum yields the same relation as the original. We next point out that
we can put all the blue-green doubled edges into a single benzene chain by Plückering two red edges. For
example, in the above graph we would Plücker the edges 1 10 and 67. In one graph, 17 is a red edge and
all the blue-green doubled edges are in a single benzene chain running between 2 and 8. The other graph
is degenerate. Now, since we have at least 12 vertices, the benzene chain will have at least four single red
edges. It can therefore be broken apart using Corollary 6.10 or identity of Figure 9, yielding a disconnected
graph and therefore a retrogenerated relation. This completes the proof of Theorem 7.1 when |L| ≥ 12. �

7.5. Retrogeneration of the ideal on 10 points (Theorem 7.1 with |L| = 10). For the remainder of
§7 we let L be a finite set of cardinality 10. To prove Theorem 7.1 in this case, we show the following:

Proposition 7.9. The space I
(3)
L /I

retro,(3)
L has dimension at most two (over Z[ 12 ]).

We now explain why this implies Theorem 7.1 for |L| = 10. For the next few sentences we work over a
field k of characteristic not 2, 3, 5 or 7. A character computation shows that Sym3(VL) does not contain

the trivial or alternating representation. Now, the representation I
(3)
L /I

retro,(3)
L is at most two-dimensional,

and a summand of Sym3(VL). As any representation of SL of dimension at most two is made up of

some combination of the trivial and alternating representations, it follows that I
(3)
L /I

retro,(3)
L vanishes. Thus

I
(3)
L = I

retro,(3)
L over k. Since this holds for all k of characteristic not 2, 3, 5 or 7, we conclude I

(3)
L = I

retro,(3)
L .

Since IL is generated by quadratics and I
(3)
L (Theorem 5.1), this implies IL = Iretro

L .
We now turn to proving Proposition 7.9. We prove the following result:
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Proposition 7.10. Let U = {UG, UR, UB} be a fixed partition of L with |UR| = 2. Consider the subspace

V of I
(3)
L /I

retro,(3)
L spanned by all generalized Segre cubic relations coming from data with partition equal to

U . Then, over Z[ 12 ]:

(1) If UG (and thus UB) has cardinality four then V = 0.
(2) If either UG or UB has cardinality six then dim V ≤ 1.

We explain why Proposition 7.10 implies Proposition 7.9. Fix an order on L. Call a partition U =
{UG, UR, UB} of L admissible if each part is non-empty of even cardinality, UG < UR < UB in the order
and |UR| = 2. We call a generalized Segre cubic datum admissible if its partition is; we extend the notion
to relations in the obvious manner. By inspection, there are three admissible partitions of L. One of
these has |UG| = |UB| = 4 while in the other two, one of UG or UB has cardinality six. It follows from

Proposition 7.10 that the admissible Segre cubic relations span a subspace of I
(3)
L /I

retro,(3)
L of dimension at

most two. On the other hand, we know that the admissible generalized Segre cubic relations span I
(3)
L /Q

(3)
L

(see Remark 5.3). As I
retro,(3)
L contains Q

(3)
L we conclude that I

(3)
L /I

retro,(3)
L has dimension at most two,

establishing Proposition 7.9.
We now begin proving Proposition 7.10. We first consider the case where |UG| = 4 (so |UB | = 4 too).

Consider the blue-green subgraph of UG. In it there are two green edges, two blue edges contained entirely
in UG and two blue edges (the special ones) going between UG and UR. By using identity of Figure 7 we
can force there to be a blue-green doubled edge. This implies that the special blue edges are joined by one
green edge. By now considering the red edges, we see that there are two possibilities for the picture in UG:

•

•

• •
or •

•

• •

The right case is disconnected, hence retrogenerated. We thus need only consider the left case. We now go
through the same considerations in UB as we just did in UG and conclude that it too must look like the
graph on the left, except with the colors blue and green reversed. We find that the graph as a whole must be
one of the two in the statement of the following lemma. That lemma then shows that that the generalized
Segre relation we are considering is retrogenerated, which completes the |UG| = 4 case.

Lemma 7.11. Let Γ be one of the following two graphs.

1

2

3

4

9

10

5 6 7 8

or

1

2

3

4

9

10

5 6

78

Let U = {UR, UG, UB} be a partition such that UR = {9, 10}, UG ⊃ {1, 2}, UB ⊃ {3, 4} and Σ = (Γ, U ) is
a generalized Segre cubic datum. Then Rel(Σ) is retrogenerated over Z[ 1

2 ].

Proof. We first note that the relation Rel(Σ) is independent of the partition U . We therefore assume that
the vertices 5, 6, 7 and 8 belong to UG. Now, let Γ be the left graph. Redraw Γ as follows:

6

7

8

5

1

2

3

4
10

9

All the red edges other than 9 10 contain at least one vertex in UG so we are allowed to Plücker any of
them together to obtain a relation of generalized Segre cubic data. We thus may apply identity of Figure 9
to the red edges. All the resulting terms either come from fewer points by outer multiplication or else are
degenerate. (Precisely: the first two graphs from the first row of Figure 9 come from fewer points, and the
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last two are degenerate. In the second row, all are degenerate except for the third. In the third row, all are
degenerate except the first.) We conclude that Rel(Σ) is retrogenerated.

Now let Γ be the right graph. By applying the Plücker relation to the edges 28 and 36 we get two graphs,
one of which is degenerate, the other of which looks like the graph handled in the previous paragraph. Thus
Rel(Σ) for the right graph is retrogenerated as well. �

We now establish the second case of Proposition 7.10. Thus let U be a partition in which |UG| = 6. In
this case, both UR and UB have cardinality two and so the situation is symmetric with respect to these two
colors. We begin with the following observation:

Lemma 7.12. If there is a green-blue or green-red doubled edge in UG then Rel(Σ) is retrogenerated over
Z[ 12 ].

Proof. Say there is a green-blue doubled edge in UG. Then, as in the case |UG| = 4, we can apply identity
of Figure 7 to force there to be a second green-blue doubled edge in UG. The graph Γ must now look like
one of the two in Lemma 7.11 and so, by that lemma, we obtain the present one. �

Now consider a general generalized Segre cubic datum Σ with |UG| = 6. By applying identity of Figure 7
repeatedly, or appealing to Proposition 6.1, we can arrange it so that the blue-green subgraph on UG is of
the form

•

•

•

•

•

•
or

•

•

•

•

•

•

The right graph has a blue-green doubled edge, and so the associated relation belongs to I ′
L by Lemma 7.12.

We therefore need only consider the left graph. We now consider the red edges. There are two that are
completely contained in UG and the two special edges, each of which has one vertex in UG. Here are three
possible graphs:

1

4

2 3

5 6

•

•

•

•

•

•

1

4

2 3

5 6

•

• • •

• •

1

4

2 3

5 6

•

• • •

• •

We will refer to these as type A, B and C, respectively. Of course, there are many other possibilities for what
the graph could look like. However, all reduce to one of the above three types after some simple Plücker
relations. For instance, one could consider the graph which is like the type A one, but where the blue and
green colors are switched in the square 2-3-5-6. By applying the Plücker relation to the edges 45 and the
red special edge containing 3, this relation is rewritten as a sum of two of those appearing above.

We now have the following result:

Lemma 7.13. Type B and C relations are retrogenerated over Z[ 1
2 ].

Proof. Consider the type B graph drawn above. We apply identity of Figure 7 to the red-green chain
4-5-2-3-6-∗, where ∗ is the relevant vertex of UB . The first graph on the right side of the identity is
disconnected and therefore retrogenerated. All the remaining graphs have green-red doubled edges and
so are also retrogenerated by Lemma 7.12. This completes the type B case. The type C case is handled
similarly: in the above labeling one applies the identity of Figure 7 to the chain 4-5-2-6-3-∗ and then proceeds
exactly as in the type B case. �

The following completes the proof of Proposition 7.10.

Lemma 7.14. The type A relations span a subspace of I
(3)
L /I

retro,(3)
L of dimension at most one over Z[ 12 ].

Proof. Put UG = {1, 2, 3, 4, 5, 6} and let Γ be a 3-colored graph on L whose restriction to UG is the type A
graph

1

4

2 3

5 6

•

•

•

•

•

•

Applying the Plücker relation to the edges 45 and 12 gives an expression for Γ in terms of two other graphs
Γ1 and Γ2, one of which (say Γ1) is degenerate. Now apply the Plücker relation to the edges 56 and 23 of
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Γ2. Again, this expresses Γ2 in terms of two other graphs Γ3 and Γ4, one of which (say Γ4) is degenerate.
Thus, we see that Rel(Σ) and Rel(Σ4) are scalar multiples of each other. But Rel(Σ4) is nothing other than
(25) Rel(Σ). We thus see that Γ and (25)Γ yield the same relation (up to a scalar). By similar reasoning,
we see that (14)Γ and (36)Γ give the same relation as Γ.

Now consider the Plücker relation on Γ on the edges 12 and 3 ∗ , where ∗ is the relevant vertex of UB.
This results in two graphs Γ1 and Γ2. Say Γ1 is the graph which has the edge 1 ∗ . Then Γ1 is a type B
graph and thus retrogenerated. Now apply the Plücker relation on the edges 25 and 36 to Γ2 to get two
new graphs Γ3 and Γ4. One of these, say Γ3, has a green-blue doubled edge and is thus retrogenerated.
The other, Γ4, is just (23)Γ. We thus see that Γ and (23)Γ give the same relation, up to a scalar. Similar
reasoning shows that (45)Γ, (56)Γ and (12)Γ give the same relation as Γ.

¿From the previous two paragraphs, we see that if σ is any permutation of UG then Γ and σΓ give the
same relation, up to a scalar. Since every type A graph is of the form σΓ for some σ, this establishes the
lemma. �

8. The ideal is generated by quadratics

The goal of §8 is to prove that IL is generated by quadratics if |L| ≥ 8:

Theorem 8.1. If L is an even set of cardinality at least eight then IL = QL over Z[ 1
12! ].

As described in §1.6, this concludes the proof of Theorem 1.1. Thanks to our work in §7, the main
remaining work is to prove three base cases:

Theorem 8.2. The ideals I8, I10 and I12 are generated by quadratics over Z[ 1
12! ].

This implies Theorem 8.1 (and hence Theorem 1.1) by the following inductive argument. Let n ≥ 14 and
assume the theorem has been established for even sets of cardinality less than n. By Theorem 7.1 we have
In = Iretro

n . By Proposition 7.4 we know that I retro
n is generated by the outer products of cubic relations

on n − 2, n − 4 and n − 6 points with arbitrary graphs on 2, 4 and 6 points. The inductive hypothesis,
and the fact that n ≥ 14, ensures that any cubic relation on n − 2, n − 4 or n − 6 points lies in the ideal
generated by quadratics. Since outer multiplication does not increase essential degree (Proposition 7.2), we
find Iretro

n = Qn. Thus Theorem 8.1 is established by induction.
As for Theorem 8.2, quadratic generation of I8 is proved over Z[ 13 ] in [HMSV3]. (Quadratic generation

of I8 over Q had previously been established by computer; see e.g., [Ko] or [FS, Lemma 1.1].) We handle
the 10 and 12 point cases by showing that I10 (resp. I12) is generated by relations coming from 8 (resp. 8
and 10) points: one does not need relations coming from 6 points to generate IL. The quadratic generation
of I8 then implies that of I10 and hence of I12 as well.

Here is an overview of the argument. We let I ′ be the quotient of the cubic part of the ideal by quadratic
relations and relations retrogenerated from 8 (resp. 8 and 10) points. We wish to show that this space is
zero. By Theorem 7.1, I ′ is generated as an S10-module (resp. S12-module) by a single relation: the outer
product of the Segre cubic on 6 points by a benzene 4-cycle (resp. 6-cycle). (Hence we only need to prove
that these two relations are generated by quadratics. This could in principle be checked by computer, but
with current technology would probably require an algorithm of equal difficulty to our proof!) We can thus
write I ′ as a quotient of a representation V induced from S6 × S4 (resp. S6 × S6), where the first factor
acts on the Segre cubic on 6 points and the second on the benzene cycle. We then write down a family
of elements in the kernel of V → I ′, which allows us to obtain an upper bound on the dimension of I ′.
Finally, we examine the irreducible S10-modules (resp. S12-modules) occurring in V and find that they all
have larger dimension than the bound found for I ′. This shows that I ′ is zero. The fact that we use the
representation theory of S10 and S12 is the source of the denominator 12! in Theorem 8.1.

Throughout §8, L will always denote a set of cardinality 10 or 12. We handle the two cases simultaneously
as much as possible. When we make different statements for the two cases, we give the 10-point statement
first and the 12-point statement second.

8.1. The spaces I ′
P

and the A-, B- and C-relations. By a bipartition of L we mean an ordered pair
P = (P, Q) with P

∐
Q = L, where P has cardinality six, and Q has cardinality four if |L| = 10, and

cardinality six if |L| = 12. By a graph of type A (resp. type B, resp. type C ) with respect to a bipartition
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P we mean one of the form

respectively respectively

when |L| = 10, or one of the form

respectively respectively

when |L| = 12. In all cases the vertices of the top hexagon belong to P while the vertices in the bottom
square or hexagon belong to Q.

We name some edges that we will refer to often. The most obvious distinguished edges are the two red
edges joining the P -vertices and Q-vertices. We call them the special red edges. There is a unique blue
(resp. green) edge in the top hexagon meeting one of the special red edges; we call it the (top) special blue
(resp. green) edge. Finally, for type B graphs, we call the green edge in the bottom hexagon which meets
the special red edges the bottom special green edge. We call the chain a-b-c-d, where ab is the special blue
edge, bc is the special red edge to which it connects and cd is the bottom special green edge, the special
chain (only defined for type B graphs).

Let Γ be a graph of type A, B or C with respect to P . Define a partition U = {UR, UG, UB} of L as
follows. In the type A case, UR, UG and UB each contain two vertices in the top hexagon, and these vertices
must be connected by a red, green and blue edge respectively. The bottom benzene cycle is in UB . In the
type B and C cases we take UG to be the two vertices belonging to the top special green edge, we take UB

to be the two vertices belonging to the top special blue edge together with the bottom set (that is, the set
Q), and we take UR to be the leftover two vertices in the top hexagon (they form a red edge). In each case,
(Γ, U ) is a generalized Segre cubic datum, and so has an associated generalized Segre cubic relation. In the
type A case the partition U was not uniquely determined, but its image in I ′

L is independent of the choice
of partition. We may thus in all cases speak unambiguously of the relation defined by Γ, denoted by Rel(Γ).
Note that if σ is a permutation of L then Rel(σΓ) = ε(σ)σ(Rel(Γ)).

We let I ′
P

be the subspace of I ′
L generated by the relations attached to all type A graphs with respect

to P . Now, I ′
P

carries a natural representation of SP ×SQ. As such it is a quotient of the representation

I
(3)
P ⊗ gr

(3)
4,Q (resp. I

(3)
P ⊗ gr

(3)
6,Q). In particular, it is either zero or irreducible of dimension one (resp. five),

as I
(3)
P is irreducible of dimension one and gr

(3)
4,Q (resp. gr

(3)
6,Q) is irreducible of dimension one (resp. five; see

Propositions 6.13 and 6.14). The natural map (of SLmodules)
⊕

P

I ′P → I ′L

is surjective since IL is retrogenerated (Theorem 7.1) and there are no relations on 2 or 4 points.

Proposition 8.3. Let P be a bipartition of L. Then the type B relations with respect to P belong to I ′
P

and span it. The same is true for the type C relations.

We prove this proposition by showing that type A relations can be written in terms of type B relations,
type B in terms of type C and finally type C in terms of type A, all with respect to the same P . We
accomplish this in a series of lemmas. After this proof we will have no need for the type C relations.

Lemma 8.4. Any type A relation with respect to P belongs to the space spanned by the type B relations
with respect to P.

Proof. Given a type A graph, Plücker a red edge from the top hexagon and a red edge from the bottom
benzene cycle. This expresses the type A relation as a sum of two type B relations. �
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Lemma 8.5. Any type B relation with respect to P belongs to the space spanned by the type C relations
with respect to P.

Proof. To establish this lemma we just have to rewrite the blue/green graph on Q in terms of squares of
matchings. This is exactly what we did in when proving Theorem 7.1(a) (see in particular Lemmas 7.7
and 7.8). The key point is that all square rotation relations which come up in our particular case have
special paths of even length and are therefore quadratic.

Alternatively, one can argue as follows. The generalized Segre relation associated to graphs of type B
is a genuine cubic relation, that is, the purple/black graph on the right side of the relation factors into a
product of degree one graphs. For instance, in the 12 point case the factored relation may be written as

=

(the black graph on the right is colored blue while the purple graph has been factored into the green and
red graphs). Now, the bottom half of each side is the same. One can therefore apply the same colored
Plücker and quadratic relations on each side and rewrite the blue/green graph on Q as a sum of squares of
matchings. This expresses the type B relation in terms of type C relations. �

Lemma 8.6. Any type C relation with respect to P belongs to the space spanned by the type A relations
with respect to P.

Proof. The proof of the 10 point case proceeds exactly as the proof of Lemma 7.11. Note that after applying
the identity of Figure 9 to the redrawn graph, the first graph on the second line of the right side is a type A
graph with respect to P . All other graphs either come from 8 points or else are degenerate. To prove the
12 point case, we again use the identity of Figure 9, applying it to the bottom four red edges, that is, the
two special red edges and the two red edges contained in the bottom hexagon. The first term in Figure 9 is
a type A relation with respect to P . All the other terms come from 8 or 10 points. �

8.2. Relations among different I ′
P

. In this section we demonstrate some linear dependencies between
the various spaces I ′

P
:

Proposition 8.7. Let Γ be a type A graph with respect to a bipartition P = (P, Q), let a and b be two
distinct elements of P and let c and d be two distinct elements of Q which are joined by a doubled edge.
Then Rel(Γ) is contained in

∑
I ′σP

, where the sum is taken over those permutations σ of {a, b, c, d} for
which σP 6= P.

We deduce this proposition from the following one:

Proposition 8.8. Let Γ be a type B graph with respect to P and let a-b-c-d be its special chain. Then

Rel(Γ) = (ad) Rel(Γ) − (bc) Rel(Γ) + (ad)(bc) Rel(Γ) + Rel(∆)

where ∆ is a type A graph with respect to (bd)P. In particular, Rel(Γ) belongs to
∑

I ′σP
, the sum taken

over those permutations σ of {a, b, c, d} for which σP 6= P.

Proof of Proposition 8.7 given Proposition 8.8. Let Γ, a, b, c and d be given as in the statement of Propo-
sition 8.7. The vertices c and d are connected by red and green edges. Now, using a quadratic relation we
may recolor the P -part of Γ so that a and b are connected by a blue edge. Since SP acts on the Segre cubic
relation on P via the sign character, all blue edges in P are more or less the same so we may draw Γ as:

a

b

c d

respectively

a

b

c d
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We now Plücker the red edge joining c and d and the unique red edge containing b. We obtain an expression
Γ = Γ1 + Γ2 where each ΓI is a type B graph with respect to P . The special chain in Γ1 is a-b-c-d while
in Γ2 it is a-b-d-c. By Proposition 8.8, both Rel(Γ1) and Rel(Γ2) belong to

∑
I ′σP

, where the sum is over
those permutations σ of {a, b, c, d} for which σP 6= P . Thus Rel(Γ) belongs to this space as well, which
completes the proof. �

We now begin proving Proposition 8.8. Consider a type B graph Γ. For convenience, we label it:

1

2

3 4

5

6

78

9 10

respectively
2 5

6

78

1

3 4

10

1211

9

With this labeling, the special chain a-b-c-d is 1-2-3-4. We let P be the relevant bipartition.
By Plückering the edges 27 and 34 we obtain Γ = −Γ2 − Γ3 where Γ2 and Γ3 are:

respectively

We now Plücker the edges 12 and 39 in Γ3 to obtain a relation Γ3 = −Γ4 − Γ5 where Γ4 and Γ5 are given
by:

respectively

Now, we have Γ4 = (23)Γ. Thus (as generalized Segre data)

(8.1) Γ − (23)Γ + Γ2 = Γ5.

Lemma 8.9. We have (14) Rel(Γ2) = Rel(Γ2) + Rel(∆) where ∆ is a type A graph with respect to (24)P.

Proof. The graph Γ2 has a benzene chain with three (resp. four) blue edges, beginning at vertex 1 and
ending at vertex 4. The picture is thus:

8 6

1

2 3 9 10

4

7 5

respectively

8 6

1

2 3 9 11 12 10

4

7 5

Note that UR = {7, 8} and UG = {5, 6} while UB consists of the remaining vertices.

We now Plücker the edges 81 and 74. In the first term, 8 connects to 4 and 7 to 1. The second term
is a degenerate Segre datum (since 81 and 74 are the special green edges in UB). It is thus quadratic and
can be ignored. We next Plücker the edges 61 and 54, the results being similar. We have thus shown that
Rel(Γ2) defines the same element of I ′

L as the relation associated to following graph (since we used two
Plücker relations no sign is introduced):

8 6

4

2 3 9 10

1

7 5

respectively

8 6

4

2 3 9 11 12 10

1

7 5

We now Plücker 12 and 4 10. The first term is (14)Γ2. The second term is a type A graph ∆ with respect
to (24)P . We thus find Rel(Γ2) = −Rel((14)Γ2) − Rel(∆), which establishes the proposition. �
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Lemma 8.10. We have (14) Rel(Γ5) = Rel(Γ5).

Proof. We redraw Γ5 in a more convenient way.

7

3 2
4

5

10 9

1

8 6

respectively

7

3 2
4

5

10 12 11 9

1

8 6

As before, UR = {7, 8} and UG = {5, 6} while UB consists of the remaining vertices.

We now Plücker the edges 61 and 54. In the first term, 5 connects to 1 and 6 to 4. The second term is a
degenerate Segre datum and can be ignored. We next Plücker 24 with 81. In the first term, 8 connects to
4 and 2 to 1. The second term is degenerate and can be ignored. We have thus shown that Rel(Γ5) defines
the same element of I ′

L as the relation associated to the following graph:

7

3 2
1

5

10 9

4

8 6

respectively

7

3 2
1

5

10 12 11 9

4

8 6

We now Plücker the edges 19 and 4 10. The first term is just (14)Γ5. The second term is retrogenerated
from 8 (resp. 10) points and therefore does not contribute in I ′

L. We thus have Rel(Γ5) = −Rel((14)Γ5),
which establishes the proposition. �

We can now complete the proof of Proposition 8.8.

Proof of Proposition 8.8. By Lemma 8.10 and (8.1), we see that Rel(Γ) −Rel((23)Γ) + Rel(Γ2) is invariant
under (14), that is,

Rel(Γ) − Rel((23)Γ) + Rel(Γ2) = (14) Rel(Γ) − (14) Rel((23)Γ) + (14) Rel(Γ2).

We now apply Lemma 8.9 and write (14) Rel(Γ2) = Rel(Γ2)+Rel(∆) where ∆ is a type A graph with respect
to (24)P . The Γ2 terms on each side of the equation cancel, and we are left with

Rel(Γ) = (14) Rel(Γ) − (23) Rel(Γ) + (14)(23) Rel(Γ) + Rel(∆).

This completes the proof. �

8.3. Proof of Theorem 8.2. We now complete the proof of Theorem 8.2. As we have explained, to do
this it suffices to show that I ′

L = 0. To do this we first use Proposition 8.7 to obtain an upper bound for the
dimension of I ′

L, and then we use representation theory to show that this upper bound forces I ′
L to be zero.

Fix an order on L. For n = 10 (resp. n = 12), we say that a bipartition P = (P, Q) of L is good if there
is at most one (resp. if there are at most two) element(s) of Q which are larger than the second smallest
element of P .

Proposition 8.11. The natural map
⊕

I ′
P

→ I ′ is surjective, where the sum is taken over all good bipar-
titions P.

Proof. We handle the two cases n = 10 and 12 separately, for the sake of clarity. We begin with the 10
point case. Let P be a bipartition which is not good. Let a < b be the smallest two elements of P and
let c < d be the largest two elements of Q. Since P is not good, we have a < b < c < d. Now let Γ be a

type A graph with respect to P . Since I
(3)
P ⊗ gr

(3)
4,Q is one-dimensional, if Γ′ is any other type A graph with

respect to P then we have Rel(Γ) = Rel(Γ′). Thus we may assume that c and d are connected by a doubled
edge in Γ. We may then apply Proposition 8.7 to conclude that Γ belongs to

∑
I ′σP

, the sum taken over
those permutations σ of {a, b, c, d} for which σP 6= P . Each of these σP is closer to being good than P

(measured by how many elements of Q are larger than the second smallest element of P , for instance). By
induction, we deduce the proposition.

We now handle the case where L has cardinality 12. Let P be a bipartition which is not good. Let a < b
be the smallest two elements of P and let c < d < e be the largest three elements of Q. Since P is not good,
we have a < b < c < d < e. Now let Γ be a type A graph with respect to P . By Proposition 6.14(d) we
can rewrite Rel(Γ) in terms of Rel(Γi), where each Γi is a type A graph with respect to P in which either

cd or ce appears as a doubled edge. We may as well then just assume that Γ has cd as a doubled edge (the

ce argument is the same). We now apply Proposition 8.7 and find that Rel(Γ) belongs to
∑

I ′σP
as σ varies
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over those permutations of {a, b, c, d} for which σP 6= P . As before, each σP is closer to being good than
P and so we deduce the proposition by induction. �

Proposition 8.12. For n = 10 (resp. n = 12) there are 25 (resp. 112) good bipartitions of L.

Proof. We again consider the two cases separately, and begin with the 10 point case. Identify L with
{1, 2, . . . , 10}. Consider bipartitions of L for which the second smallest element of P is x. Of course, we
must have x ≤ 6. On the other hand, if x ≤ 4 then at least two elements of Q will be larger than x and so
the bipartition will not be good. Thus we must have x = 5 or x = 6.

• x = 6. In this case, P must contain each of 7, 8, 9 and 10. In addition, P contains one number less
than 6. There are five such choices, each of which gives a good bipartition.

• x = 5. In this case, P must contain each of 6, 7, 8, 9 and 10 except for one (it cannot contain
them all for then x would not be second smallest). There are five ways to choose what to omit. In
addition, P must contain one number less than 5. There are four such choices. Thus, all told, there
are 20 good bipartitions.

Thus in total we have 5 + 20 = 25 good bipartitions.
We now handle the case where L has cardinality 12. Again, we identity L with {1, . . . , 12} and consider

bipartitions for which the second smallest element of P is x. We must have x ≤ 8. Now, if x ≤ 5 then
Q necessarily has three elements larger than x and so the bipartition is not good. Thus we only need to
consider the cases x = 6, 7, 8.

• x = 8. In this case, P must contain each of 9, 10, 11 and 12. In addition, P contains one number
less than 8. There are seven choices for such a number, and all give good bipartitions.

• x = 7. In this case, P must contain each of 8, 9, 10, 11 and 12 except for one (it cannot contain
them all for then x would not be second smallest). There are five ways to choose what to omit.
Furthermore, P must contain one element smaller than 7. There are six such choices. Thus there
are 30 good bipartitions in this case.

• x = 6. In this case, P must contain each of 7, 8, 9, 10, 11 and 12 except for two. There are 15 ways
to omit two of these numbers. Furthermore, P must contain one element smaller than 6. There are
five such choices. Thus there are 75 good bipartitions in this case.

Thus in total we have 7 + 30 + 75 = 112 good bipartitions. �

Corollary 8.13. For n = 10 (resp. n = 12) we have dim I ′
L ≤ 25 (resp. ≤ 560).

Proof. We know that I ′
L admits a surjection from

⊕
I ′
P

, the sum taken over the good bipartitions P . When
L has cardinality 10, there are 25 of these bipartitions and each I ′

P
has dimension at most one. When L

has cardinality 12, there are 112 of these bipartitions and each I ′
P

has dimension at most five. This gives
the result. �

Proposition 8.14. For n = 10 (resp. n = 12) the space
⊕

I ′
P

(summed over all bipartitions P) is either
zero a direct sum of two irreducible SL-representations of dimensions 84 and 126 (resp. three irreducible
representations of dimensions 616, 1925 and 2079).

Proof. The space
⊕

I ′
P

is isomorphic as an SL-module to IndSL

SP ×SQ
I ′
P

for any fixed bipartition P =

(P, Q). We now handle the two cases separately.

First suppose n = 10. Then I ′
P

is either zero or isomorphic as an (SP × SQ)-module to I
(3)
P ⊗ gr

(3)
4,Q.

As an SP -module I
(3)
P corresponds to the partition 1 + 1 + 1 + 1 + 1 + 1 (the alternating representation)

while as an SQ-module gr
(3)
4,Q corresponds to the partition 4 (the trivial representation). We now use the

Littlewood-Richardson rule to compute IndSL

SP ×SQ
I ′
P

. Excluding the case where I ′
P

= 0, we find that the

induction decomposes into a direct sum of two irreducibles, corresponding to the partitions

5 + 1 + 1 + 1 + 1 + 1, 4 + 1 + 1 + 1 + 1 + 1 + 1.

The hook length formula shows that these irreducibles have dimensions 126 and 84, respectively.

Now say n = 12. Again, I ′
P

is either zero or isomorphic as an (SP × SQ)-module to I
(3)
P ⊗ gr

(3)
6,Q. The

representation I
(3)
P corresponds to the partition 1 + 1 + 1 + 1 + 1 + 1 while gr

(3)
6,Q corresponds to 3 + 3. The
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Littlewood-Richardson rule shows that the induction decomposes into three irreducibles, corresponding to
the partitions

4 + 3 + 1 + 1 + 1 + 1 + 1, 4 + 4 + 1 + 1 + 1 + 1, 3 + 3 + 1 + 1 + 1 + 1 + 1 + 1.

These irreducibles have dimensions 2079, 1925 and 616, respectively. �

We now complete the proof of Theorem 8.2.

Proof of Theorem 8.2. We must show I ′
L = 0. If n = 10, we know that on one hand, I ′

L is at most 25-
dimensional, while on the other, it is a direct sum of at most two irreducibles of dimensions 84 and 126.
It follows that I ′

L must be zero. Similarly, when n = 12, we know that, on one hand, I ′
L is at most 560-

dimensional, while on the other, it is a direct sum of at most three irreducibles of dimensions 616, 1925 and
2079. Again, we conclude I ′

L = 0. �

9. The quadratics are generated by the simplest binomials

In §9, we prove the following, concluding the proof of Theorem 1.2:

Theorem 9.1. If L has even cardinality n, then the simplest binomial relations span I
(2)
L over Z[ 1

n! ].

The proof uses the simple binomial relations. We show that the spans of the simple binomial relations

and simplest binomial relations coincide. We then use the SL-module structure of I
(2)
L to show that simple

binomial relations generate it. It suffices to prove the result over any field of characteristic 0 or greater than
n, so we do this.

9.1. Simple binomial relations. Let L be an even set. A binomial quadratic datum is a pair D = (Γ, U)
where Γ is an undirected regular 2-colored graph on L and U is a subset of L such that all edges of Γ
are contained in U or L \ U . Define Γ′ to be the graph obtained by inverting the colors of the edges of Γ
contained in U , and set

Rel(D) = YΓ − YΓ′ ,

which is clearly a relation.
Let D be a binomial quadratic datum. Suppose that a pair of edges e and e′ of Γ have the same color

and both lie in U or L \ U . Let Γ′ and Γ′′ be the other graphs occurring in the colored Plücker relation
on e and e′. Then D′ = (Γ′, U) and D′′ = (Γ′′, U) are binomial quadratic data. We define the space of
binomial quadratic data to be the Z-span of the binomial quadratic data modulo the (Plücker) relations
D + D′ + D′′ = 0. The association D 7→ Rel(D) descends to a linear map

Rel : {the space of binomial quadratic data} → I
(2)
L .

We call a binomial quadratic datum simple if U has cardinality four. We call the resulting relations simple
binomial relations. We say that a binomial quadratic datum is simplest if it is simple and in addition Γ is
made up of 2-cycles and two 4-cycles. The associated relations are the simplest binomial relations defined
in the introduction; (1.4) is an example. Note that if D = (U, Γ) is a binomial quadratic datum and Γ
is a union of 2-cycles and zero or one 4-cycle then Rel(D) = 0. Although there are more simple binomial
relations than simplest binomial relations, they span the same space:

Proposition 9.2. Every simple binomial relation is a linear combination of simplest binomial relations.

Thus to prove Theorem 9.1 it suffices to show that the simple binomial relations span I
(2)
L . (We only

need characteristic not 2 to prove this.)

Proof. Let D = (Γ, U) be a simple binomial quadratic datum. By Proposition 6.1 we can use colored Plücker
relations in L \ U to write Γ|L\U as a sum of graphs, each of which is a union of 2-cycles and at most one
4-cycle. This expresses Rel(D) in terms of simplest binomial relations. �

Let L be an even set and let U be a subset of cardinality four. Let L′ = L \ U . Define a map

ι :
∧2

VL′ ⊗
∧2

VU → I
(2)
L by (YΓ ∧ YΓ′) ⊗ (Y∆ ∧ Y∆′) 7→ YΓ∆YΓ′∆′ − YΓ′∆YΓ∆′ .

This is the simple binomial relation associated to the the simple binomial data (Φ, U) where Φ is the 2-colored
graph ΓΓ′∆∆′ in which Γ∆ has one color and Γ′∆′ the other. Note that ι is (SL′ × SU )-equivariant.
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Lemma 9.3. The map ι is injective.

Proof. Let Y∆, Y∆′ be a basis of VU . It suffices to show that the map
∧2

VL′ → Sym2(R
(1)
L ) given by

YΓ ∧ YΓ′ 7→ YΓ∆YΓ′∆′ − YΓ′∆YΓ∆′

is injective. Let f (resp. f ′) be the map VL′ → R
(1)
L given by YΓ 7→ YΓ∆ (resp. YΓ 7→ YΓ∆′). Both f and f ′

are injective. Furthermore, the images of f and f ′ are linearly disjoint. To see this, use the fact that planar

graphs form a basis for R
(1)
L (Theorem 2.2): Put L on a circle so that the vertices in U are consecutive. If Γ

and Γ′ are planar graphs on L′ and ∆ and ∆′ are distinct planar graphs on U then Γ∆ and Γ′∆′ are distinct
planar graphs on L. The lemma now follows from the following lemma in linear algebra. �

Lemma 9.4. Let f, g : V → W be linear maps of vector spaces which are injective and have linearly disjoint
images. Then the map

∧2
V → Sym2(W ), v ∧ w 7→ f(v)g(w) − f(w)g(v)

is also injective.

Proof. Let vi be a basis for V and assume that v =
∑

αijvi ∧ vj belongs to the kernel, so

0 =
∑

αij(f(vi)g(vj) − f(vj)g(vi)) =
∑

(αij − αji)f(vi)g(vj).

The vectors f(vi)g(vj) are linearly independent in Sym2(W ), so αij = αji and hence v = 0. �

9.2. Completion of the proof of Theorem 9.1. Let X denote the set of partitions of n into exactly
four even parts and let X− be the set of partitions of n − 4 into exactly four odd parts. Thus X has the

partitions occurring in IL and X− has those occurring in
∧2

VL′ (Proposition 6.5). For a partition λ ∈ X
we define a corresponding partition λ− ∈ X− by removing one box from each row in the Young diagram:
(a, b, c, d) 7→ (a − 1, b − 1, c − 1, d − 1). This bijection of sets X → X− has a representation-theoretic
characterization:

Lemma 9.5. Let λ− ∈ X− and µ ∈ X be given. (Recall from §6.4 that Mλ is the irreducible representation
of SL corresponding to partition λ.) Then

dim HomSL′×SU
(Mλ− ⊗ ε, Mµ) =

{
1 if λ = µ

0 otherwise

Here ε denotes the sign representation of SU .

Proof. By Frobenius reciprocity, the dimension of the Hom space is equal to the multiplicity of Mµ occurring

in the induction IndSL

SL′×SU
(Mλ− ⊗ ε). This can be computed using the Littlewood-Richardson rule, which

is simple in this case because ε is just the alternating representation (the Young diagram is a single column
of four boxes). The key point is that the only way to add on four boxes to λ and end up with something in
X is to put one box at the end of each row. �

Corollary 9.6. The map ι carries
(∧2 VL′

)
[λ−] ⊗

∧2 VU into I
(2)
L [λ] for any λ ∈ X, where as usual V [λ]

is the λ-isotypic part of a representation V of the symmetric group.

We now can prove Theorem 9.1.

Proof of Theorem 9.1. According to the above corollary, ι induces a map
(∧2

VL′

)
[λ−] ⊗

∧2
VU → I

(2)
L [λ]

for any λ ∈ X . This map is injective (Lemma 9.3), and
(∧2

VL′

)
[λ−] is non-zero (Proposition 6.5). Thus

the image of ι has non-zero projection to each I
(2)
L [λ]. Since I

(2)
L is multiplicity free (Proposition 6.5), the

image of ι generates I
(2)
L as an SL-module. Hence the simple binomial relations span I

(2)
L . Since every

simple binomial relation is a linear combination of simplest binomial relations (Proposition 9.2), we deduce
Theorem 9.1. �
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