Lecture 2: Spanning Sets and Independent Sets

通 ト イ ヨ ト イ ヨ ト

Definition

Let v_1, v_2, \ldots, v_n be the vectors in a vector space V. A vector $u \in V$ is said to be a linear combination of v_1, v_2, \ldots, v_n if there exist scalars c_1, c_2, \ldots, c_n such that

$$u = c_1 v_1 + c_2 v_2 + \ldots + c_n v_n.$$

The set of all linear combinations of v_1, v_2, \ldots, v_n is said to be the **span** of v_1, v_2, \ldots, v_n written

$$S(v_1, v_2, \ldots, v_n)$$
 or span (v_1, v_2, \ldots, v_n)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シのので

(1) The set of the solutions to the differential equation

$$\frac{d^2y}{dx^2} - y = 0 \tag{(*)}$$

is a vector space V under the rules of + and ${\, \bullet \,}$ for functions, Example II of the last lecture.

Then this vector space is spaned by e^x and e^{-x} . If y is a solution of (*), then there are constants (scalars) $c_1, c_2 \in \mathbb{R}$ such that

$$y(x) = c_1 e^x + c_2 e^{-x}.$$

イロト イポト イヨト イヨト

3

(2)
$$V = \mathbb{R}^3$$
, $e_1 = (1, 0, 0)$, $e_2 = (0, 1, 0)$, $e_3 = (0, 0, 1)$. Then $S(e_1, e_2) =$ the *xy*-plane .

イロン イロン イヨン イヨン

2

Suppose X is a set with a binary operation \circ so given any pair x_1 , $x_2 \in X$ we have $x_1 \circ x_2 \in X$. Let Y be a subset of X. We say Y is **closed** under \circ if for any pair $y_1, y_2 \in Y$ we have $y_1 \circ y_2 \in Y$.

Definition

Let $(V, +, \bullet)$ be a vector space and $U \subset V$ be a subset. Then U is said to be a **subvector space** or **subspace** of V if

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シのので

```
(i) U is closed under +,(ii) U is closed under •.
```

Proposition

If U is closed under + and \bullet , then U equipped with the restrictions of + and \bullet satisfies the 8 vector space axioms A1, A2, A3, A4 and S1, S2, S3, S4. Hence $(U, +, \bullet)$ is a vector space. U is said to be a subspace of V.

Examples

- (1) The *xy*-plane $\subset \mathbb{R}^3$.
- (2) The space of polynomial functions of one variable of degree n $\operatorname{Pol}_n(\mathbb{R}) \in \mathcal{F}_{\mathbb{R}}(\mathbb{R}).$

< ロ > < 同 > < 回 > < 回 > .

3

Proposition

Suppose v_1, v_2, \ldots, v_n are vectors in V. Then $S(v_1, v_2, \ldots, v_n)$ is a subspace of V.

Proof.

S is closed under +

$$c_1v_1 + c_2v_2 + \dots + c_nv_n + d_1v_1 + d_2v_2 + \dots + d_nv_n =$$

= $(c_1 + d_1)v_1 + (c_2 + d_2)v_2 + \dots + (c_n + d_n)v_n.$

S is closed under •

$$c(c_1v_1 + c_2v_2 + \ldots + c_nv_n) = (cc_1)v_1 + (cc_2)v_2 + \ldots + (cc_n)v_n.$$

 $S\left(v_1,\,v_2,\,\ldots,\,v_n\right)$ is said to be the subspace of V spanned by $v_1,\,v_2,\,\,\ldots,\,v_n$

Proposition

 $S(v_1, v_2, \ldots, v_n)$ is a subspace of V is the smallest subspace of V containing v_1, v_2, \ldots, v_n .

Proof.

Suppose U contains v_1 , v_2 , ..., v_n . Then since U is closed under + and

•, any linear combination $c_1v_1 + c_2v_2 + \ldots + c_nv_n$ must be in U. Hence

$$S(v_1, v_2, \ldots, v_n) \subseteq U.$$

But U is the smallest subspace of V containing v_1, v_2, \ldots, v_n , so

$$U \subseteq S(v_1, v_2, \ldots, v_n),$$

SO

$$U = S(v_1, v_2, \ldots, v_n). \quad \Box$$

Definition

Let V be a vector space. Then a collection of vectors $\{v_1,\,v_2,\,\ldots,\,v_n\}\subset V$ is said to be a spanning set for V if

 $V = S(v_1, v_2, \ldots, v_n).$

イロン イロン イヨン イロン

3

Examples

(1) (e_1, e_2, e_3) is a spanning set for \mathbb{R}^3 .

- (2) (e_1, e_2, \ldots, e_n) is a spanning set for \mathbb{R}^n .
- (3) $(1, x, x^2, \ldots, x^n)$ is a spanning set for $\operatorname{Pol}_n(\mathbb{R})$.

There are inefficient (too big) spanning sets for a vector space V. For example $\{(1, 0), (0, 1), (1, 1)\}$ is a spanning set for \mathbb{R}^2 but any two of the three vectors still spans.

Dependence Relation

Let $v_1, v_2, \ldots, v_n \in V$. Then a dependence relation between v_1, v_2, \ldots, v_n is an equation

$$c_1v_1 + c_2v_2 + \ldots + c_nv_n = 0, \quad c_1, c_2, \ldots c_n \in \mathbb{R}.$$

The dependence relation is said to the trivial dependence relation if all the $c'_i s$ are zero.

So in the example from the top of the page

$$1 \bullet (1, 0) + 1 \bullet (0, 1) - 1 \bullet (1, 1) = 0.$$

is a (non-trivial) dependence relation.

Definition

- (1) If v_1, v_2, \ldots, v_n satisfy a nontrivial dependence relation then they are said to be linearly **dependent**.
- (2) v_1, v_2, \ldots, v_n are said to be linearly **independent** if they are not linearly dependent.

So, v_1, v_2, \ldots, v_n are linearly independent if

$$c_1v_1 + c_2v_2 + \ldots + c_nv_n = 0$$

 \implies all the c_i 's are zero.

<u>Exercise</u>: Show e_1, e_2, \ldots, e_n are linearly independent in \mathbb{R}^n .