Lecture 6: The matrix of a Linear Transformation

Relative to a Basis




Special Notation for the Next Three Lectures

In the next three lectures we will use the caligraphic font for bases e.g.
2 and Roman for linear transformations and matrices e.g. B.

Let V be a vector space and & = {by, ..., b,} be a basis for V. Then
any v has unique coordinates [v] , = (21, ..., x,) relative to & defined

by
v = Z S(}Z‘bi
i=1

In the computations that follow we will usually write [v], as a column

vector
T

[v] g = °

Tn

So we will use column vectors for computations.



The Matrix of a Linear Transformation

Now let V' and W be vector spaces and T : V. — W be a linear
transformation. Suppose # = {b1, ..., b, } is a basis for V and
¢ ={c1, ..., ¢m} is a basis for W.

Definition

The matrix of the linear transformation 7' relative to the basis & and &
and written M (T') or [T, is the m x n matrix (a;;) given by

T (b;) = Zaijci, 1< <n, (%)
i=1

We will use the complicated notation [T, when need to apply the
very tricky “change of basis formula for the matrix of a linear
transformation” - see Lecture 9. Think of B as the “input basis" and C
as the “output basis”. When we don't have to deal with the problem of
changing bases we will use the simpler notation M (T).



The Physical Meaning of (x)

It is important to understand the physical meaning of (x). The first

column of A is the coordinates of T'(b;) relative to ¢1, ..., ¢,; the second
column of A is the coordinates of T'(by) relative to ¢y, ..., ¢, etc.
> T(by) T(b2) ... T(bn)
A= 1 \ 1
or
[T(b1)]  [T(b2)]e [T(bn)]e
A= 3 1 3

We will usually have V' =W and # =¢. Then [T], is a square
matrix.
If there is only one basis present we will write M (T') instead of [T .



Problem
Let Pol3(R) be the set of polynomial functions of degree less than or

d
equal to 3. Let o Pol3(R) — Pol3(R) be differentiation. Compute
z

d d
the matrix [} =M <> relative to 4 = {xl, z, 2, :ES}.
2ldr] 4 dx

Solution

d ,
@(1) = the zero polynomial = (0, 0, 0, 0) so the first column of

(2):

OO OO



d
dx

d
—(2%) = 20 = (0)1 +2() + 0(x

+
0
column of M (ddx> is ?)
0

0,

d
Finally a( 23) =32% = (0, 0, 3,

We obtain:

0).

%) =

OO OO

—(x)=1=(1,0, 0, 0) so the second column of M (dd ) is
x

SO O =

o

(0, 2, 0, 0) so the third

o oo

o o N o

O w oo



We now prove :

n) for V and a basis € = (c1, ..., ¢m) for W.

) to the space of m by n matnces Man(R)
which assigns the matrix [T], € My xn(R) to T € Hom(V, W) is 1:1
and onto.

Fix a basis = (by, ..., b
Then the map from L(V,

Before starting the proof we recall the Theorem from Lecture 5. We
restate it as a lemma.

Let = (by, ..., by) be as above. Let wy,ws,- - ,w, be arbitrary
vectors in W. Then there exists a unique linear transformation
T € L(V, W) such that

T(b1) = w1, T(b2) = wa, - ,T(bp) = wy.




The Proof of the Theorem

Now we can prove the Theorem.

Proof.
1:1: Let T,Ts € HOHI(V, W) SUppOSE %[Tl]‘% = %[Tg]% = (aij).
Then for 1 < j <n,

T ( Za”cl and To(b Za”q

i=1
ThUS, Tl(b]) = TQ(b]) hence Tl = TQ.

Onto: Let (a;5) € Myxn(R). Then define w; = > ai¢, 1 < j < n.
i=1
In Lecture 5 we proved that there exits T with T'(b;) = wj,
1<i<n. O



Notation: Let e denote matrix multiplication. Then we have the
important

Proposition (1)

Let U, V, W be vector spaces with basis & = {aq, ..., am},
B ={b1,...,b,} and € = {ci, ..., cp} respectively. LetT : U — V
and S : V. — W be linear transformations. Then

lS5oT] = 4Slge 4Tl
or much less precisely (see immediately below)

M(SoT) = M(S) o M(T).

Proof. Put
Z = (z)=M(SoT)= ,[SoT],
X = (25)=M(S) = 4[5
Y = (yu)=MT)= 4T,



We will compute (S o T)(ay) in two ways.

The matrix (z;;) is defined by

(SoT)( Z ZikCi-

Now we compute (S o T')(ay) another way. We have

(SoT)(ax) = S(T(ar))  (¥)



But the matrix Y = (y;x) is defined by
T(a) = Zyjkbj. (%)
j=1
We substitute the RHS of (xx) into (*) to get
(SoT)(ar) = S(T(ar)) =S (Z yjk(bj))
j=1

= Zyjmbj)- #)



But the matrix X = (x;;) is defined by
p
S(bj) = injci. (##)
i=1
We substitute (#+#) into (#) to get
n P
(S e} T)(ak) = Zyjk (Z zijc,)
j=1 i=1
n p
= Z Z YjkTijCi

j=1i=1

n
= Z LijYjk | Ci-
i=1 \j=1



Hence
y4 n

E Zikcizg TijYik | Ci-
1

i=1 \j=

Since ¢; is a basis for W, we have

n
Zik = E TijYjk-
Jj=1

But the RHS is the ik-th entry of the product matrix X e Y.

Remark: This wouldn’t have worked if we had written the vectors T'(b;)
along the rows instead along the columns.



Proposition (2)

Let V' be a vector space and T € L(V V) = Hom (V, V). Let
B ={b1, ..., by} be a basis for V. Letv € V. Then

[T(U)]ga = @[T]ga [U]% :

Proof. Suppose ,[T], = A = (a;;) and [v] 4, = (21, z2, ..., Ty) SO

n
v = E ijj.
j=1

Then "
T(v) = Z%‘T(bj) (*)



But by definition of the matrix [T,

T(bj) = Zaijbi (**)
i=1

€T 5 <zn: aijbi>
i=1

TjQij bz

Subsitute (xx) into (%) to obtain

M=

T(w) =

<
Il
—_

I
NE

s
Il
_

<.
Il
_

Q5T 5 bz

s
I
—

Il
NE
NIE



Hence

But

ail oo Q1n I
a21 .o Q2p T2

ann l'n

an1
n
Z 15T

™=

AnjTj
1

J

At this stage we are not differentiating between row vectors and column

vectors.

O]



The Map from T to M(T)

We summarize what we have proved in this lecture.

Theorem (Text, Theorem 13.3)

Suppose dimV =n and {by, ..., by} is a basis for V.. Then the map
M : Hom (V, V) — M, (R)

that sends T to M (T) is 1:1, onto, linear and sends composition o of
linear transformations to multiplication e of matrices.




