The prediction interval formulas for the next observation from a normal distribution when σ is known

December 13, 2005

1 Introduction

In this lecture we will derive the formulas for the symmetric two-sided prediction interval for the n + 1-st observation and the upper-tailed prediction interval for the n + 1-st observation from a normal distribution when the variance σ^2 is known. We will need the following theorem from probability theory that gives the distribution of the statistic $\overline{X} - Xn + 1$.

Suppose that $X_1, X_2, \ldots, X_n, X_{n+1}$ is a random sample from a normal distribution with mean μ and variance σ^2 . We assume μ is unknown but σ^2 is known.

Theorem 1. The random variable $\overline{X} - X_{n+1}$ has normal distribution with mean zero and variance $\frac{n+1}{n}\sigma^2$. Hence we find that the random variable $Z = (\overline{X} - X_{n+1})/(\sqrt{\frac{n+1}{n}}\sigma)$ has standard normal distribution.

2 The two-sided prediction interval formula

Now we can prove the theorem from statistics giving the required prediction interval for the next observation x_{n+1} in terms of n observations x_1, x_2, \dots, x_n . Note that it is symmetric around \overline{X} . This is one of the basic theorems that you have to learn how to prove. There are also asymmetric two-sided prediction intervals.

Theorem 2. The random interval $(\overline{X} - z_{\alpha/2}\sqrt{\frac{n+1}{n}}\sigma, \overline{X} + z_{\alpha/2}\sqrt{\frac{n+1}{n}}\sigma)$ is a 100(1 – α)%-prediction interval for x_{n+1} .

Proof. We are required to prove

$$P(X_{n+1} \in (\overline{X} - z_{\alpha/2}\sqrt{\frac{n+1}{n}}\sigma , \overline{X} + z_{\alpha/2}\sqrt{\frac{n+1}{n}}\sigma)) = 1 - \alpha$$

We have

$$LHS = P(\overline{X} - z_{\alpha/2}\sqrt{\frac{n+1}{n}}\sigma < X_{n+1}, X_{n+1} < \overline{X} + z_{\alpha/2}\sqrt{\frac{n+1}{n}}\sigma) = P(\overline{X} - X_{n+1} < z_{\alpha/2}\sqrt{\frac{n+1}{n}}\sigma)$$

$$= P(\overline{X} - X_{n+1} < z_{\alpha/2}\sqrt{\frac{n+1}{n}}\sigma , \ \overline{X} - X_{n+1} > -z_{\alpha/2}\sqrt{\frac{n+1}{n}}\sigma)$$

$$= P((\overline{X} - X_{n+1})/\sqrt{\frac{n+1}{n}}\sigma < z_{\alpha/2} , \ (\overline{X} - X_{n+1})/\sqrt{\frac{n+1}{n}}\sigma > -z_{\alpha/2})$$

$$= P(Z < z_{\alpha/2} , \ Z > -z_{\alpha/2}) = P(-z_{\alpha/2} < Z < z_{\alpha/2}) = 1 - \alpha$$

To prove the last equality draw a picture.

Once we have an actual sample x_1, x_2, \ldots, x_n we obtain the observed value $(\overline{x} - z_{\alpha/2}\sqrt{\frac{n+1}{n}}\sigma, \overline{x} + z_{\alpha/2}\sqrt{\frac{n+1}{n}}\sigma)$ for the prediction (random) interval $(\overline{X} - z_{\alpha/2}\sqrt{\frac{n+1}{n}}\sigma, \overline{X} + z_{\alpha/2}\sqrt{\frac{n+1}{n}}\sigma)$ The observed value of the prediction (random) interval is also called the two-sided $100(1-\alpha)\%$ prediction interval for x_{n+1} .

3 The upper-tailed prediction interval

In this section we will give the formula for the upper-tailed prediction interval for the next observation x_{n+1} .

Theorem 3. The random interval $(\overline{X} - z_{\alpha}\sqrt{\frac{n+1}{n}}\sigma, \infty)$ is a $100(1-\alpha)\%$ -prediction interval for the next observation x_{n+1} .

Proof. We are required to prove

$$P(X_{n+1} \in (\overline{X} - z_{\alpha}\sqrt{\frac{n+1}{n}}\sigma, \infty)) = 1 - \alpha.$$

We have

$$LHS = P(\overline{X} - z_{\alpha}\sqrt{\frac{n+1}{n}}\sigma < X_{n+1})$$
$$= P(\overline{X} - X_{n+1} < z_{\alpha}\sqrt{\frac{n+1}{n}}\sigma)$$
$$= P((\overline{X} - X_{n+1})/\sqrt{\frac{n+1}{n}}\sigma < z_{\alpha})$$
$$= P(Z < z_{\alpha})$$
$$= 1 - \alpha$$

To prove the last equality draw a picture - I want you to draw the picture on tests and the final.

Once we have an actual sample x_1, x_2, \ldots, x_n we obtain the observed value $(\overline{x} - z_\alpha \sqrt{\frac{n+1}{n}}\sigma, \infty)$ of the upper-tailed prediction (random) interval $(\overline{X} - z_\alpha \sqrt{\frac{n+1}{n}}\sigma, \infty)$ The observed value of the upper-tailed prediction (random) interval is also called the upper-tailed $100(1-\alpha)\%$ prediction interval for x_{n+1} .

The number random variable $\overline{X} - z_{\alpha} \sqrt{\frac{n+1}{n}} \sigma$ or its observed value $\overline{x} - z_{\alpha} \sqrt{\frac{n+1}{n}} \sigma$ is often called a prediction *lower bound* for x_{n+1} because

$$P(\overline{X} - z_{\alpha}\sqrt{\frac{n+1}{n}}\sigma < X_{n+1}) = 1 - \alpha.$$