The confidence interval formulas for the mean in an normal distribution when σ is unknown

December 7, 2005

1 Introduction

In this lecture we will derive the formulas for the symmetric two-sided confidence interval and the lower-tailed confidence intervals for the mean in a normal distribution when the variance σ^2 is unknown. At the end of the lecture I assign the problem of proving the formula for the upper-tailed confidence interval. We will need the following theorem from probability theory. Recall that \overline{X} is the sample mean (the point estimator for the populations mean μ) and S^2 is the sample variance, the point estimator for the unknown population variance σ^2 .

We will need the following theorem from Probability Theory.

Theorem 1. $(\overline{X} - \mu) / \frac{S}{\sqrt{n}}$ has t-distribution with n-1 degrees of freedom.

2 The two-sided confidence interval formula

Now we can prove the theorem from statistics giving the required confidence interval for μ . Note that it is symmetric around \overline{X} . There are also asymmetric two-sided confidence intervals. We will discuss them later. This is one of the basic theorems that you have to learn how to prove.

Theorem 2. The random interval $T = (\overline{X} - t_{\alpha/2,n-1}\frac{S}{\sqrt{n}}, \overline{X} + t_{\alpha/2,n-1}\frac{S}{\sqrt{n}})$ is a $100(1-\alpha)\%$ -confidence interval for μ .

Proof. We are required to prove

$$P(\mu \in (\overline{X} - t_{\alpha/2, n-1} \frac{S}{\sqrt{n}}, \overline{X} + t_{\alpha/2, n-1} \frac{S}{\sqrt{n}})) = 1 - \alpha$$

We have

$$LHS = P(\overline{X} - t_{\alpha/2,n-1}\frac{S}{\sqrt{n}} < \mu, \mu < \overline{X} + t_{\alpha/2,n-1}\frac{S}{\sqrt{n}})$$

= $P(\overline{X} - \mu < t_{\alpha/2,n-1}\frac{S}{\sqrt{n}}, -t_{\alpha/2,n-1}\frac{S}{\sqrt{n}} < \overline{X} - \mu)$
= $P(\overline{X} - \mu < t_{\alpha/2,n-1}\frac{S}{\sqrt{n}}, \overline{X} - \mu > -t_{\alpha/2,n-1}\frac{S}{\sqrt{n}})$
= $P((\overline{X} - \mu)/\frac{S}{\sqrt{n}} < t_{\alpha/2,n-1}, (\overline{X} - \mu)/\frac{S}{\sqrt{n}} > -t_{\alpha/2,n-1})$
= $P(T < t_{\alpha/2,n-1}, T > -t_{\alpha/2,n-1}) = P(-t_{\alpha/2,n-1} < T < t_{\alpha/2,n-1}) = 1 - \alpha$
o prove the last equality draw a picture.

To prove the last equality draw a picture.

Once we have an actual sample x_1, x_2, \ldots, x_n we obtain the observed value \overline{x} for the random variable X and the observed value s for the random variable S. We obtain the observed value (an ordinary interval) $(\overline{x} - t_{\alpha/2,n-1} \frac{s}{\sqrt{n}}, \overline{x} + t_{\alpha/2,n-1} \frac{s}{\sqrt{n}})$ for the confidence (random) interval $(\overline{X} - t_{\alpha/2,n-1}\frac{S}{\sqrt{n}}, \overline{X} + t_{\alpha/2,n-1}\frac{S}{\sqrt{n}})$ The observed value of the confidence (random) interval is also called the two-sided $100(1 - \alpha)\%$ confidence interval for μ .

3 The lower-tailed confidence interval

In this section we will give the formula for the lower-tailed confidence interval for μ . **Theorem 3.** The random interval $(-\infty, \overline{X} + t_{\alpha,n-1}\frac{S}{\sqrt{n}})$ is a $100(1-\alpha)\%$ -confidence interval for μ .

Proof. We are required to prove

$$P(\mu \in (-\infty, \overline{X} + t_{\alpha,n-1}\frac{S}{\sqrt{n}})) = 1 - \alpha.$$

We have

$$LHS = P(\mu < \overline{X} + t_{\alpha,n-1} \frac{S}{\sqrt{n}}) = P(-t_{\alpha,n-1} \frac{S}{\sqrt{n}} < \overline{X} - \mu)$$
$$= P(-t_{\alpha,n-1} < (\overline{X} - \mu) / \frac{S}{\sqrt{n}})$$
$$= P(-t_{\alpha,n-1} < T)$$
$$= 1 - \alpha$$

To prove the last equality draw a picture - I want you to draw the picture on tests and the homework.

Once we have an actual sample x_1, x_2, \ldots, x_n we obtain the observed value \overline{x} for the random variable \overline{X} the observed value s for the random variable S and the observed value $(-\infty, \overline{x} + t_{\alpha,n-1}\frac{s}{\sqrt{n}})$ for the confidence (random) interval $(-\infty, \overline{X} + t_{\alpha,n-1}\frac{s}{\sqrt{n}})$. The observed value of the confidence (random) interval is also called the lower-tailed $100(1-\alpha)\%$ confidence interval for μ .

The random variable $\overline{X} + t_{\alpha,n-1} \frac{S}{\sqrt{n}}$ or its observed value the number $\overline{x} + t_{\alpha,n-1} \frac{s}{\sqrt{n}}$ is often called a confidence *upper bound* for μ because

$$P(\mu < \overline{X} + t_{\alpha, n-1} \frac{S}{\sqrt{n}}) = 1 - \alpha.$$

4 The upper-tailed confidence interval for μ

Problem Prove the following theorem.

Theorem 4. The random interval $(\overline{X} - t_{\alpha,n-1}\frac{S}{\sqrt{n}}, \infty)$ is a $100(1-\alpha)\%$ confidence interval for μ .

The random variable $\overline{X} - t_{\alpha,n-1} \frac{S}{\sqrt{n}}$ or its observed value the number $\overline{x} - t_{\alpha,n-1} \frac{s}{\sqrt{n}}$ is often called a confidence *lower bound* for μ because

$$P(\mu > \overline{X} - t_{\alpha, n-1} \frac{S}{\sqrt{n}}) = 1 - \alpha.$$