Lecture 4: Linear Transformations

э

イロト イポト イヨト イヨト

Today we start Chapter 3.

Definition (Text, Definition 11.2)

Let V and W be vector spaces over \mathbb{R} . A linear transformation T from V to W is a function $T: V \longrightarrow W$ such that for all $v_1, v_2 \in V, c \in \mathbb{R}$,

(i)
$$T(v_1 + v_2) = T(v_1) + T(v_2)$$

(ii) $T(cv_1) = cT(v_1)$.

We let Hom(V, W) (text: L(V, W)) be the set of linear transformations from V to W.

Proposition

Hom(V, W) is a vector space under the operations:

$$(S+T)(v) := S(v) + T(v)$$

 $(c \cdot S)(v) := c(S(v).)$

Proof. Show that (S + T) and $c \cdot T$ are both linear transformations.

Algebra

If V = W then Hom(V, W) = End(V) has more structure. It is an associative algebra over \mathbb{R} (i.e., a ring and a vector space).

Definition

An \mathbb{R} -vector space $(A, +, \bullet)$ is an **algebra** if it has a binary operation $\bullet : A \times A \longrightarrow A$ (multiplication) that satisfies: for all $a_1, a_2, a_3 \in A$ and $c \in \mathbb{R}$:

$$(a_1 \bullet a_2)a_3 = a_1 \bullet (a_2 \bullet a_3)$$

(ii) • is bilinear

$$\begin{array}{rcl} (a_1 + a_2) \bullet a_3 &=& a_1 \bullet a_3 + a_2 \bullet a_3 \\ a_1 \bullet (a_2 + a_3) &=& a_1 \bullet a_2 + a_1 \bullet a_3 \\ c \cdot (a_1 \bullet a_2) &=& (ca_1) \bullet a_2 = a_1 \bullet (ca_2) \end{array}$$

(So, $b(a_1, a_2) = a_1 \bullet a_2$ is linear with respect to each of a_1 and a_2). (iii) There is a unit element 1 for A: $1 \bullet a = a = a \bullet 1$.

Warning: We do not require • to be commutative > (=)

Proposition

Define \bullet on End(V) by

$$S \bullet T = S \circ T.$$

Then $(End(V), \circ, +, \cdot)$ is an algebra.

Note: The unit element is I = identity.

Definition

Given an algebra $(A, \bullet, +, \cdot)$, the **center** of A, denoted $Z(A) := \{a \in A : ab = ba \quad \forall b \in A\}$. That is, the elements of A which commute with all elements of A.

Theorem

 $Z\left(\mathrm{End}(V)\right) = \{c\mathbb{I}\} : c \in \mathbb{R}.$

Definition

A linear tranformation $T \in End(V)$ is said to be invertible is there exists an element $S \in End(V)$ such that $S \circ T = I$ and $T \circ S = I$. We write $S = T^{-1}$. (We will also refer to such elements as units.)

Note: We will often omit the symbol " \circ " and simply write ST for $S \circ T$.

Proposition

Let $T \in Hom(V, W)$. Then T is invertible \iff it is an invertible element of Maps(V, W) (the set of all maps from V to W) \iff T is 1:1 and onto.

Proof. (\Longrightarrow) Obvious. (\Leftarrow) Suppose there is an inverse mapping F. We claim F is in fact a linear transformation. First, we show that, give $u, v \in V$

$$F(u+v) = F(u) + F(v).$$

 $\begin{array}{l} \operatorname{But}\,T(F(u+v))=u+v \, \operatorname{and} \\ T(F(u)+F(v))=T(F(u))+T(F(v))=u+v. \end{array}$

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 回 ▶

Thus
$$T(F(u+v)) = T(F(u)) + T(F(v))$$
 and since T is 1:1 we have $F(u+v) = F(u) + F(v)$.
Similary, $T(F(cu)) = c(u) = cT(F(u)) = T(cF(u))$ and thus $F(cu) = cF(u)$ for all $u \in V$, $c \in \mathbb{R}$.

We will later see that if V is finite dimensional and $S \in End(V)$, then

$$\begin{array}{rcl} S \text{ is invertible} & \Longleftrightarrow & S \text{ is } 1:1 \\ & \Longleftrightarrow & S \text{ is onto.} \end{array}$$

メロト メロト メヨト メヨト

∃ 990

We write $\operatorname{Aut}(V)$ for the set of all invertible linear transformations of V, so $\operatorname{Aut}(V) \subset \operatorname{End}(V)$. Warning: $\operatorname{Aut}(V)$ is not a subspace.

T invertible $\implies -T$ invertible, but

T + (-T) = 0 is not invertible.

Proposition

Aut(V) is a group. (What does it mean?)

・ロト・日本・日本・日本・日本・日本

Definition

- A group $(G,\, \bullet)$ is a set G equipped with a binary operation
- $\bullet: G \times G \longrightarrow G$ satisfying:
 - (i) is associative
- (ii) There is an identity element $e \in G$ such that

$$e \bullet g = g \bullet e = g$$
 for all $g \in G$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

(iii) Every element g has an inverse. This means there is an element $g^{-1} \in G$ such that $g \bullet g^{-1} = g^{-1} \bullet g = e$.