Lecture 1: Abstract Vector Spaces

The Definition of a Field

This page comes from Chapter 1, page 8 of the text. Examples of fields are the real numbers $\mathbb R$, the complex numbers $\mathbb C$ and the rational numbers $\mathbb Q$. There are also finite fields, for example, $\mathbb Z/p$, p a prime.

Definition

A **field** F is a set (also denoted F) equipped with two binary operations, addition + and multiplication \cdot satisfying the following axioms

- 1 x + y = y + x and $x \cdot y = y \cdot x$ (the commutative laws)
- 2 (x+y)+z=x+(y+z) and $(x\cdot y)\cdot z=x\cdot (y\cdot z)$ (the associative laws)
- 3 $x \cdot (y+z) = x \cdot y + x \cdot z$ (the distributive law)
- 4 There exists an element 0 in F such that x + 0 = x for all $x \in F$.
- 5 For each $x \in F$ there exists an element -x such that x + (-x) = 0.
- 6 There exists an element 1 in F such that $x \cdot 1 = x$ for all $x \in F$.
- 7 For each $x \in F$ with $x \neq 0$ there exists an element x^{-1} such that $x \cdot x^{-1} = 1$.

We will usually write xy instead of $x \cdot y$.

Vector Space over a Field F

We now skip to Chapter 2.

Definition

A vector space over F is a triple $(V, +, \cdot)$ where,

- 1 V is a set,
- 2 + is a binary operator that assigns to any pair v_1 , $v_2 \in V$ a new element $v_1 + v_2 \in V$,
- 3 · is a binary operation that assigns to any pair $c \in F$ and $v \in V$ a new vector $c \cdot v \in V$.

The operation + satisfies 5 axioms.

Axioms for Addition +

A1 Commutativity

$$u + v = v + u$$
.

A2 Associativity

$$(u+v) + w = u + (v+w).$$

A3 Existence of the zero vector

There exists a unique element 0 of V such that

$$v + 0 = v$$
, for all $v \in V$.

A4 Existence of an additive inverse For each $v \in V$, there exists a vector -v such that

$$v + (-v) = 0.$$

We will abbreviate u + (-v) for u - v, so we have defined subtraction.

Axioms for scalar multiplication ·

S1 Associativity

$$c_1 \cdot (c_2 v) = (c_1 c_2) v.$$

S2 Distributivity (1^{st} version)

$$(c_1+c_2)\cdot v = c_1\cdot v + c_2\cdot v.$$

S3 Distributivity (2^{nd} version)

$$c \cdot (v_1 + v_2) = c \cdot v_1 + c \cdot v_2.$$

S4

$$1 \cdot v = v$$
.

Vector Space Axioms

We will call the axioms A1, A2, A3, A4 and S1, S2, S3, S4 the vector space axioms.

We will prove shortly that

$$0 \cdot v = 0$$
,

and

$$(-1)v = -v.$$

The Main Examples

Eg. I \mathbb{R}^n

As a set \mathbb{R}^n is the set of ordered n-tuples

$$\mathbb{R}^n = \{(x_1, x_2, \dots, x_n) : x_i \in \mathbb{R}\}.$$

We have to define the operator + and \cdot .

Addition

$$(x_1, \ldots, x_n) + (y_1, \ldots, y_n) := (x_1 + y_1, \ldots, x_n + y_n).$$

Scalar Multiplication

$$c \cdot (x_1, \ldots, x_n) := (cx_1, \ldots, cx_n).$$

Theorem

This works, that is, the eight vector space axioms are satisfied.

Define vectors
$$(e_1, e_2, ..., e_n) \in \mathbb{R}^n$$
 by $e_1 = (1, 0, ..., 0)$, $e_2 = (0, 1, ..., 0)$, etc.

The Main Examples

Eg. II The space of real-valued functions on a set X

Let X be a set and $\mathcal{F}_{\mathbb{R}}(X)$ be the set of real-valued function on the set X. We define + and \cdot by

$$(f+g)(x) := f(x) + g(x)$$
$$(c \cdot f)(x) := cf(x).$$

Exercise

Show that Example II includes Example I.

Hint: Take X to be the n-element set $\{1, 2, \ldots, n\}$.

Properties of + and \cdot that can be deduced from the axioms.

Theorem (3.5)

Let V be a vector space over F. Then the following statements hold

(1) Cancellation

$$u + w = v + w \Longrightarrow u = v.$$

(2) The equation u + x = v has unique solution

$$x = v - u$$
.

- (3) $0 \cdot u = 0$.
- (4) $(-1)\cdot u = -u$.
- (5) $c_1 \cdot u = c_2 \cdot u$ and $u \neq 0 \Longrightarrow c_1 = c_2$

Proof.

- (1) Add -w to each side.
- (2) Add -u to each side.
- (3) This one is tricky! Let 0 be the zero element in F (!! not the zero element in V). Then

$$0+0 = 0$$
$$(0+0)\cdot u = 0\cdot u$$
$$0\cdot u + 0\cdot u = 0\cdot u.$$

Subtract the vector $0 \cdot u$ from each side to get

$$0 \cdot u = 0.$$

Proof (continued).

(4) We want to show

$$u + (-1) \cdot u = 0 \tag{*}$$

From S4, $(1\cdot)u=u$, so

$$LHS(*) = (1) \cdot u + (-1)u = (1 + (-1))u$$

 $0 \cdot u = 0 \text{ from } (3).$

Proof (continued).

(5) Suppose $u \neq 0$ and $c_1 \cdot u = c_2 \cdot u$. Hence

$$(c_1 - c_2) \cdot u = 0 \ (**).$$

We want to prove $c_1 - c_2 = 0$ in F. Suppose not. Then $(c_1 - c_2)^{-1} \in F$ exists. Multiply both sides of (**) by $(c_1 - c_2)^{-1}$ to get $(c_1 - c_2)^{-1} \cdot ((c_1 - c_2) \cdot u) = (c_1 - c_2)^{-1} \cdot 0 = 0$.

$$LHS = ((c_1 - c_2)^{-1}(c_1 - c_2) \cdot u) = 1 \cdot u = u.$$

But RHS of (**) equals 0 and hence u=0, contradicting our assumption that $u\neq 0$. Hence, our assumption that $c_1-c_2\neq 0$ has led to a contradiction. Hence $c_1-c_2=0$ and $c_1=c_2$.