
Lecture 6: The matrix of a Linear Transformation
Relative to a Basis



Special Notation for the Next Three Lectures

In the next three lectures we will use the caligraphic font for bases e.g.
B and Roman for linear transformations and matrices e.g. B.

Let V be a vector space and B = {b1, . . . , bn} be a basis for V . Then
any v has unique coordinates [v]B = (x1, . . . , xn) relative to B defined
by

v =

n∑
i=1

xibi

In the computations that follow we will usually write [v]B as a column
vector

[v]B =


x1

x2

...
xn


So we will use column vectors for computations.



The Matrix of a Linear Transformation

Now let V and W be vector spaces and T : V −→W be a linear
transformation. Suppose B = {b1, . . . , bn} is a basis for V and
C = {c1, . . . , cm} is a basis for W .

Definition

The matrix of the linear transformation T relative to the basis B and C
and written M(T ) or [T ]C B is the m× n matrix (aij) given by

T (bj) =
m∑
i=1

aijci, 1 ≤ j ≤ n, (∗)

We will use the complicated notation [T ]C B when need to apply the
very tricky “change of basis formula for the matrix of a linear
transformation” - see Lecture 9. Think of B as the “input basis” and C
as the “output basis”. When we don’t have to deal with the problem of
changing bases we will use the simpler notation M(T ).



The Physical Meaning of (∗)
It is important to understand the physical meaning of (∗). The first
column of A is the coordinates of T (b1) relative to c1, . . ., cm; the second
column of A is the coordinates of T (b2) relative to c1, . . ., cm, etc.
So

T (b1) T (b2) . . . T (bn)

A =

 ↓ ↓ . . . ↓


or

[T (b1)]C [T (b2)]C . . . [T (bn)]C

A =

 ↓ ↓ . . . ↓


We will usually have V = W and B = C . Then [T ]B B is a square
matrix.
If there is only one basis present we will write M(T ) instead of [T ]B B.



Problem
Let Pol3(R) be the set of polynomial functions of degree less than or

equal to 3. Let
d

dx
: Pol3(R) −→ Pol3(R) be differentiation. Compute

the matrix

[
d

dx

]
B B

= M

(
d

dx

)
relative to B =

{
x1, x, x

2, x3
}

.

Solution
d

dx
(1) = the zero polynomial = (0, 0, 0, 0) so the first column of

M

(
d

dx

)
is 

0
0
0
0

 .



d

dx
(x) = 1 = (1, 0, 0, 0) so the second column of M

(
d

dx

)
is


1
0
0
0

 .

d

dx
(x2) = 2x = (0)1 + 2(x) + 0(x2) + 0(x3) = (0, 2, 0, 0) so the third

column of M

(
d

dx

)
is


0
2
0
0

 .

Finally
d

dx
(x3) = 3x2 = (0, 0, 3, 0).

We obtain:

[
d

dx

]
B B

= M

(
d

dx

)
=


0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0





We now prove :

Theorem

Fix a basis B = (b1, . . . , bn) for V and a basis C = (c1, . . . , cm) for W.
Then the map from L(V, W ) to the space of m by n matrices Mm×n(R)
which assigns the matrix [T ]C B ∈Mm×n(R) to T ∈ Hom(V, W ) is 1:1
and onto.

Before starting the proof we recall the Theorem from Lecture 5. We
restate it as a lemma.

Lemma

Let B = (b1, . . . , bn) be as above. Let w1, w2, · · · , wn be arbitrary
vectors in W . Then there exists a unique linear transformation
T ∈ L(V, W ) such that

T (b1) = w1, T (b2) = w2, · · · , T (bn) = wn.



The Proof of the Theorem

Now we can prove the Theorem.

Proof.
1:1: Let T1, T2 ∈ Hom(V, W ). Suppose [T1]C B = [T2]C B = (aij).
Then for 1 ≤ j ≤ n,

T1(bj) =

n∑
i=1

aijci and T2(bj) =

n∑
i=1

aijci

.
Thus, T1(bj) = T2(bj) hence T1 = T2.

Onto: Let (aij) ∈Mm×n(R). Then define wj =
n∑

i=1

aijci, 1 ≤ j ≤ n.

In Lecture 5 we proved that there exits T with T (bi) = wi,
1 ≤ i ≤ n.



Notation: Let • denote matrix multiplication. Then we have the
important

Proposition (1)

Let U , V , W be vector spaces with basis A = {a1, . . . , am},
B = {b1, . . . , bn} and C = {c1, . . . , cp} respectively. Let T : U −→ V
and S : V −→W be linear transformations. Then

[S ◦ T ]C A = [S]C B • [T ]B A

or much less precisely (see immediately below)

M(S ◦ T ) = M(S) ◦M(T ).

Proof. Put

Z = (zik) = M (S ◦ T ) = [S ◦ T ]C A

X = (xij) = M (S) = [S]C B

Y = (yjk) = M (T ) = [T ]B A
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We will compute (S ◦ T )(ak) in two ways.

The matrix (zik) is defined by

(S ◦ T )(ak) =
p∑

i=1

zikci.

Now we compute (S ◦ T )(ak) another way. We have

(S ◦ T )(ak) = S(T (ak)) (∗)



But the matrix Y = (yjk) is defined by

T (ak) =

n∑
j=1

yjkbj . (∗∗)

We substitute the RHS of (∗∗) into (∗) to get

(S ◦ T )(ak) = S(T (ak)) = S

 n∑
j=1

yjk(bj)


=

n∑
j=1

yjkS (bj) . (#)



But the matrix X = (xij) is defined by

S(bj) =

p∑
i=1

xijci. (##)

We substitute (##) into (#) to get

(S ◦ T )(ak) =

n∑
j=1

yjk

(
p∑

i=1

xijci

)

=

n∑
j=1

p∑
i=1

yjkxijci

=

p∑
i=1

 n∑
j=1

xijyjk

 ci.



Hence ∑
zikci =

p∑
i=1

 n∑
j=1

xijyjk

 ci.

Since ci is a basis for W , we have

zik =

n∑
j=1

xijyjk.

But the RHS is the ik-th entry of the product matrix X • Y .

Remark: This wouldn’t have worked if we had written the vectors T (bj)
along the rows instead along the columns.



Proposition (2)

Let V be a vector space and T ∈ L(V V ) = Hom (V, V ). Let
B = {b1, . . . , bn} be a basis for V . Let v ∈ V . Then

[T (v)]B = [T ]B B [v]B .

Proof. Suppose [T ]B B = A = (aij) and [v]B = (x1, x2, . . . , xn) so

v =

n∑
j=1

xjbj .

Then

T (v) =

n∑
j=1

xjT (bj). (∗)



But by definition of the matrix [T ]B B

T (bj) =

n∑
i=1

aijbi (∗∗)

Subsitute (∗∗) into (∗) to obtain

T (v) =

n∑
j=1

xj

(
n∑

i=1

aijbi

)

=

n∑
i=1

n∑
j=1

xjaijbi

=

n∑
i=1

 n∑
j=1

aijxj

 bi



Hence

[T (v)]B =

 n∑
j=1

a1jxj , . . . ,

n∑
j=1

anjxj

 .

But

A [v]B =


a11 . . . a1n
a21 . . . a2n

...
...

an1 . . . ann




x1

x2

...
xn



=


n∑

j=1

a1jxj

...
n∑

j=1

anjxj


At this stage we are not differentiating between row vectors and column
vectors.



The Map from T to M(T)

We summarize what we have proved in this lecture.

Theorem (Text, Theorem 13.3)

Suppose dimV = n and {b1, . . . , bn} is a basis for V . Then the map

M : Hom (V, V ) −→Mn(R)

that sends T to M(T ) is 1:1, onto, linear and sends composition ◦ of
linear transformations to multiplication • of matrices.


