Lecture 11: The Gram-Schmidt Orthogonalization Process

э

- ∢ ⊒ →

Let $\{v_1,\,\ldots,\,v_n\}$ be an ordered independent set. Then there exists an orthonormal set $\{u_1,\,\ldots,\,u_k\}$ such that

span
$$\{v_1, \ldots, v_n\}$$
 = span $\{u_1, \ldots, u_k\}$, $1 \le i \le k$.
Proof.
Step 1
Put $u_1 = \frac{v_1}{w_1}$.

 $\frac{||v_1||}{\text{Step 2}}$ Make v_2 orthogonal to u_1 by defining

$$w_2 = v_2 - (v_2, \, u_1) \, u_1.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のので

Remark: In lecture 11, we will learn that $(v_2, u_1) u_1$ is the projection of v_2 onto the line through v_1 so we are subtracting this projection from v_1 . Then w_2 is perpendicular to u_1 . Indeed

$$\begin{aligned} (w_2, u_1) &= (v_2 - (v_2, u_1) \, u_1, \, u_1) \\ &= (v_2, u_1) - (v_2, \, u_1) \, (u_1, \, v_1) \\ &= (v_2, \, u_1) - (v_2, \, u_1) \\ &= 0. \end{aligned}$$

Then

span
$$(u_1, w_2)$$
 = span (v_1, w_2)
= span (v_1, v_2) . (**)

(**) holds because any linear combination of v_1 and w_2 is a linear combination of v_1 and v_2 and vice versa.

Here is why: $v \in \operatorname{span}(v_1, w_2) \Longrightarrow$ there exists c_1 and c_2 so that

 $v = c_1 v_1 + c_2 v_2.$

But

$$w_2 = v_2 - (v_2, u_1) u_1$$

= $v_2 - \frac{1}{||v_1||^2} (v_2, v_1) v_1.$

So

$$v = c_1 v_1 + c_2 \left(v_2 - \frac{1}{||v_1||^2} (v_2, v_1) v_1 \right)$$
$$= \left[c_1 - \frac{1}{||v_1||^2} (v_2, v_1) \right] v_1 + c_2 v_2.$$

So, $v \in \operatorname{span}(v_1, v_2)$. Conversely, if $v \in \operatorname{span}(v_1, v_2)$. Write

$$v_2 = w_2 + \frac{1}{||v_1||^2} (v_2, v_1) v_1$$

At each stage in the following prood a formula like $(\ast\ast)$ has to be checked. I will leave this to you.

Now we have $\{u_1, u_2, v_3, v_4, \ldots, v_k\}$ with $\{u_1, u_2\}$ and orthonormal set.

Now make v_3 orthogonal by defining

$$w_3 = v_3 - (v_3, u_1) u_1 - (v_3, u_2) u_2.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のので

(We are subtracting off the projection of v_3 onto span $\{u_1, u_2\}$) We have as before (only more complicated) $\frac{\text{The induction step from } i-1 \text{ to } i}{\text{Suppose we have}}$

$$\{u_1 u_2, \ldots, u_{i-1}, v_i, v_{i+1}, \ldots, v_k\}$$

where $\{u_1 \, u_2, \, \ldots, \, u_{i-1}\}$ is an orthonormal set with

span {
$$u_1 u_2, \ldots, u_{i-1}$$
} = span { $v_1 v_2, \ldots, v_{i-1}$ }.

Put $w_i = v_i - [(v_i, u_1) u_1 + \dots (v_i, u_{i-1}) u_{i-1}].$ Then $(w_i, u_j) = 0, \quad 1 \le j \le i - 1$ and

Now, put

$$u_i = \frac{w_i}{||w_i||}$$

・ロト ・回ト ・ヨト ・ヨト

э

and we have performed the induction step.

Corollary

Every finite dimensional vector space V with an inner product has an orthonormal basis.

Proof. Choose a basis $\mathscr{B} = \{b_1, \ldots, b_n\}$ for V and apply Gram-Schmidt to \mathscr{B} to get an orthonormal basis for V.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のので

Hard Problem: Show that change of basis matrix $P_{\mathscr{B} \leftarrow -\mathscr{U}}$ from \mathscr{U} to \mathscr{B} is upper triangular, that is

$$P_{\mathscr{B} \longleftarrow \mathscr{U}} = \begin{pmatrix} * & * & \dots & * \\ 0 & * & \dots & * \\ 0 & 0 & \dots & * \\ \vdots & \vdots & \vdots & * \\ 0 & 0 & \dots & 0 \end{pmatrix}$$

How is this related to

span
$$\{u_1, u_2, \ldots, v_i\}$$
 = span $\{b_1, b_2, \ldots, b_i\}, 1 \le i \le n$?