
Lecture 18: The minimal Polynomial of a Linear
Transformation



Subsituting a Linear Transformation into a Polynomial

Let V be a vector space over F of dimension n. T ∈ L (V, V ) and
f(x) ∈ F [x]. We want to define f(T ) ∈ L (V, V ).

Definition

If f(x) = akx
k + ak−1x

k−1 + . . . + a1x + a0 then

f(T ) = akT
k + ak−1T

k−1 + . . . + a1T + a0I

We could also evaluate at a square matrix A:

f(A) = akA
k + ak−1A

k−1 + . . . + a1A + a0I

Proposition

The matrix of f(T ) relative to the basis B is f(A), where A is the
matrix of T relative to the basis B.



Let ΦT : F [x] −→ L (V, V ) be given by

ΦT (f) = f(T ).

Proposition

ΦT is is linear and satisfies

ΦT (fg) = ΦT (f)ΦT (g). (1)

ΦT is not onto (for n strictly greater than 1) and has an infinite
dimensional kernel (null-space).

Proof. It is clear that ΦT is linear. We first prove Equation (1). The
left-hand side of Equation (1) is ΦT (fg) = (fg)(T ) and the right-hand
side of Equation (1) is f(T)g(T). So we must prove that

(fg)(T ) = f(T )g(T ). Suppose f(x) =
∑k

i=0 aix
i and

g(x) =
∑`

j=0 ajx
j . Then

(fg)(x) =

k+∑̀
m=0

( ∑
i,j:i+j=m

aibj
)
xm. (2)



We continue the proof of the Proposition.

From Equation (2) we obtain

(fg)(T ) =

k+∑̀
m=0

(
∑

i,j:i+j=m

aibj) T
m.

But f(T ) =
∑k

i=0 aiT
i and g(T ) =

∑`
j=0 ajT

j and hence

f(T )g(T ) =

k+∑̀
m=0

(
∑

i,j:i+j=m

aibj) T
m = fg(T ).



Now we prove that ΦT is not onto. Note that

f(T )g(T ) = (fg)(T ) = (gf)(T ) = g(T )f(T ).

So any two elements in the image of Φ commute. So take two
non-commuting elements in L (V, V ) (we need n > 1 to do this.) They
cannot both be in the image of ΦT .



We next prove that ΦT has a nonzero kernel - in fact we show how to
construct elements of that kernel. Take any subset {f1, f2, · · · , fn2+1} of

n2 + 1 elements of F [x] (e.g. {1, x, x2, · · · , xn2}). Then the set
{f1(T ), f2(T ), · · · , fn2+1(T )} is a subset of L (V, V ) containing n2 + 1
elements. But the dimension of L (V, V ) is n2 so there must be a linear
relation among the elements of this set.
Hence there is a relation

n2+1∑
i=1

cifi(T ) = 0, ci 6= 0.

Then
n2+1∑
i=1

cifi is a nonzero element in Ker(ΦT). So we have proved

Ker(ΦT) is nonzero. To see that it is infinite dimensional see the remark
on the next slide.



Remark:Why does ΦT have an infinite - dimensional nullspace?
The dimension of F[x] is infinite dimensional and the dimension of
L (V, V ). Any linear map from an infinite dimensional space to a finite
dimensional space has an infinite dimensional kernel.



The Minimal Polynomial

We just saw I, T, T 2, . . . , Tn2

must be linearly dependent since
dimL (V, V ) = n2. Hence there exist scalars a0, a1, . . . , an2 so that

a0I + a1T + . . . + an2Tn2

= 0.

So f(x) = a0I + a1x+ . . .+ an2xn2

is in Ker(ΦT). In other words, there

is a linear relation between the power I, T, T 2, . . . , Tn2

Remark: We just showed there is always always a linear relation between
the powers

I, T, T 2, . . . , Tn2

.

We will now see that often we can get a even smaller power degree
relation.



Fundamental Question

What is the smallest power k so that there is a nontrivial linear relation
among I, T, T 2, . . . , T k?

First–there is a unique such k. Let

R =
{
` : there is a linear relation among the powers I, T, T 2, . . . , T `

}
Since n2 ∈ R, R is nonempty.

The smallest possible is k = 1.

If k = 0, we would have

a0T
0 = 0, a0 6= 0.

But T 0 = I, a contradiction.



If k = 1, we would have

a0T
0 + a1T = 0⇐⇒ T is a scalar ( a multiple of )I.

If T is not scalar, k ≥ 2.

Choose a minimal degree linear relation

akT
k + ak−1T

k−1 + . . . + a1T + a0I = 0

Divide by ak to make it monic:

T k + bk−1T
k−1 + . . . + b1T + b0I = 0

Define
m(x) = xk + bk−1x

k−1 + . . . + b1x + b0I = 0

so m(T ) = 0.



We need

Lemma

Suppose f(x) satisfies deg (f) < k. Then

f(T ) = 0⇐⇒ f(x) = 0(= the zero-polynomial).

Proof. By definition, k is the smallest degree so that there is a nonzero
polynomial satisfying f(T ) = 0.



Theorem

Suppose 0 6= f(x) ∈ F [x] satisfies f(T ) = 0. Then m(x)|f(x).

Proof. By the lemma, deg (f) ≥ deg (m). So we can divide f by m.

f(x) = Q(x)m(x) + R(x)

with deg (R(x)) < deg (m(x)). Now evaluate

f(T ) = Q(T )m(T ) + R(T )

But f(T ) = m(T ) = 0. Hence R(T ) = 0. But deg (R(x)) < deg (m(x)),
so R(T ) = 0 =⇒ R(x) = 0 by the lemma.



Corollary

m(x) is unique.

Proof. Suppose m1(x) is another monic polynomial of degree k so that
m1(T ) = 0. Then m(x)|m1(x) so (since we have the same degree),
m1(x) = cm(x). But since both m(x) and m1(x) are monic, we have
c = 1.

Definition

m(x) is called the miniminal polynomial of the linear transformation T .
Sometimes we will write mT .

Note: It’s hard to compute–it is even hard to compute k = deg (mT ).
Now let A ∈Mn(F ). We can repeat the whole theory to define

mA = the monic polynomial f of smallest degree such that f(A) = 0.



Theorem

Suppose T ∈ L (V, V ), B = (b1, b2, . . . , bn) is an ordered basis of V
and A = M(T ) = [T ]B B.
Then

mT = mA

We will need

Lemma

Let f(x) ∈ F [x], A, T , B be as above. Then

M (f(T )) = f(A).



Proof of Lemma. f(x) = amxm + am−1x
m−1 + . . . + a1x + a0I . So

f(T ) = akT
k + ak−1T

k−1 + . . . + a1T + a0I

But M satisfies M(ST)= M(S)M(T), so M(T j) = M(T )j so

M (f(T )) = M(akT
k + ak−1T

k−1 + . . . + a1T + a0I)

= M(akT
k) + M(ak−1T

k−1) + . . . + M(a1T ) + M(a0I)

= akM(T k) + ak−1M(T k−1) + . . . + a1M(T ) + a0M(I)

= akA
k + ak−1A

k−1 + . . . + a1A + a0I = f(A).

Corollary

f(T ) = 0⇐⇒ f(A) = 0.



mT is the monic nonzero polynomial of lowest degree in the space

NT = {f ∈ F [x] : f(T ) = 0}

mA is the monic polynomial of lowest degree in the space

NA = {f ∈ F [x] : f(A) = 0}

But we just saw that NT = NA so the smallest degree monic polynomial
in each of the subspaces is the same.



We now show that if a matrix A is similar to a matrix B (this means
B = PAP−1) then A and B have the same minimal polynomials.

Proposition

mPAP−1(x) = mA(x)

Proof of the Proposition We will show

NA = NPAP−1 .

Then the unique lowest lowest degree monic polynomial in in each space
must be the same.



Suppose f ∈ F [x]. We wish to show

f(PBP−1) = Pf(B)P−1, for all n by n matrices B. (3)

We first claim we have

(PBP−1)k = PBkP−1 (4)

Indeed
(PBP−1)k = (PBP−1)(PBP−1) · · · (PBP−1)

But note that the k-1 adjacent P ’s and P−1’s cancel and the claim
follows.



Now we prove Equation (3). Suppose
f(x) = akx

k + ak−1x
k−1 + · · ·+ a0. Then

f(PBP−1) = ak(PBP−1)k + ak−1(PBP−1)k−1 + · · ·+ a0I.

Apply the above claim to each of the first k terms on the right-hand side
of the previous equation and use PIP−1 = I to obtain

f(PBP−1) = akPBkP−1 + ak−1PBk−1P−1 + · · ·+ a0PIP−1.

Now factor P from the left and P−1 from the right in the right-hand side
of the peevious equation to obtain

f(PBP−1) = Pf(B)P−1.



Now we can prove NA = NPAP−1 and hence the Proposition. Indeed,

f ∈ NA ⇐⇒ f(A) = 0 ⇐⇒ Pf(A)P−1 = 0 ⇐⇒ f(PAP−1) = 0.

But f(PAP−1) =⇐⇒ f ∈ NPAP−1 . Hence

NA = NPAP−1

and the Proposition follows.


