Lecture 26 Random Intervals and Confidence Intervals

1 The definition of a random interval

Let X_{1} and X_{2} be random variables defined on the same sample space S such that $X_{1}(s)<X_{2}(s)$ for all $s \in S$. Then $I=\left(X_{1}, X_{2}\right)$ is called an (open) random interval. For each $s \in S$ we obtain an ordinary interval $I(s)=\left(X_{1}(s), X_{2}(s)\right)$. Thus we may think of a random interval as an interval-valued random variable defined on S. The point of this lecture is that confidence intervals are random intervals.

Example Suppose X is a random variable defined on S and a is a positive number then $I=(X-a, X+a)$ is the random interval with random center X and (deterministic) width $2 a$. More generally the random interval $I=(X-Y, X+Y)$ has random center X and random width $2 Y$.

2 Probabilities connected with random intervals

Now consider a random interval interval $I=\left(X_{1}, X_{2}\right)$ and a fixed number a. We want to compute the probability that the random interval I will contain (or cover) the fixed number a. But this is just the probability that a will be between X_{1} and X_{2} hence we have

$$
\begin{equation*}
P\left(a \in\left(X_{1}, X_{2}\right)\right)=P\left(X_{1}<a, a<X_{2}\right)=P\left(X_{1}<a, X_{2}>a\right) \tag{1}
\end{equation*}
$$

The probability on the right is the probability that the random variable X_{1} will be less than the number a and the random variable X_{2} will be greater than the number a. This is just a random variable computation of the type we have done many times in the course already. Technically we should think of the formula (1) as the definition
of the probability that a will be inside I but this is a technical point - it is the only reasonable definition.

Warning The probability $P\left(X_{1}<a, X_{2}>a\right)$ in equation (1) is almost never equal to the product probability $P\left(X_{1}<a\right) \cdot P\left(X_{2}>a\right)$ because X_{1} and X_{2} are almost never independent. For example in the above problem $X_{1}=Z-1$ and $X_{2}=Z+1$ so $X_{2}=X_{1}+2$ so X_{1} and X_{2} are perfectly correlated and in particular not independent.

We will conclude with an example of how to compute such probabilities.

Problem Suppose that Z has standard normal distribution. Compute $P(0 \in(Z-$ $1, Z+1)$).

Solution According to the equation (1) we have

$$
P(0 \in(Z-1, Z+1))=P(Z-1<0,0<Z+1) .
$$

But
$P(Z-1<0,0<Z+1)=P(Z<1,-1<Z)=P(-1<Z<1)=P(-1 \leq Z \leq 1)$.
By the "handy formula" we have

$$
P(-1 \leq Z \leq 1)=2 \Phi(1)-1=2(.8413)-1=.6826
$$

3 In which we go completely random

In the first part of the course we were given a random variable X and we computed probabilities like $P(a \leq X \leq b)$. But we have an equality of events

$$
(a \leq X \leq b)=(X \in(a, b))
$$

so

$$
P(a \leq X \leq b)=P(X \in(a, b))
$$

In other words we were computing the probability that a random variable was in an ordinary interval. We have just learned how to compute the probability that a fixed real number is in a random interval e.g. $P(0 \in(Z-1, Z+1))$. It remains to "go completely random" and learn how to compute the probability that a random variable is in a random interval. Actually we can already do this. Let's do an example.

Problem. Suppose Z has standard normal distribution. Compute $P(2 Z \in(Z-1, Z+$ 1)).

Solution. We have

$$
\begin{aligned}
& P(2 Z \in(Z-1, Z+1)=P(Z-1 \leq 2 Z, 2 Z \leq Z+1)=P(-1 \leq Z, Z \leq 1) \\
& =P(-1 \leq Z \leq 1)=2 \Phi(1)-1=.6826
\end{aligned}
$$

Remark. In the above we had to do a little manipulation of inequalities, namely $Z-1 \leq 2 Z \Longleftrightarrow-1 \leq Z$ (subtract Z from each side or "bring the Z from the left-hand side to the right-hand side") and $2 Z \leq Z+1 \Longleftrightarrow Z \leq 1$ (again subtract Z from each side or bring the Z from the right-hand side to the left-hand side").

4 The definition of a confidence (random) interval

Suppose now that $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample from a population whose probability mass function (or probability density function) depends on an unknown parameter θ. Let α be a real number between 0 and 1 . Then a $100(1-\alpha) \%$ confidence interval for the unknown parameter α is a random interval $I=\left(W_{1}, W_{2}\right)$ where $W_{1}=h\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ and $W_{2}=g\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ are statistics such that

$$
\begin{equation*}
P\left(\theta \in\left(W_{1}, W_{2}\right)\right)=1-\alpha \tag{2}
\end{equation*}
$$

If we hadn't given the definition in Equation (1) we wouldn't have been able to make the correct definition in Equation (2). If we have an actual sample $x_{1}, x_{2}, \ldots, x_{n}$ then we plug $x_{1}, x_{2}, \ldots, x_{n}$ into the functions h and g to get numbers w_{1} and w_{2} and an ordinary interval $\left(w_{1}, w_{2}\right)$. This ordinary interval is the observed value of the confidence interval $I=\left(W_{1}, W_{2}\right)$ on the sample $x_{1}, x_{2}, \ldots, x_{n}$. This actual interval is also called a confidence interval for θ. It is important to keep the difference between the confidence random interval and its obseved value on a sample firmly in mind.

The rest of the course will be concerned with finding formulas for confidence intervals in various situations - e.g. a 90% confidence interval for the mean in a normal distribution. In each case we will verify that the equation (2) is satisfied. It is imperative that you all learn how to do these verifications - these will be "good citizen" problems.

