
Lecture 13: Direct Sums and Projections

This lecture comes from the text, pages 195-198.



Direct Sums

Definition

Let V be a vector space and U and W be subspaces. Then V is said to
be the direct sum of U and W , written V = U ⊕W , if every vector
v ∈ V has the unique expression

v = u+ w, u ∈ U, w ∈W.

Some more definitions:

Definition

V is said to be the sum of U and W is every vector v ∈ V has at least on
expression

v = u+ w, u ∈ U, w ∈W.

In this case, we write V = U +W .

Definition

U and W are said to be independent if U ∩W = {0}.



Direct Sums

Lemma

Let V be a vector space, U, W ⊆ V subspaces. Then V = U ⊕W if and
only if

(i) V = U +W

(ii) U ∩W = {0}.

Proof. (=⇒) (i) is clear since every v ∈ V can be written (uniquely) as
v = u+ w with u ∈ U , w ∈W .
Now for for (ii). Let v ∈ U ∩W . Then since v ∈ U and v ∈W , we can
write:

v = v + 0 (where v ∈ U, 0 ∈W )

and
v = 0 + v (where 0 ∈ U, v ∈W )

.
But the expression v = u+ w is unique, hence v = 0.



Direct Sums

(⇐=) Since V = U +W , we must only check uniqueness. So suppose
v = u1 + w1 and v = u2 + w2, where ui, u2 ∈ U and w1, w2 ∈W .
Then

u1 + w1 = u2 + w2

and thus
u1 − u2 = w2 − w1

.
Put x = u1 − u2 = w2 − w1.
Then x ∈ U and x ∈W , so x ∈ U ∩W = {0} and hence x = 0. Thus
u1 = u2 and w1 = w2.



Idempotence

Definition

Let p ∈ L (V, V ). Then p is said to be idempotent if p2 = p.

Lemma

Let p ∈ L (V, V ) be idempotent, W = R(p) and U = N(p).
Then V = U ⊕W .

Proof.
We first show that V = U +W . Let v ∈ V . Then v = (v − p(v)) + p(v).
By definition, p(v) ∈ R(p) = W . Also, p(v − p(v)) = p(v)− p2(v)
= p(v)− p(v) = 0. Hence v − p(v) ∈ N(p) = U .

Now we show U ∩W = N(p) ∩R(p). Then since v ∈ R(p) we have
v = p(v′) for some v′ ∈ V . And, since v ∈ N(p) we have p(v) = 0.
p2(v′) = 0.
But 0 = p2(v′) = p(v′) = v and thus v = 0.



Direct Sum and Idempotence

Proposition

Every direct sum decomposition arises in this way.

Proof. Let V = U ⊕W .
Define p : V −→ V by

p(u+ w) 7−→ w.

The p2 = p and R(p) = W , N(p) = U .

Note: We can also define q : V −→ V by

q(u+ w) 7−→ u.



Lemma

(i) p ◦ q = 0

(ii) p+ q = I

Proof.
(i) Let v = u+ w. Then

(p ◦ q) (v) = (p ◦ q) (u+ w) = p (q(u+ w)) = p(u) = 0.

(ii) Let v = u+ w. Then

(p+ q) (v) = (p+ circq) (u+w) = p (u+ w)+q (u+ w) = w+u = v.

p and q are called the projections associated to the direct sum
decomposition V = U ⊕W .



Orthogonal Direct Sums

Suppose now (V, ( , )) is an inner product space and U ⊂ V is a
subspace. Define the orthogonal complement:

U⊥ := {v ∈ V : (u, v) = 0, all u ∈ U} .

Lemma

U⊥ is a subspace.

Proof. First 0 ∈ U⊥ since (u, 0) = 0 for all u ∈ U . Now suppose v1,
v2 ∈ U⊥. Then

(u, v1 + v2) = (u, v1) + (u, v2) = 0 + 0 for allu ∈ U

and thus v1 + v2 ∈ U⊥.
Finally, if c ∈ R and v ∈ U⊥ then

(u, cv) = c (u, v) = c · 0 = 0 for all u ∈ U.

and thus cv ∈ U⊥.



Orthogonal Direct Sums

Proposition

Let (V, ( , )) be an inner product space and U ⊆ V a subspace. The
given an orthogonal basis BU = {u1, . . . , uk} for U , it can be extended
to an orthonormal basis B = {u1, . . . , un} for V .

Proof. First, extend BU to a basis for V ,
B′ = BU = {u1, . . . , uk, v1, . . . , vn−k}. Now apply Gram-Schmidt.
Since {u1, . . . , uk} is already an orthonormal set, they are left fixed (this
is a property of Gram-Schmidt). Thus the resulting basis is an
orthonormal extension of the basis BU .

The following lemmas are a consequence of this proposition.



Lemma

Given U ⊂ V , there is an orthonormal basis for V ,
B = {u1, . . . , uk, uk+1, . . . , un} so that

ui ∈ U for 1 ≤ k

ui ∈ U⊥ for k + 1 ≤ n.

Proof. Take a basis for U , B′ = {v1, . . . , vk} and apply Gram-Schmidt
to get an orthonormal basis BU = {u1, . . . , uk} for U .



Lemma

Given U ⊂ V and a basis B = {u1, . . . , uk, uk+1, . . . , un} as above,
BU⊥ = {uk+1, . . . , un} is a basis for U⊥.

Proof. First, S (uk+1, . . . , un) ⊂ U⊥ is clear. Now we claim
U⊥ ∩ U = {0}. Suppose U⊥ ∪ U . Then (u, u) = 0, hence u = 0. Thus,
U⊥ ∩ S (u1, . . . , uk) = {0} and so S (uk+1, . . . , un) = U⊥.
Finally, any subset of a basis is linearly independent.



Corollary

U ∩ U⊥ = {0}.

Lemma

V = U ⊕ U⊥.

Proof. It remains to show that V = U + U⊥. But since we have a basis
for V , B = {u1, . . . , uk, uk+1, . . . , un} with

ui ∈ U for 1 ≤ k

ui ∈ U⊥ for k + 1 ≤ n,

this is clear.



Corollary

dimV = dimU + dimU⊥.

Lemma(
U⊥
)⊥

= U .

Proof. U ⊂
(
U⊥
)⊥

is clear and since they are both subspaces of V , with

the same dimension, U =⊂
(
U⊥
)⊥

.



Proposition

Suppose (V, ( , )) is an inner product space and V = U ⊕W is a direct
sum decomposition (not necessarily orthogonal). Let pU be the
associated projection. Then W = U⊥ if and only if

(∗) (pUv1, v2) = (v1, pUv2) all v1, v2 ∈ V.

Proof. Let u ∈ U , w ∈W .
(⇐=) Suppose (∗) holds. Then

(u, w) = (pUu, w) = (u, pUw) = (u, 0) = 0.



(=⇒) Suppose V = U ⊕W is orthogonal. Let v1, v2 ∈ V . Then
v1 = u1 + w1 and v2 = u2 + w2 (uniquely) with u1, u2 ∈ U , w1,
w2 ∈W .
Then

(pUv1, v2) = (PU (u1 + w1), u2 + w2) = (u1, u2 + w2)

= (u1, u2) ,

and

(v1, pUv2) = (u1 + w1, PU (u2 + w2)) = (u1 + w1, u2)

= (u1, u2) .



M -Fold Direct Sums

Definition

Let U1, U2, . . ., Um be subspaces of V . Then V is the direct sum of U1,
U2, . . ., Um, written

V = U1 ⊕ U2 ⊕ . . .⊕ Um

if every v ∈ V may be written as

v = u1 + u2 + . . .+ um with ui ∈ Ui, 1 ≤ i ≤ m.

Proposition

V = U1 ⊕ U2 ⊕ . . .⊕ Um if and only if

(i) V = U1 + U2 + . . .+ Um

(ii) Ui ∩
{
U1 + . . .+ Ûi + . . .+ Um

}
= {0} for i ≤ i ≤ m (where hat

signifies that this term has been omitted.)



M -Fold Direct Sums

Proof.
(=⇒) (i) is clear since every v ∈ V can be expressed

v = u1 + u2 + . . .+ um where ui ∈ Ui, 1 ≤ i ≤ m.

(ii) Fix i with 1 ≤ i ≤ m. Let v ∈ Ui ∩{u1 + . . .+ ûi + . . .+ um}. Then

v = 0+ . . .+0+ ûi +0+ . . .+0 = u1 + . . .+ui−1 +0+ui+1 + . . .+um

and hence uj = 0, 1 ≤ j ≤ m. So v = 0.
(⇐=) Suppose u1 + u2 + . . .+ um = u′1 + u′2 + . . .+ u′m. Fix i with
1 ≤ i ≤ m. Then

ui − u′i = (u′1 − u1) + . . .+ (u′i − ui) + (u′i+1 − ui+1) + . . .+ (u′m − um).

Set v = ui − u′i. Then v ∈ Ui and v ∈ U1 + . . .+ Ûi + . . .+ Um, hence
v = 0 and ui = û′i. This is true for each i, hence the expression
v = u1 + . . .+ um is unique.



Projection

Definition

Given V = U1 ⊕ U2 ⊕ . . .⊕ Um, define the projection Pi ∈ L(V, V ) by

Pi(u1 + u2 + . . .+ ui + . . .+ um) = ui.

Hence

R(pi) = Ui

N(pi) = U1 ⊕ . . .⊕ Ûi ⊕ . . .⊕ Um

Lemma

(i) pi ◦ pj = 0, i 6= j.

(ii) p1 + p2 + . . .+ pm = I.

Proof. Same as for when m = 2.


