The prediction interval formulas for the next observation from a normal distribution when σ is unknown

December 13, 2005

1 Introduction

In this lecture we will derive the formulas for the symmetric two-sided prediction interval for the n+1-st observation and the upper-tailed prediction interval for the n+1-st observation from a normal distribution when the variance σ^2 is unknown. We will need the following theorem from probability theory that gives the distribution of the statistic $\overline{X} - Xn + 1$.

Suppose that $X_1, X_2, \ldots, X_n, X_{n+1}$ is a random sample from a normal distribution with mean μ and variance σ^2 .

Theorem 1. The random variable $T = (\overline{X} - X_{n+1})/(\sqrt{\frac{n+1}{n}}S)$ has t distribution with n-1 degrees of freedom.

2 The two-sided prediction interval formula

Now we can prove the theorem from statistics giving the required prediction interval for the next observation x_{n+1} in terms of n observations x_1, x_2, \dots, x_n . Note that it is symmetric around \overline{X} . This is one of the basic theorems that you have to learn how to prove. There are also asymmetric two-sided prediction intervals.

Theorem 2. The random interval $(\overline{X} - t_{\alpha/2,n-1}\sqrt{\frac{n+1}{n}}S, \overline{X} + t_{\alpha/2,n-1}\sqrt{\frac{n+1}{n}}S)$ is a $100(1-\alpha)\%$ -prediction interval for x_{n+1} .

Proof. We are required to prove

$$P(X_{n+1} \in (\overline{X} - t_{\alpha/2, n-1} \sqrt{\frac{n+1}{n}} S, \overline{X} + t_{\alpha/2, n-1} \sqrt{\frac{n+1}{n}} S)) = 1 - \alpha.$$

We have

$$LHS = P(\overline{X} - t_{\alpha/2, n-1} \sqrt{\frac{n+1}{n}} S < X_{n+1}, X_{n+1} < \overline{X} + t_{\alpha/2, n-1} \sqrt{\frac{n+1}{n}} S) = P(\overline{X} - X_{n+1} < t_{\alpha/2, n-1} \sqrt{\frac{n+1}{n}} S)$$

$$= P(\overline{X} - X_{n+1} < t_{\alpha/2, n-1} \sqrt{\frac{n+1}{n}} S , \overline{X} - X_{n+1} > -t_{\alpha/2, n-1} \sqrt{\frac{n+1}{n}} S)$$

$$= P((\overline{X} - X_{n+1}) / \sqrt{\frac{n+1}{n}} S < t_{\alpha/2, n-1} , (\overline{X} - X_{n+1}) / \sqrt{\frac{n+1}{n}} S > -t_{\alpha/2, n-1})$$

$$= P(T < t_{\alpha/2, n-1} , T > -t_{\alpha/2, n-1}) = P(-t_{\alpha/2, n-1} < T < t_{\alpha/2, n-1}) = 1 - \alpha$$

To prove the last equality draw a picture.

Once we have an actual sample x_1, x_2, \ldots, x_n we obtain the the observed value $(\overline{x} - t_{\alpha/2, n-1} \sqrt{\frac{n+1}{n}} s, \overline{x} + t_{\alpha/2, n-1} \sqrt{\frac{n+1}{n}} s)$ for the prediction (random) interval $(\overline{X} - t_{\alpha/2, n-1} \sqrt{\frac{n+1}{n}} S, \overline{X} + t_{\alpha/2, n-1} \sqrt{\frac{n+1}{n}} S)$ The observed value of the prediction (random) interval is also called the two-sided $100(1-\alpha)\%$ prediction interval for x_{n+1} .

3 The upper-tailed prediction interval

In this section we will give the formula for the upper-tailed prediction interval for the next observation x_{n+1} .

Theorem 3. The random interval $(\overline{X} - t_{\alpha,n-1} \sqrt{\frac{n+1}{n}} S, \infty)$ is a $100(1-\alpha)\%$ -prediction interval for the next observation x_{n+1} .

Proof. We are required to prove

$$P(X_{n+1} \in (\overline{X} - t_{\alpha,n-1}\sqrt{\frac{n+1}{n}}S, \infty)) = 1 - \alpha.$$

We have

$$LHS = P(\overline{X} - t_{\alpha,n-1}\sqrt{\frac{n+1}{n}}S < X_{n+1})$$

$$= P(\overline{X} - X_{n+1} < t_{\alpha,n-1}\sqrt{\frac{n+1}{n}}S)$$

$$= P((\overline{X} - X_{n+1})/\sqrt{\frac{n+1}{n}}S < t_{\alpha,n-1})$$

$$= P(T < t_{\alpha,n-1})$$

$$= 1 - \alpha$$

To prove the last equality draw a picture - I want you to draw the picture on tests and the final.

Once we have an actual sample x_1, x_2, \ldots, x_n we obtain the observed value $(\overline{x} - t_{\alpha,n-1}\sqrt{\frac{n+1}{n}}s, \infty)$ of the upper-tailed prediction (random) interval $(\overline{X} - t_{\alpha,n-1}\sqrt{\frac{n+1}{n}}S, \infty)$. The observed value of the upper-tailed prediction (random) interval is also called the upper-tailed $100(1-\alpha)\%$ prediction interval for x_{n+1} .

The number random variable $\overline{X} - t_{\alpha,n-1} \sqrt{\frac{n+1}{n}} S$ or its observed value $\overline{x} - t_{\alpha,n-1} \sqrt{\frac{n+1}{n}} s$ is often called a prediction lower bound for x_{n+1} because

$$P(\overline{X} - t_{\alpha, n-1} \sqrt{\frac{n+1}{n}} S < X_{n+1}) = 1 - \alpha.$$