Lecture 3: Bases

(We will consider only vector spaces that have finite spanning sets.)

Definition

Let V be a vector space and $\{v_1,\,\ldots,\,v_n\}\subset V.$ Then $\{v_1,\,\ldots,\,v_n\}$ is a **basis** for V if

(i) $\{v_1, ..., v_n\}$ spans V.

(ii) $\{v_1, \ldots, v_n\}$ is linearly independent.

Today we will prove two of the main foundational theorems in linear algebra.

First Main Theorem (Text, Theorem 5.3)

Every vector space V has a basis (in fact, many bases).

Second Main Theorem (Text, Theorem 7.2)

Any two bases of V have the same cardinality.

But first-why are bases useful?

Proposition

Suppose $\mathscr{B} = \{v_1, \ldots, v_n\}$ is a basis for V. Let $v \in V$. Then there exist unique scalars c_1, c_2, \ldots, c_n such that

$$v = c_1 v_1 + c_2 v_2 + \ldots + c_n v_n.$$

The scalars c_1, c_2, \ldots, c_n are said to be the coordinates of v relative to the basis $\{v_1, \ldots, v_n\}$.

Proof. The c_i 's exist because the v_i 's span V. We will prove that they are unique. Suppose V has two sets of coordinates relative to $\{v_1, \ldots, v_n\}$, i.e.,

$$v = c_1 v_1 + c_2 v_2 + \ldots + c_n v_n$$

and

$$v = c'_1 v_1 + c'_2 v_2 + \ldots + c'_n v_n.$$

Then $c_1 v_1 + c_2 v_2 + \ldots + c_n v_n = c'_1 v_1 + c'_2 v_2 + \ldots + c'_n v_n$, so
 $(c_1 - c'_1) v_1 + (c_2 - c'_2) v_2 + \ldots + (c_n - c'_n) v_n = 0$
so $c_i - c'_i s = 0.$

In Lecture 7, we will introduce the notation $[v]_{\mathscr{B}}$ for the coordinates of a vector v relative to a basis \mathscr{B} .

<u>Problem</u> (to be solved in Lecture 7) Suppose $\mathscr{A} = \{a_1, \ldots, a_n\}$ and $\mathscr{B} = \{b_1, \ldots, b_n\}$ are both bases for V. Let $v \in V$. How are the coordinates $[v]_{\mathscr{A}}$ of V relative to \mathscr{A} related to the coordinates $[v]_{\mathscr{B}}$ of v relative to \mathscr{B} ?

First Main Theorem

We will now prove the First Main Theorem.

First Main Theorem

Every vector space which has a finite spanning set has a basis.

Proof. First we have to take care of the zero vector space $\{0\}$. The empty set is a basis for $\{0\}$. (We will agree that the 0-vector is a combination of the vectors in the empty set.)

Now let V be a non-zero vector space which has a finite spanning set–say with m elements, List the cardinalities of all spanning sets with at most m elements. This is a subset of $\{1, 2, \ldots, m\}$ and has a smallest element, n. Hence there is a set of vectors $\{v_1, \ldots, v_n\} \subset V$ such that

- (1) $\{v_1, ..., v_n\}$ spans V
- (2) No subset of $\{v_1, \ldots, v_n\}$ spans V.

We claim that $\{v_1, \ldots, v_n\}$ is linearly independent and hence a basis. If not, one of the vectors v_i is a combination of the rest and $\{v_1, \ldots, \hat{v}_i, \ldots, v_n\}$ spans V. But $\#\{v_1, \ldots, \hat{v}_i, \ldots, v_n\} = n-1$. Contradiction. We will now prove the **Second Main Theorem:** Any two bases have the same cardinality (same number of elements).

Definition

The number of vectors in a basis for V is said to be the *dimension* of V.

The Second Main Theorem will follow from the next theorem.

Theorem

Suppose V is a vector space and $\{u_1, \ldots, u_m\}$ is a spanning set for V. Then any subset of V with more than m elements is linearly dependent.

Proof. I will prove this theorem using a theorem from linear equations.

$$a_{11}x_1 + \ldots + a_{1n}x_n = 0$$

$$a_{m1}x_1 + \ldots + a_{mn}x_n = 0$$

 $m < n \Longrightarrow$ the system has a nonzero solution.

Now let v_1, \ldots, v_n be an n-element set with n > m. We want to find x_1, \ldots, x_n not all zero so that $x_1v_1 + \ldots + x_nv_n = 0$. Write

$$v_{1} = a_{11}u_{1} + a_{21}u_{2} + \dots + a_{m1}u_{m} = 0$$

$$v_{2} = a_{12}u_{1} + a_{22}u_{2} + \dots + a_{m2}u_{m} = 0$$

$$\vdots$$

$$v_{n} = a_{1n}u_{1} + a_{2n}u_{2} + \dots + a_{mn}u_{m} = 0$$

Then

$$\begin{aligned} x_1v_1 + \ldots + x_nv_n &= x_1a_{11}u_1 + x_1a_{21}u_2 + \ldots + x_1a_{m1}u_m \\ &+ x_2a_{12}u_1 + x_2a_{22}u_2 + \ldots + x_2a_{m2}u_m \\ &+ \vdots \\ &+ x_na_{1n}u_1 + x_na_{2n}u_2 + \ldots + x_na_{mn}u_m \\ &= (a_{11}x_1 + \ldots + a_{1n}x_n)u_1 + (a_{21}x_1 + \ldots + a_{2n}x_n)u_2 \\ &+ \ldots + (a_{m1}x_1 + \ldots + a_{mn}x_n)u_m \end{aligned}$$

$$x_1v_1 + \ldots + x_nv_n = 0 \iff x_1, \ldots, x_n \text{ satisfy}$$

$$a_{11}x_1 + \ldots + a_{1n}x_n = 0$$

$$\vdots$$

$$a_{m1}x_1 + \ldots + a_{mn}x_n = 0$$

But n > m so there are more unknowns than equations. Hence there is a nonzero solution.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ● ○○○

Corollary

The cardinality of any linearly independent set is always less than or equal to the cardinality of any spanning set.

Second Main Theorem

Suppose $\{w_1, \ldots, w_m\}$ and $\{v_1, \ldots, v_n\}$ are both bases of v. Then n = m.

Proof. Since $\{w_1, \ldots, w_m\}$ spans and $\{v_1, \ldots, v_n\}$ is linearly independent we have $n \leq m$. But $\{v_1, \ldots, v_n\}$ spans and $\{w_1, \ldots, w_m\}$ is linearly independent, hence $m \leq n$.

Example: dim $\mathbb{R}^n = n$ because $\mathscr{E} = \{e_1, e_2, \dots, e_n\}$, where $e_1 = (1, 0, \dots, 0), e_2 = (0, 1, \dots, 0), \dots, e_n = (0, 0, \dots, 1))$, is a basis.

▲口 ▶ ▲圖 ▶ ▲ 画 ▶ ▲ 画 ▶ ● ○○

We need the definitions of a spanning set and an independent set in an infinite dimensional vector space.

Definition

An infinite subset S of an infinite dimensional vector space V spans V if every vector $v \in V$ is a finite linear combination of elements of S.

Definition

An infinite subset S of an infinite dimensional vector space V is an independent set if no nontrivial linear combination of a finite number of elements of S is equal to zero.

The next problem will be on Homework 1.

Problem

Show that the infinite set $\{1, x^2, x^3, \dots, x^n, \dots\}$ is a basis for the vector space of polynomials in one variable x.

It is in fact true that ${\bf every}$ vector space has a basis but it is harder to prove. You need to prove

Every vector space has a maximal linearly independent set *B* (this means there is no linearly independent set containing *B*).

(2) Any maximal linearly independent set \mathscr{B} spans and hence is a basis. You should be able to prove (2). The idea behind (1) is simple but the actual proof of (1) involves subtleties from set theory/logic (Zorn's Lemma).

イロト 不得 トイヨト イヨト 二日