
Lecture 5: More on Linear Transformations

Today, we tidy up some odds and ends.



Theorem (Text, Theorem 13.1)

Let B = {b1, . . . , bn} be a basis for V . Let w1, . . ., wn be arbitrary
vectors in W . Then there exists a unique T ∈ Hom(V, W ) with

T (bi) = wi, 1 ≤ i ≤ n.

Proof. Uniqueness is clear.

Existence: Define T (v) for v ∈ V as follows. Write v = x1b1 + . . . xnbn
and “define”

T (v) =

n∑
i=1

xiwi.

Is T well-defined?
Yes. Since B is a basis, the xi’s are uniquely determined. Also, note that
T is linear.



The Range and Null Space (Kernel) of a Linear
Transformation

There are two useful subsets.

Definition

The Range or Image of T , denoted T (V ) or R(T ) is defined as

T (V ) := {T (v) : v ∈ V } ⊂W.

Lemma: T (V ) is a subspace of W .
Proof. Use the fact that T is linear.

Definition

The Nullspace of T , denoted N(T ) is defined as

N(T ) := {v ∈ V : T (v) = 0} ⊂ V.

We will often use the word kernel of T, denoted ker(T ), instead of the
nullspace of T. We leave the proof of the next lemma to you.

Lemma: N(T) is a subspace of V .



A dimension formula

Theorem (Text, Theorem 13.9)

Let T ∈ Hom(V, W ). Then

dimT (V ) + dimN(T ) = dimV.

To prove this, first we need the following proposition (we assume V is
finite-dimensional).:

Proposition

Any linearly independent set S = {v1, . . . , vk} ⊂ V can be completed to
a basis {v1, . . . , vk, vk+1, . . . , vn} for V .

Proof.

If S spans then it is a basis. If not there is a vector u not in the span of
S. Then {v1, . . . , vk, vk+1, . . . , vn, u} is still an independent set (prove
this). Continue. Since we are assuming V is finite dimensional,say m the
process must stop after m− n steps.



Proof of Theorem 13.9

Proof of Theorem 13.9. Assume dimV = n and dimN(T ) = k.
Choose a basis {b1, . . . , bk} for N(T ) and complete it to a basis
{b1, . . . , bk, bk+1, . . . , bn} for V . It sufficed to prove
Claim: {T (bk+1), . . . , T (bn)} is a basis for R(T ).
Spanning set: Clear.
Independent set: Suppose xk+1T (bk+1) + . . .+ xnT (bn) = 0. Then
xk+1bk+1 + . . .+ xnbn ∈ N(T ) and hence
xk+1bk+1 + . . .+ xnbn = x1b1 + . . .+ xkbk.
Thus

x1b1 + . . .+ xkbk − xk+1bk+1 − . . .− xnbn = 0

But {b1, . . . , bk, bk+1, . . . , bn} is a basis, so all the coefficients xi,
1 ≤ i ≤ n are zero. Hence xk+1, . . . , xn are zero.



A Consequence of Theorem 13.9

Our next goal is to prove the following proposition.

Proposition

Let T ∈ End(V ) (so V = W ). Then T is 1:1 ⇐⇒ T is onto.

We will need the next lemma. This lemma is extraordinarily useful.

Lemma

Suppose T : V −→W . Then T is 1:1 ⇐⇒ N(T ) = {0}.

Proof. (=⇒) Suppose T (v) = 0. Then since T (0) = 0, we have v = 0,
hence if v ∈ N(T ) then v = 0.
(⇐=) Suppose T (v1) = T (v2). Then since T is linear T (v1 − v2) = 0,
hence v1 − v2 ∈ N(T ) and thus v1 − v2 = 0. Finally, v1 = v2.



Proof of the previous Proposition

Proof. We use dimV = dimR(T ) + dimN(T ).
(=⇒) T is 1:1 so N(T ) = 0, hence dimR(T ) dimV , thus R(T ) = V
(since R(T ) ⊂ V ).
(⇐=) T is onto, so R(T ) = V and dimR(T ) = dimV . Thus
dimN(T ) = 0 and so N(T ) = {0}.

Warning: This is not true if W 6= V .

Now do problem pg. 108 # 10.


