The confidence interval formulas for the mean in an normal distribution when σ is known

December 9, 2005

1 Introduction

In this lecture we will derive the formulas for the symmetric two-sided confidence interval and the lower-tailed confidence intervals for the mean in a normal distribution when the variance σ^2 is known. At the end of the lecture I assign the problem of proving the formula for the upper-tailed confidence interval as HW 12. We will need the following theorem from probability theory that gives the distribution of the statistic \overline{X} - the point estimator for μ .

Suppose that $X_1, X_2, ..., X_n$ is a random sample from a normal distribution with mean μ and variance σ^2 . We assume μ is unknown but σ^2 is known. We will need the following theorem from Probability Theory.

Theorem 1. \overline{X} has normal distribution with mean μ and variance σ^2/n . Hence the random variable $Z = (\overline{X} - \mu)/\frac{\sigma}{\sqrt{n}}$ has standard normal distribution.

2 The two-sided confidence interval formula

Now we can prove the theorem from statistics giving the required confidence interval for μ . Note that it is symmetric around \overline{X} . There are also asymmetric two-sided confidence intervals. We will discuss them later. This is one of the basic theorems that you have to learn how to prove.

Theorem 2. The random interval $(\overline{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \overline{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}})$ is a $100(1-\alpha)\%$ -confidence interval for μ .

Proof. We are required to prove

$$P(\mu \in (\overline{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \overline{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}})) = 1 - \alpha.$$

We have

$$LHS = P(\overline{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} < \mu, \mu < \overline{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}) = P(\overline{X} - \mu < z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, -z_{\alpha/2} \frac{\sigma}{\sqrt{n}} < \overline{X} - \mu)$$

$$= P(\overline{X} - \mu < z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \overline{X} - \mu > -z_{\alpha/2} \frac{\sigma}{\sqrt{n}})$$

$$= P((\overline{X} - \mu) / \frac{\sigma}{\sqrt{n}} < z_{\alpha/2}, (\overline{X} - \mu) / \frac{\sigma}{\sqrt{n}} > -z_{\alpha/2})$$

$$= P(Z < z_{\alpha/2}, Z > -z_{\alpha/2}) = P(-z_{\alpha/2} < Z < z_{\alpha/2}) = 1 - \alpha$$

To prove the last equality draw a picture.

Once we have an actual sample x_1, x_2, \ldots, x_n we obtain the observed value \overline{x} for the random variable \overline{X} and the observed value $(\overline{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \overline{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}})$ for the confidence (random) interval $(\overline{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \overline{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}})$. The observed value of the confidence (random) interval is also called the two-sided $100(1-\alpha)\%$ confidence interval for μ .

3 The lower-tailed confidence interval

In this section we will give the formula for the lower-tailed confidence interval for μ .

Theorem 3. The random interval $(-\infty, \overline{X} + z_{\alpha} \frac{\sigma}{\sqrt{n}})$ is a $100(1-\alpha)\%$ -confidence interval for μ .

Proof. We are required to prove

$$P(\mu \in (-\infty, \overline{X} + z_{\alpha} \frac{\sigma}{\sqrt{n}})) = 1 - \alpha.$$

We have

$$LHS = P(\mu < \overline{X} + z_{\alpha} \frac{\sigma}{\sqrt{n}}) = P(-z_{\alpha} \frac{\sigma}{\sqrt{n}} < \overline{X} - \mu)$$

$$= P(-z_{\alpha} < (\overline{X} - \mu) / \frac{\sigma}{\sqrt{n}})$$

$$= P(-z_{\alpha} < Z)$$

$$= 1 - \alpha$$

To prove the last equality draw a picture - I want you to draw the picture on tests and the homework.

Once we have an actual sample x_1, x_2, \ldots, x_n we obtain the observed value \overline{x} for the random variable \overline{X} and the observed value $(-\infty, \overline{x} + z_{\alpha} \frac{\sigma}{\sqrt{n}})$ for the confidence (random) interval $(-\infty, \overline{X} + z_{\alpha} \frac{\sigma}{\sqrt{n}})$. The observed value of the confidence (random) interval is also called the lower-tailed $100(1-\alpha)\%$ confidence interval for μ .

The number random variable $\overline{X} + z_{\alpha} \frac{\sigma}{\sqrt{n}}$ or its observed value $\overline{x} + z_{\alpha} \frac{\sigma}{\sqrt{n}}$ is often called a confidence *upper bound* for μ because

$$P(\mu < \overline{X} + z_{\alpha} \frac{\sigma}{\sqrt{n}}) = 1 - \alpha.$$

4 The upper-tailed confidence interval for μ

Homework 12 (to be handed in on Monday, Nov.28) is to prove the following theorem.

Theorem 4. The random interval $(\overline{X} - z_{\alpha} \frac{\sigma}{\sqrt{n}}, \infty)$ is a $100(1 - \alpha)\%$ confidence interval for μ .