Lecture 18: The minimal Polynomial of a Linear Transformation

Subsituting a Linear Transformation into a Polynomial

Let V be a vector space over F of dimension $n . T \in L(V, V)$ and $f(x) \in F[x]$. We want to define $f(T) \in L(V, V)$.

Definition

If $f(x)=a_{k} x^{k}+a_{k-1} x^{k-1}+\ldots+a_{1} x+a_{0}$ then

$$
f(T)=a_{k} T^{k}+a_{k-1} T^{k-1}+\ldots+a_{1} T+a_{0} I
$$

We could also evaluate at a square matrix A :

$$
f(A)=a_{k} A^{k}+a_{k-1} A^{k-1}+\ldots+a_{1} A+a_{0} I
$$

Proposition

The matrix of $f(T)$ relative to the basis \mathscr{B} is $f(A)$, where A is the matrix of T relative to the basis \mathscr{B}.

Let $\Phi_{T}: F[x] \longrightarrow L(V, V)$ be given by

$$
\Phi_{T}(f)=f(T)
$$

Proposition

Φ_{T} is is linear and satisfies

$$
\begin{equation*}
\Phi_{T}(f g)=\Phi_{T}(f) \Phi_{T}(g) \tag{1}
\end{equation*}
$$

Φ_{T} is not onto (for n strictly greater than 1) and has an infinite dimensional kernel (null-space).

Proof. It is clear that Φ_{T} is linear. We first prove Equation (1). The left-hand side of Equation (1) is $\Phi_{T}(f g)=(f g)(T)$ and the right-hand side of Equation (1) is $f(T) g(T)$. So we must prove that $(f g)(T)=f(T) g(T)$. Suppose $f(x)=\sum_{i=0}^{k} a_{i} x^{i}$ and $g(x)=\sum_{j=0}^{\ell} a_{j} x^{j}$. Then

$$
\begin{equation*}
(f g)(x)=\sum_{m=0}^{k+\ell}\left(\sum_{i, j: i+j=m} a_{i} b_{j}\right) x^{m} \tag{2}
\end{equation*}
$$

We continue the proof of the Proposition.
From Equation (2) we obtain

$$
(f g)(T)=\sum_{m=0}^{k+\ell}\left(\sum_{i, j: i+j=m} a_{i} b_{j}\right) T^{m} .
$$

But $f(T)=\sum_{i=0}^{k} a_{i} T^{i}$ and $g(T)=\sum_{j=0}^{\ell} a_{j} T^{j}$ and hence

$$
f(T) g(T)=\sum_{m=0}^{k+\ell}\left(\sum_{i, j: i+j=m} a_{i} b_{j}\right) T^{m}=f g(T) .
$$

Now we prove that Φ_{T} is not onto. Note that

$$
f(T) g(T)=(f g)(T)=(g f)(T)=g(T) f(T) .
$$

So any two elements in the image of Φ commute. So take two non-commuting elements in $L(V, V)$ (we need $n>1$ to do this.) They cannot both be in the image of Φ_{T}.

We next prove that Φ_{T} has a nonzero kernel - in fact we show how to construct elements of that kernel. Take any subset $\left\{f_{1}, f_{2}, \cdots, f_{n^{2}+1}\right\}$ of $n^{2}+1$ elements of $F[x]$ (e.g. $\left\{1, x, x^{2}, \cdots, x^{n^{2}}\right\}$). Then the set $\left\{f_{1}(T), f_{2}(T), \cdots, f_{n^{2}+1}(T)\right\}$ is a subset of $L(V, V)$ containing $n^{2}+1$ elements. But the dimension of $L(V, V)$ is n^{2} so there must be a linear relation among the elements of this set.
Hence there is a relation

$$
\sum_{i=1}^{n^{2}+1} c_{i} f_{i}(T)=0, \quad c_{i} \neq 0
$$

Then $\sum_{i=1}^{n^{2}+1} c_{i} f_{i}$ is a nonzero element in $\operatorname{Ker}\left(\Phi_{\mathrm{T}}\right)$. So we have proved $\operatorname{Ker}\left(\Phi_{\mathrm{T}}\right)$ is nonzero. To see that it is infinite dimensional see the remark on the next slide.

Remark:Why does Φ_{T} have an infinite - dimensional nullspace?
The dimension of $\mathrm{F}[\mathrm{x}]$ is infinite dimensional and the dimension of $L(V, V)$. Any linear map from an infinite dimensional space to a finite dimensional space has an infinite dimensional kernel.

We just saw $I, T, T^{2}, \ldots, T^{n^{2}}$ must be linearly dependent since $\operatorname{dim} L(V, V)=n^{2}$. Hence there exist scalars $a_{0}, a_{1}, \ldots, a_{n^{2}}$ so that

$$
a_{0} I+a_{1} T+\ldots+a_{n^{2}} T^{n^{2}}=0
$$

So $f(x)=a_{0} I+a_{1} x+\ldots+a_{n^{2}} x^{n^{2}}$ is in $\operatorname{Ker}\left(\Phi_{\mathrm{T}}\right)$. In other words, there is a linear relation between the power $I, T, T^{2}, \ldots, T^{n^{2}}$

Remark: We just showed there is always always a linear relation between the powers

$$
I, T, T^{2}, \ldots, T^{n^{2}}
$$

We will now see that often we can get a even smaller power degree relation.

Fundamental Question

What is the smallest power k so that there is a nontrivial linear relation among $I, T, T^{2}, \ldots, T^{k}$?
First-there is a unique such k. Let
$R=\left\{\ell:\right.$ there is a linear relation among the powers $\left.I, T, T^{2}, \ldots, T^{\ell}\right\}$
Since $n^{2} \in R, R$ is nonempty.
The smallest possible is $k=1$.

- If $k=0$, we would have

$$
a_{0} T^{0}=0, \quad a_{0} \neq 0 .
$$

But $T^{0}=I$, a contradiction.

- If $k=1$, we would have

$$
a_{0} T^{0}+a_{1} T=0 \Longleftrightarrow T \text { is a scalar (a multiple of) } I
$$

If T is not scalar, $k \geq 2$.
Choose a minimal degree linear relation

$$
a_{k} T^{k}+a_{k-1} T^{k-1}+\ldots+a_{1} T+a_{0} I=0
$$

Divide by a_{k} to make it monic:

$$
T^{k}+b_{k-1} T^{k-1}+\ldots+b_{1} T+b_{0} I=0
$$

Define

$$
m(x)=x^{k}+b_{k-1} x^{k-1}+\ldots+b_{1} x+b_{0} I=0
$$

so $m(T)=0$.

We need

Lemma

Suppose $f(x)$ satisfies $\operatorname{deg}(f)<k$. Then

$$
f(T)=0 \Longleftrightarrow f(x)=0(=\text { the zero-polynomial }) .
$$

Proof. By definition, k is the smallest degree so that there is a nonzero polynomial satisfying $f(T)=0$.

Theorem

Suppose $0 \neq f(x) \in F[x]$ satisfies $f(T)=0$. Then $m(x) \mid f(x)$.
Proof. By the lemma, $\operatorname{deg}(f) \geq \operatorname{deg}(m)$. So we can divide f by m.

$$
f(x)=Q(x) m(x)+R(x)
$$

with $\operatorname{deg}(R(x))<\operatorname{deg}(m(x))$. Now evaluate

$$
f(T)=Q(T) m(T)+R(T)
$$

But $f(T)=m(T)=0$. Hence $R(T)=0$. But $\operatorname{deg}(R(x))<\operatorname{deg}(m(x))$, so $R(T)=0 \Longrightarrow R(x)=0$ by the lemma.

Corollary

$m(x)$ is unique.
Proof. Suppose $m_{1}(x)$ is another monic polynomial of degree k so that $m_{1}(T)=0$. Then $m(x) \mid m_{1}(x)$ so (since we have the same degree), $m_{1}(x)=c m(x)$. But since both $m(x)$ and $m_{1}(x)$ are monic, we have $c=1$.

Definition

$m(x)$ is called the miniminal polynomial of the linear transformation T. Sometimes we will write m_{T}.

Note: It's hard to compute-it is even hard to compute $k=\operatorname{deg}\left(m_{T}\right)$. Now let $A \in M_{n}(F)$. We can repeat the whole theory to define $m_{A}=$ the monic polynomial f of smallest degree such that $f(A)=0$.

Theorem

Suppose $T \in L(V, V), \mathscr{B}=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ is an ordered basis of V and $A=M(T)={ }_{\mathscr{B}}[T]_{\mathscr{B}}$.
Then

$$
m_{T}=m_{A}
$$

We will need

Lemma

Let $f(x) \in F[x], A, T, \mathscr{B}$ be as above. Then

$$
M(f(T))=f(A)
$$

Proof of Lemma. $f(x)=a_{m} x^{m}+a_{m-1} x^{m-1}+\ldots+a_{1} x+a_{0} I$. So

$$
f(T)=a_{k} T^{k}+a_{k-1} T^{k-1}+\ldots+a_{1} T+a_{0} I
$$

But M satisfies $\mathrm{M}(\mathrm{ST})=\mathrm{M}(\mathrm{S}) \mathrm{M}(\mathrm{T})$, so $M\left(T^{j}\right)=M(T)^{j}$ so

$$
\begin{aligned}
M(f(T)) & =M\left(a_{k} T^{k}+a_{k-1} T^{k-1}+\ldots+a_{1} T+a_{0} I\right) \\
& =M\left(a_{k} T^{k}\right)+M\left(a_{k-1} T^{k-1}\right)+\ldots+M\left(a_{1} T\right)+M\left(a_{0} I\right) \\
& =a_{k} M\left(T^{k}\right)+a_{k-1} M\left(T^{k-1}\right)+\ldots+a_{1} M(T)+a_{0} M(I) \\
& =a_{k} A^{k}+a_{k-1} A^{k-1}+\ldots+a_{1} A+a_{0} I=f(A) .
\end{aligned}
$$

Corollary

$$
f(T)=0 \Longleftrightarrow f(A)=0 .
$$

m_{T} is the monic nonzero polynomial of lowest degree in the space

$$
\mathcal{N}_{T}=\{f \in F[x]: f(T)=0\}
$$

m_{A} is the monic polynomial of lowest degree in the space

$$
\mathcal{N}_{A}=\{f \in F[x]: f(A)=0\}
$$

But we just saw that $\mathcal{N}_{T}=\mathcal{N}_{A}$ so the smallest degree monic polynomial in each of the subspaces is the same.

We now show that if a matrix A is similar to a matrix B (this means $B=P A P^{-1}$) then A and B have the same minimal polynomials.

Proposition

$$
m_{P A P^{-1}}(x)=m_{A}(x)
$$

Proof of the Proposition We will show

$$
\mathcal{N}_{A}=\mathcal{N}_{P A P^{-1}}
$$

Then the unique lowest lowest degree monic polynomial in in each space must be the same.

Suppose $f \in F[x]$. We wish to show

$$
\begin{equation*}
f\left(P B P^{-1}\right)=P f(B) P^{-1}, \text { for all } n \text { by } n \text { matrices } B . \tag{3}
\end{equation*}
$$

We first claim we have

$$
\begin{equation*}
\left(P B P^{-1}\right)^{k}=P B^{k} P^{-1} \tag{4}
\end{equation*}
$$

Indeed

$$
\left(P B P^{-1}\right)^{k}=\left(P B P^{-1}\right)\left(P B P^{-1}\right) \cdots\left(P B P^{-1}\right)
$$

But note that the k-1 adjacent P^{\prime} s and P^{-1} 's cancel and the claim follows.

Now we prove Equation (3). Suppose $f(x)=a_{k} x^{k}+a_{k-1} x^{k-1}+\cdots+a_{0}$. Then

$$
f\left(P B P^{-1}\right)=a_{k}\left(P B P^{-1}\right)^{k}+a_{k-1}\left(P B P^{-1}\right)^{k-1}+\cdots+a_{0} I .
$$

Apply the above claim to each of the first k terms on the right-hand side of the previous equation and use $P I P^{-1}=I$ to obtain

$$
f\left(P B P^{-1}\right)=a_{k} P B^{k} P^{-1}+a_{k-1} P B^{k-1} P^{-1}+\cdots+a_{0} P I P^{-1} .
$$

Now factor P from the left and P^{-1} from the right in the right-hand side of the peevious equation to obtain

$$
f\left(P B P^{-1}\right)=P f(B) P^{-1} .
$$

Now we can prove $\mathcal{N}_{A}=\mathcal{N}_{P A P^{-1}}$ and hence the Proposition. Indeed,

$$
f \in \mathcal{N}_{A} \Longleftrightarrow f(A)=0 \Longleftrightarrow P f(A) P^{-1}=0 \Longleftrightarrow f\left(P A P^{-1}\right)=0
$$

But $f\left(P A P^{-1}\right)=\Longleftrightarrow f \in \mathcal{N}_{P A P^{-1}}$. Hence

$$
\mathcal{N}_{A}=\mathcal{N}_{P A P^{-1}}
$$

and the Proposition follows.

