STAT400 HOMEWORK ASSIGNMENT NUMBER 9

Pairs of discrete Random variables

The point of this assignment is to understand the joint probability mass function and the correlation as measuring the relationship between two random variables X and Y defined on the same sample space.

Let X and Y be Bernoulli random variables with $p=1 / 2$ defined on the same sample space. Hence we have

$$
\begin{array}{c|l|l|}
\mathrm{x} & 0 & 1 \\
\hline \mathrm{P}(\mathrm{X}=\mathrm{x}) & 1 / 2 & 1 / 2
\end{array} \quad \text { and } \quad \begin{array}{c|l|l|}
\mathrm{y} & 0 & 1 \\
\hline \mathrm{P}(\mathrm{Y}=\mathrm{y}) & 1 / 2 & 1 / 2 \\
\hline
\end{array}
$$

However there are infinitely many possible ways in which X and Y can be related. These different ways are measured by the joint probability mass function $p_{X, Y}(x, y)$.

$x \backslash y$	0	1
0	a	b
1	c	d

So a, b, c, d are all between 0 and 1 and satisfy $a+b+c+d=1$.

The Homework Problems

1. Show that determines a, b and c. (Hint: since $X \sim \operatorname{Bin}(1,1 / 2)$ we have $a+b=1 / 2$ and $c+d=1 / 2$ and since $Y \sim \operatorname{Bin}(1,1 / 2)$ we have $a+c=1 / 2$ and $b+d=1 / 2-$ why is this?)
2. Find the covariance $\operatorname{Cov}(X, Y)$ and the correlation $\rho_{X, Y}$ in terms of d.
3. Show that $\operatorname{Cov}(X, Y)=0$ implies that X and Y are independent. (this is highly exceptional - we will find an example in which $\operatorname{Cov}(X, Y)=0$ but X and Y are not independent in Problem 6.
4. Compute the covariance and correlation between X and Y for the following three joint probability mass functions.

$$
\mathrm{A}=\begin{array}{c|l|l|}
x \backslash y & 0 & 1 \\
\hline 0 & 1 / 2 & 0 \\
\hline 1 & 0 & 1 / 2
\end{array} \quad \mathrm{~B}=\begin{array}{c|l|l|}
x \backslash y & 0 & 1 \\
\hline 0 & 1 / 4 & 1 / 4 \\
\hline 1 & 1 / 4 & 1 / 4 \\
\hline
\end{array} \quad \mathrm{C}=\begin{array}{c|l|l|}
x \backslash y & 0 & 1 \\
\hline 0 & 0 & 1 / 2 \\
\hline 1 & 1 / 2 & 0 \\
\hline
\end{array}
$$

5. Match each of the above three joint probability mass functions with the one of the following relationships between X and Y :

$$
D=(X \text { and } Y \text { are independent }) \text { or } E=(X=Y) \text { or } F=(X=1-Y) .
$$

6. (the most important problem) Suppose now that we continue to assume that $X \sim \operatorname{Bin}(1,1 / 2)$ but we now assume that $Y \sim \operatorname{Bin}(2,1 / 2)$. So we have a new table

$x \backslash y$	0	1	2	
0	a	b	c	$1 / 2$
1	d	e	f	$1 / 2$
	$1 / 4$	$1 / 2$	$1 / 4$	

Note that we have now added the "margins" that tell you the distributions of X and Y. Find values for a, b, c, d, e, f so that

$$
\operatorname{Cov}(X, Y)=0 \text { but } \mathrm{X} \text { and } \mathrm{Y} \text { are not independent. }
$$

Note this is a hard problem because a, b, c, d, e, f are all between zero and one and must satisfy

$$
\begin{aligned}
a+b+c & =1 / 2 \\
d+e+f & =1 / 2 \\
a+d & =1 / 4 \\
b+e & =1 / 2 \\
c+f & =1 / 4
\end{aligned}
$$

Also X and Y are not supposed to be independent. (Hint:make three of the entries in the probability mass function equal to zero)

