The confidence interval formulas for the mean in an normal distribution when σ is unknown

December 7, 2005

1 Introduction

In this lecture we will derive the formulas for the symmetric two-sided confidence interval and the lower-tailed confidence intervals for the mean in a normal distribution when the variance σ^{2} is unknown. At the end of the lecture I assign the problem of proving the formula for the upper-tailed confidence interval. We will need the following theorem from probability theory. Recall that \bar{X} is the sample mean (the point estimator for the populations mean μ) and S^{2} is the sample variance, the point estimator for the unknown population variance σ^{2}.
We will need the following theorem from Probability Theory.
Theorem 1. $(\bar{X}-\mu) / \frac{S}{\sqrt{n}}$ has t-distribution with $n-1$ degrees of freedom.

2 The two-sided confidence interval formula

Now we can prove the theorem from statistics giving the required confidence interval for μ. Note that it is symmetric around \bar{X}. There are also asymmetric two-sided confidence intervals. We will discuss them later. This is one of the basic theorems that you have to learn how to prove.
Theorem 2. The random interval $T=\left(\bar{X}-t_{\alpha / 2, n-1} \frac{S}{\sqrt{n}}, \bar{X}+t_{\alpha / 2, n-1} \frac{S}{\sqrt{n}}\right)$ is a $100(1-\alpha) \%$-confidence interval for μ.

Proof. We are required to prove

$$
P\left(\mu \in\left(\bar{X}-t_{\alpha / 2, n-1} \frac{S}{\sqrt{n}}, \bar{X}+t_{\alpha / 2, n-1} \frac{S}{\sqrt{n}}\right)\right)=1-\alpha .
$$

We have

$$
\begin{aligned}
L H S & =P\left(\bar{X}-t_{\alpha / 2, n-1} \frac{S}{\sqrt{n}}<\mu, \mu<\bar{X}+t_{\alpha / 2, n-1} \frac{S}{\sqrt{n}}\right) \\
& =P\left(\bar{X}-\mu<t_{\alpha / 2, n-1} \frac{S}{\sqrt{n}},-t_{\alpha / 2, n-1} \frac{S}{\sqrt{n}}<\bar{X}-\mu\right) \\
& =P\left(\bar{X}-\mu<t_{\alpha / 2, n-1} \frac{S}{\sqrt{n}}, \bar{X}-\mu>-t_{\alpha / 2, n-1} \frac{S}{\sqrt{n}}\right) \\
& =P\left((\bar{X}-\mu) / \frac{S}{\sqrt{n}}<t_{\alpha / 2, n-1},(\bar{X}-\mu) / \frac{S}{\sqrt{n}}>-t_{\alpha / 2, n-1}\right) \\
& =P\left(T<t_{\alpha / 2, n-1}, T>-t_{\alpha / 2, n-1}\right)=P\left(-t_{\alpha / 2, n-1}<T<t_{\alpha / 2, n-1}\right)=1-\alpha
\end{aligned}
$$

To prove the last equality draw a picture.
Once we have an actual sample $x_{1}, x_{2}, \ldots, x_{n}$ we obtain the observed value \bar{x} for the random variable \bar{X} and the observed value s for the random variable S. We obtain the observed value (an ordinary interval) ($\bar{x}-t_{\alpha / 2, n-1} \frac{s}{\sqrt{n}}, \bar{x}+t_{\alpha / 2, n-1} \frac{s}{\sqrt{n}}$) for the confidence (random) interval ($\bar{X}-t_{\alpha / 2, n-1} \frac{S}{\sqrt{n}}, \bar{X}+t_{\alpha / 2, n-1} \frac{S}{\sqrt{n}}$) The observed value of the confidence (random) interval is also called the two-sided $100(1-\alpha) \%$ confidence interval for μ.

3 The lower-tailed confidence interval

In this section we will give the formula for the lower-tailed confidence interval for μ.
Theorem 3. The random interval $\left(-\infty, \bar{X}+t_{\alpha, n-1} \frac{S}{\sqrt{n}}\right)$ is a $100(1-\alpha) \%$-confidence interval for μ.
Proof. We are required to prove

$$
P\left(\mu \in\left(-\infty, \bar{X}+t_{\alpha, n-1} \frac{S}{\sqrt{n}}\right)\right)=1-\alpha
$$

We have

$$
\begin{aligned}
L H S & =P\left(\mu<\bar{X}+t_{\alpha, n-1} \frac{S}{\sqrt{n}}\right)=P\left(-t_{\alpha, n-1} \frac{S}{\sqrt{n}}<\bar{X}-\mu\right) \\
& =P\left(-t_{\alpha, n-1}<(\bar{X}-\mu) / \frac{S}{\sqrt{n}}\right) \\
& =P\left(-t_{\alpha, n-1}<T\right) \\
& =1-\alpha
\end{aligned}
$$

To prove the last equality draw a picture - I want you to draw the picture on tests and the homework.

Once we have an actual sample $x_{1}, x_{2}, \ldots, x_{n}$ we obtain the observed value \bar{x} for the random variable \bar{X} the observed value s for the random variable S and the observed value $\left(-\infty, \bar{x}+t_{\alpha, n-1} \frac{s}{\sqrt{n}}\right)$ for the confidence (random) interval $\left(-\infty, \bar{X}+t_{\alpha, n-1} \frac{S}{\sqrt{n}}\right)$. The observed value of the confidence (random) interval is also called the lower-tailed $100(1-\alpha) \%$ confidence interval for μ.
The random variable $\bar{X}+t_{\alpha, n-1} \frac{S}{\sqrt{n}}$ or its observed value the number $\bar{x}+t_{\alpha, n-1} \frac{s}{\sqrt{n}}$ is often called a confidence upper bound for μ because

$$
P\left(\mu<\bar{X}+t_{\alpha, n-1} \frac{S}{\sqrt{n}}\right)=1-\alpha
$$

4 The upper-tailed confidence interval for μ

Problem Prove the following theorem.
Theorem 4. The random interval $\left(\bar{X}-t_{\alpha, n-1} \frac{S}{\sqrt{n}}, \infty\right)$ is a $100(1-\alpha) \%$ confidence interval for μ.

The random variable $\bar{X}-t_{\alpha, n-1} \frac{S}{\sqrt{n}}$ or its observed value the number $\bar{x}-t_{\alpha, n-1} \frac{s}{\sqrt{n}}$ is often called a confidence lower bound for μ because

$$
P\left(\mu>\bar{X}-t_{\alpha, n-1} \frac{S}{\sqrt{n}}\right)=1-\alpha .
$$

