Lecture 5: More on Linear Transformations

- 4 同 ト 4 ヨ ト 4 ヨ ト

3

Today, we tidy up some odds and ends.

Theorem (Text, Theorem 13.1)

Let $\mathscr{B} = \{b_1, \ldots, b_n\}$ be a basis for V. Let w_1, \ldots, w_n be arbitrary vectors in W. Then there exists a unique $T \in \text{Hom}(V, W)$ with

 $T(b_i) = w_i, \quad 1 \le i \le n.$

Proof. Uniqueness is clear.

Existence: Define T(v) for $v \in V$ as follows. Write $v = x_1b_1 + \ldots x_nb_n$ and "define"

$$T(v) = \sum_{i=1}^{n} x_i w_i.$$

Is T well-defined?

Yes. Since \mathscr{B} is a basis, the x_i 's are uniquely determined. Also, note that T is linear.

The Range and Null Space (Kernel) of a Linear Transformation

There are two useful subsets.

Definition

The **Range** or **Image** of T, denoted T(V) or R(T) is defined as

 $T(V) := \{T(v) : v \in V\} \subset W.$

Lemma: T(V) is a subspace of W. Proof. Use the fact that T is linear.

Definition

The **Nullspace** of T, denoted N(T) is defined as

 $N(T) := \{ v \in V : T(v) = 0 \} \subset V.$

We will often use the word kernel of T, denoted ker(T), instead of the nullspace of T. We leave the proof of the next lemma to you. Lemma: N(T) is a subspace of V.

A dimension formula

Theorem (Text, Theorem 13.9)

Let $T \in Hom(V, W)$. Then

```
\dim T(V) + \dim N(T) = \dim V.
```

To prove this, first we need the following proposition (we assume V is finite-dimensional).:

Proposition

Any linearly independent set $S = \{v_1, \ldots, v_k\} \subset V$ can be completed to a basis $\{v_1, \ldots, v_k, v_{k+1}, \ldots, v_n\}$ for V.

Proof.

If S spans then it is a basis. If not there is a vector u not in the span of S. Then $\{v_1, \ldots, v_k, v_{k+1}, \ldots, v_n, u\}$ is still an independent set (prove this). Continue. Since we are assuming V is finite dimensional,say m the process must stop after m - n steps.

Proof of Theorem 13.9. Assume dim V = n and dim N(T) = k. Choose a basis $\{b_1, \ldots, b_k\}$ for N(T) and complete it to a basis $\{b_1, \ldots, b_k, b_{k+1}, \ldots, b_n\}$ for V. It sufficed to prove <u>Claim:</u> $\{T(b_{k+1}), \ldots, T(b_n)\}$ is a basis for R(T). Spanning set: Clear. Independent set: Suppose $x_{k+1}T(b_{k+1}) + \ldots + x_nT(b_n) = 0$. Then $x_{k+1}b_{k+1} + \ldots + x_nb_n \in N(T)$ and hence $x_{k+1}b_{k+1} + \ldots + x_nb_n = x_1b_1 + \ldots + x_kb_k$. Thus

$$x_1b_1 + \ldots + x_kb_k - x_{k+1}b_{k+1} - \ldots - x_nb_n = 0$$

But $\{b_1, \ldots, b_k, b_{k+1}, \ldots, b_n\}$ is a basis, so all the coefficients x_i , $1 \le i \le n$ are zero. Hence x_{k+1}, \ldots, x_n are zero.

Our next goal is to prove the following proposition.

Proposition

Let $T \in \text{End}(V)$ (so V = W). Then T is 1:1 \iff T is onto.

We will need the next lemma. This lemma is extraordinarily useful.

Lemma

Suppose $T: V \longrightarrow W$. Then T is $1:1 \iff N(T) = \{0\}$.

Proof. (\Longrightarrow) Suppose T(v) = 0. Then since T(0) = 0, we have v = 0, hence if $v \in N(T)$ then v = 0. (\Leftarrow) Suppose $T(v_1) = T(v_2)$. Then since T is linear $T(v_1 - v_2) = 0$, hence $v_1 - v_2 \in N(T)$ and thus $v_1 - v_2 = 0$. Finally, $v_1 = v_2$. **Proof.** We use dim $V = \dim R(T) + \dim N(T)$. (\Longrightarrow) T is 1:1 so N(T) = 0, hence dim $R(T) \dim V$, thus R(T) = V(since $R(T) \subset V$). (\Leftarrow) T is onto, so R(T) = V and dim $R(T) = \dim V$. Thus dim N(T) = 0 and so $N(T) = \{0\}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シのので

Warning: This is not true if $W \neq V$.

Now do problem pg. 108 # 10.