Lecture 7: The Action from the Right of Invertible Matrices on Bases

The n by n Matrix $C(\mathscr{B})$ Associated to a Basis \mathscr{B} for F^{n}

In this lecture we will assume we are working in F^{n} (or \mathbb{R}^{n}) (for general V we will assume V has dimension n and we have chosen a basis for V). So in what follows $V=F^{n}$.
Let $\mathscr{B}=\left(v_{1}, v_{2}, \cdots, v_{m}\right)$ be a basis for F^{n}. Then we define the matrix $C(\mathscr{B})$ of the basis \mathscr{B} as the n by n matrix $C(\mathscr{B})$ given by

$$
C(\mathscr{B})=\left(\begin{array}{ccccc}
v_{1} & v_{2} & \ldots & v_{m} \\
& & & & \\
& \downarrow & \downarrow & & \ldots
\end{array}\right) \downarrow \begin{aligned}
& \\
&
\end{aligned}
$$

So the $i^{\text {th }}$ column of $C(\mathscr{B})$ is the coordinates of the vector $v_{i} \in F^{n}$. I will leave the following proposition to you as an exercise.

Proposition

$C(\mathscr{B})$ is an invertible matrix. Conversely given any n by n invertible matrix D there exists a unique basis \mathscr{B} of V such that $C(\mathscr{B})=D$.

The Action from the Right of Invertible n by n Matrices

 on Row VectorsIn the next slide we will define the action of invertible n by n matrices on bases, so a "row vector of vectors" $\mathscr{B}=\left(v_{1}, v_{2}, \cdots, v_{n}\right.$. This definition is motivated by the formula for the action of n by n matrices on row vectors $\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ (of scalars) which is simply the definition of the matrix product of a 1 by n matrix and an n by n matrix. We recall the formula. So let $u=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ be a row vector and $A=\left(a_{i j}\right)$ be an n by n matrix. By definition of matrix multiplication the matrix product $u \cdot A$ is given by

$$
u \cdot A=\left(\sum_{j=1}^{n} x_{j} a_{j 1}, \sum_{j=1}^{n} x_{j} a_{j 2}, \cdots, \sum_{j=1}^{n} x_{j} a_{j n}\right)
$$

But we may interchange x_{j} and $a_{j k}, 1 \leq k \leq n$ in each term to obtain

$$
u \cdot A=\left(\sum_{j=1}^{n} a_{j 1} x_{j}, \sum_{j=1}^{n} a_{j 2} x_{j}, \cdots, \sum_{j=1}^{n} a_{j n} x_{j}\right.
$$

If you replace the numbers x_{j} by vectors v_{j} in this formula you get the formula of the next slide for $\mathscr{B} \bullet A$. on Bases

Suppose $\mathscr{B}=\left(v_{1}, v_{2}, \cdots, v_{n}\right)$ is a basis and $T \in L(V, V)$. Then we define the left action of T on \mathscr{B} by

$$
T \mathscr{B}=\left(T v_{1}, T v_{2}, \cdots, T v_{n}\right)
$$

Now suppose A is an n by n invertible matrix. Then we define the action (from the right) of A on \mathscr{B} by

$$
\begin{aligned}
\mathscr{B} \bullet A & =\left(v_{1}, v_{2}, \cdots, v_{n}\right) \bullet A \\
& =\left(\sum_{j=1}^{n} a_{j 1} v_{j}, \sum_{j=1}^{n} a_{j 2} v_{j}, \cdots, \sum_{j=1}^{n} a_{j n} v_{j}\right)
\end{aligned}
$$

Two Examples

Example 1

$$
\left(v_{1}, v_{2}\right) \bullet\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)=\left(a_{11} v_{1}+a_{21} v_{2}, a_{12} v_{1}+a_{22} v_{2}\right)
$$

Example 2

Proposition

Suppose $\mathscr{B}=\left(b_{1}, b_{2}, \cdot, b_{n}\right)$ is a basis for V and $v \in V$ has coordinates $\left(x_{1}, x_{2}, \cdots, x_{n}\right)$. Then

$$
\left(b_{1}, b_{2}, \cdots, b_{n}\right) \bullet\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=\sum_{i=1}^{n} b_{i} x_{i}=\sum_{i=1}^{n} x_{i} b_{i}=v
$$

Remark

So if we right-multiply a basis for V by a column vector of scalars we get a vector in V and the column vector is the coordinates of v relative to the basis.

Strictly speaking Example 2 is not an " example " because

$$
A=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)
$$

is not an invertible matrix. But in fact we can right multiply a basis $\mathscr{B}=\left(b_{1}, b_{2}, \cdot, b_{n}\right)$ for F^{n} by an n by m matrix A and get an m-tuple of vectors in F^{n} - not a basis unless $m=n$ and A is invertible. In Example 2 we multiplied the basis \mathscr{B} by the n by 1 matrix

$$
A=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)
$$

and the result was a single vector in V. This example will be the key to proving the change of basis formula for the coordinates of a vector in Lecture 8.

A Useful Proposition

The next proposition will be very useful in computing with change of bases. It states that the right action of an n by n matrix A on a bases \mathscr{B} corresponds under C to right multiplication $C(\mathscr{B})$ by A. This will make it easy to prove theorems about the action of invertible matrices on bases. So the mapping C that takes bases to matrices carries the right action of an invertible n by n matrix A on a basis \mathscr{B} to the right multiplication by A on the matrix $C(\mathscr{B})$ associated to \mathscr{B}.

Proposition
Suppose $C(\mathscr{B})=D$. Then

$$
C(\mathscr{B} \bullet A)=D A .
$$

The Proof of the Proposition

Proof.

By definition of the action of A on \mathscr{B} we have

$$
\begin{aligned}
\mathscr{B} \bullet A & =\left(v_{1}, v_{2}, \cdots, v_{n}\right) \bullet A \\
& =\left(\sum_{j=1}^{n} a_{j 1} v_{j}, \sum_{j=1}^{n} a_{j 2} v_{j}, \cdots, \sum_{j=1}^{n} a_{j n} v_{j}\right)
\end{aligned}
$$

Let $D_{1}, D_{2}, \cdots, D_{m}$ be the columns of D. Then the columns of the matrix $D A$ are $\sum_{j=1}^{n} a_{j 1} D_{j}, \sum_{j=1}^{n} a_{j 2} D_{j}, \cdots, \sum_{j=1}^{n} a_{j n} D_{j}$). Since D_{j} corresponds to v_{j} under C this proves the proposition.

The Proposition has an important corollary
Corollary
$\mathscr{B} \bullet A_{1}=\mathscr{B} \bullet A_{2} \Longleftrightarrow A_{1}=A_{2}$

Proof.

$\mathscr{B} \bullet A_{1}=\mathscr{B} \bullet A_{2} \Longleftrightarrow C(\mathscr{B}) A_{1}=C(\mathscr{B}) A_{2}$. Left multiply by

A New Formula for the Matrix of a Linear Transformation

Theorem

Suppose $\mathcal{B}=\left(b_{1}, b_{2}, \cdot, b_{n}\right)$ is a basis for V and $T \in L(V, V)$. Let $M(T)=\mathscr{B} T_{\mathscr{B}}$ be the matrix of T relative to \mathcal{B}. Then

$$
\left(T\left(b_{1}\right), T\left(b_{2}\right), \cdots, T\left(b_{n}\right)\right)=\left(b_{1}, b_{2}, \cdots, b_{n}\right) \bullet M(T)
$$

Proof.

By definition the matrix $M(T)$ is the matrix $\left(a_{i j}\right)$ where the entries $\left(a_{i j}\right)$ satisfy

$$
\begin{equation*}
T\left(b_{j}\right)=\sum_{i} b_{i} a_{i j}=\sum_{i} a_{i j} b_{i}, 1 \leq j \leq n \tag{1}
\end{equation*}
$$

We now compute the right-hand side of the equation in the theorem. But also by definition (third slide)

$$
\left(b_{1}, b_{2}, \cdots, b_{n}\right) \bullet M(T)=\left(\sum_{i} b_{i} a_{i 1}, \sum_{i} b_{i} a_{i 2}, \cdots, \sum_{i} b_{i} a_{i n}\right.
$$

which is the same as the right-hand side of (1) and the Theorem follows.

Problem

Suppose $T \in L\left(V W\right.$ and $\mathcal{B}=\left(b_{1}, b_{2}, \cdots, b_{n}\right)$ is a basis for V and $\mathcal{C}=\left(c_{1}, c_{2}, \cdots, c_{n}\right)$ is a basis for W. What is the formula analogous to the formula of the previous Theorem for ${ }_{\mathcal{C}}[T]_{\mathcal{B}}$?

