Lecture 18: The minimal Polynomial of a Linear Transformation

Subsituting a Linear Transformation into a Polynomial

Let V be a vector space over F of dimension n. $T \in L(V, V)$ and $f(x) \in F[x]$. We want to define $f(T) \in L(V, V)$.

Definition

If
$$f(x) = a_k x^k + a_{k-1} x^{k-1} + \ldots + a_1 x + a_0$$
 then

$$f(T) = a_k T^k + a_{k-1} T^{k-1} + \ldots + a_1 T + a_0 I$$

We could also evaluate at a square matrix A:

$$f(A) = a_k A^k + a_{k-1} A^{k-1} + \ldots + a_1 A + a_0 I$$

Proposition

The matrix of f(T) relative to the basis \mathscr{B} is f(A), where A is the matrix of T relative to the basis \mathscr{B} .

Let
$$\Phi_T: F\left[x\right] \longrightarrow L\left(V,\,V\right)$$
 be given by
$$\Phi_T(f) = f(T)$$

Proposition

 Φ_T is is linear and satisfies

$$\Phi_T(fg) = \Phi_T(f)\Phi_T(g). \tag{1}$$

.

 Φ_T is not onto (for n strictly greater than 1) and has an infinite dimensional kernel (null-space).

Proof. It is clear that Φ_T is linear. We first prove Equation (1). The left-hand side of Equation (1) is $\Phi_T(fg) = (fg)(T)$ and the right-hand side of Equation (1) is f(T)g(T). So we must prove that (fg)(T) = f(T)g(T). Suppose $f(x) = \sum_{i=0}^{k} a_i x^i$ and $g(x) = \sum_{j=0}^{\ell} a_j x^j$. Then

$$(fg)(x) = \sum_{m=0}^{k+\ell} \left(\sum_{i,j:i+j=m} a_i b_j\right) x^m. \tag{2}$$

We continue the proof of the Proposition.

From Equation (2) we obtain

$$(fg)(T) = \sum_{m=0}^{k+\ell} \left(\sum_{i,j:i+j=m} a_i b_j\right) T^m.$$

But $f(T) = \sum_{i=0}^k a_i T^i$ and $g(T) = \sum_{j=0}^\ell a_j T^j$ and hence

$$f(T)g(T) = \sum_{m=0}^{k+\ell} \left(\sum_{i,j:i+j=m} a_i b_j\right) T^m = fg(T).$$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

Now we prove that Φ_T is not onto. Note that

$$f(T)g(T) = (fg)(T) = (gf)(T) = g(T)f(T).$$

So any two elements in the image of Φ commute. So take two non-commuting elements in L(V, V) (we need n > 1 to do this.) They cannot both be in the image of Φ_T .

イロト 不得 トイヨト イヨト

Ξ.

We next prove that Φ_T has a nonzero kernel - in fact we show how to construct elements of that kernel. Take any subset $\{f_1, f_2, \cdots, f_{n^2+1}\}$ of $n^2 + 1$ elements of F[x] (e.g. $\{1, x, x^2, \cdots, x^{n^2}\}$). Then the set $\{f_1(T), f_2(T), \cdots, f_{n^2+1}(T)\}$ is a subset of L(V, V) containing $n^2 + 1$ elements. But the dimension of L(V, V) is n^2 so there must be a linear relation among the elements of this set.

Hence there is a relation

$$\sum_{i=1}^{n^2+1} c_i f_i(T) = 0, \quad c_i \neq 0.$$

Then $\sum_{i=1}^{n^2+1} c_i f_i$ is a nonzero element in $\operatorname{Ker}(\Phi_T)$. So we have proved $\operatorname{Ker}(\Phi_T)$ is nonzero. To see that it is infinite dimensional see the remark on the next slide.

Remark: Why does Φ_T have an infinite - dimensional nullspace?

The dimension of F[x] is infinite dimensional and the dimension of L(V, V). Any linear map from an infinite dimensional space to a finite dimensional space has an infinite dimensional kernel.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シのので

We just saw $I, T, T^2, \ldots, T^{n^2}$ must be linearly dependent since $\dim L(V, V) = n^2$. Hence there exist scalars $a_0, a_1, \ldots, a_{n^2}$ so that

$$a_0I + a_1T + \ldots + a_{n^2}T^{n^2} = 0.$$

So $f(x) = a_0 I + a_1 x + \ldots + a_{n^2} x^{n^2}$ is in $\text{Ker}(\Phi_T)$. In other words, there is a linear relation between the power $I, T, T^2, \ldots, T^{n^2}$

Remark: We just showed there is always always a linear relation between the powers

$$I, T, T^2, \ldots, T^{n^2}.$$

We will now see that often we can get a even smaller power degree relation.

What is the smallest power k so that there is a nontrivial linear relation among I, T, T^2, \ldots, T^k ?

First-there is a unique such k. Let

 $R = \{\ell : \text{ there is a linear relation among the powers } I, T, T^2, \dots, T^\ell\}$

Since $n^2 \in R$, R is nonempty.

The smallest possible is k = 1.

• If k = 0, we would have

$$a_0 T^0 = 0, \quad a_0 \neq 0.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シのので

But $T^0 = I$, a contradiction.

• If k = 1, we would have

 $a_0T^0 + a_1T = 0 \iff T$ is a scalar (a multiple of)*I*.

If T is not scalar, $k \ge 2$.

Choose a minimal degree linear relation

$$a_k T^k + a_{k-1} T^{k-1} + \ldots + a_1 T + a_0 I = 0$$

Divide by a_k to make it monic:

$$T^{k} + b_{k-1}T^{k-1} + \ldots + b_{1}T + b_{0}I = 0$$

Define

$$m(x) = x^{k} + b_{k-1}x^{k-1} + \ldots + b_{1}x + b_{0}I = 0$$

so m(T) = 0.

We need

Lemma

Suppose f(x) satisfies deg(f) < k. Then

$$f(T) = 0 \iff f(x) = 0 (= the zero-polynomial).$$

Proof. By definition, k is the smallest degree so that there is a nonzero polynomial satisfying f(T) = 0.

Theorem

Suppose $0 \neq f(x) \in F[x]$ satisfies f(T) = 0. Then m(x)|f(x).

Proof. By the lemma, $deg(f) \ge deg(m)$. So we can divide f by m.

f(x) = Q(x)m(x) + R(x)

with $\deg(R(x)) < \deg(m(x))$. Now evaluate

$$f(T) = Q(T)m(T) + R(T)$$

But f(T) = m(T) = 0. Hence R(T) = 0. But $\deg(R(x)) < \deg(m(x))$, so $R(T) = 0 \Longrightarrow R(x) = 0$ by the lemma.

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへで

Corollary

m(x) is unique.

Proof. Suppose $m_1(x)$ is another monic polynomial of degree k so that $m_1(T) = 0$. Then $m(x)|m_1(x)$ so (since we have the same degree), $m_1(x) = cm(x)$. But since both m(x) and $m_1(x)$ are monic, we have c = 1.

Definition

m(x) is called the miniminal polynomial of the linear transformation T. Sometimes we will write m_T .

Note: It's hard to compute-it is even hard to compute $k = \text{deg}(m_T)$. Now let $A \in M_n(F)$. We can repeat the whole theory to define

 m_A = the monic polynomial f of smallest degree such that f(A) = 0.

Theorem

Suppose $T \in L(V, V)$, $\mathscr{B} = (b_1, b_2, ..., b_n)$ is an ordered basis of Vand $A = M(T) = {}_{\mathscr{B}}[T]_{\mathscr{B}}$. Then

 $m_T = m_A$

We will need

Lemma

Let $f(x) \in F[x]$, A, T, \mathscr{B} be as above. Then

 $M\left(f(T)\right) = f(A).$

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Proof of Lemma. $f(x) = a_m x^m + a_{m-1} x^{m-1} + \ldots + a_1 x + a_0 I$. So

$$f(T) = a_k T^k + a_{k-1} T^{k-1} + \ldots + a_1 T + a_0 I$$

But M satisfies $\mathsf{M}(\mathsf{ST}){=}$ $\mathsf{M}(\mathsf{S})\mathsf{M}(\mathsf{T}),$ so $M(T^j)=M(T)^j$ so

$$M(f(T)) = M(a_k T^k + a_{k-1} T^{k-1} + \ldots + a_1 T + a_0 I)$$

= $M(a_k T^k) + M(a_{k-1} T^{k-1}) + \ldots + M(a_1 T) + M(a_0 I)$
= $a_k M(T^k) + a_{k-1} M(T^{k-1}) + \ldots + a_1 M(T) + a_0 M(I)$
= $a_k A^k + a_{k-1} A^{k-1} + \ldots + a_1 A + a_0 I = f(A)$. \Box

Corollary

$$f(T) = 0 \Longleftrightarrow f(A) = 0.$$

 m_T is the monic nonzero polynomial of lowest degree in the space

$$\mathcal{N}_T = \{ f \in F[x] : f(T) = 0 \}$$

 m_A is the monic polynomial of lowest degree in the space

$$\mathcal{N}_A = \{ f \in F[x] : f(A) = 0 \}$$

But we just saw that $N_T = N_A$ so the smallest degree monic polynomial in each of the subspaces is the same.

We now show that if a matrix A is similar to a matrix B (this means $B = PAP^{-1}$) then A and B have the same minimal polynomials.

Proposition

 $m_{PAP^{-1}}(x) = m_A(x)$

Proof of the Proposition We will show

$$\mathcal{N}_A = \mathcal{N}_{PAP^{-1}}.$$

Then the unique lowest lowest degree monic polynomial in in each space must be the same.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シのので

Suppose $f \in F[x]$. We wish to show

$$f(PBP^{-1}) = Pf(B)P^{-1}$$
, for all n by n matrices B . (3)

We first claim we have

$$(PBP^{-1})^k = PB^k P^{-1} (4)$$

イロト イヨト イヨト イヨト

= 990

Indeed

$$(PBP^{-1})^k = (PBP^{-1})(PBP^{-1})\cdots(PBP^{-1})$$

But note that the k-1 adjacent $P{\rm 's}$ and $P^{-1}{\rm 's}$ cancel and the claim follows.

Now we prove Equation (3). Suppose

$$f(x) = a_k x^k + a_{k-1} x^{k-1} + \dots + a_0$$
. Then
 $f(PBP^{-1}) = a_k (PBP^{-1})^k + a_{k-1} (PBP^{-1})^{k-1} + \dots + a_0 I.$

Apply the above claim to each of the first k terms on the right-hand side of the previous equation and use $PIP^{-1} = I$ to obtain

$$f(PBP^{-1}) = a_k PB^k P^{-1} + a_{k-1} PB^{k-1} P^{-1} + \dots + a_0 PIP^{-1}.$$

Now factor P from the left and P^{-1} from the right in the right-hand side of the peevious equation to obtain

$$f(PBP^{-1}) = Pf(B)P^{-1}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シのので

Now we can prove $\mathcal{N}_A = \mathcal{N}_{PAP^{-1}}$ and hence the Proposition. Indeed,

$$f \in \mathcal{N}_A \iff f(A) = 0 \iff Pf(A)P^{-1} = 0 \iff f(PAP^{-1}) = 0.$$

But $f(PAP^{-1}) = \iff f \in \mathcal{N}_{PAP^{-1}}$. Hence
 $\mathcal{N}_A = \mathcal{N}_{PAP^{-1}}$

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

and the Proposition follows.