Lecture 10 : Continuous Random Variables

In this section you will compute probabilities by doing integrals.

Definition

A random variable X is said to be continuous if there exists a nonnegative function $f(x)$ definition interval $(-\infty, \infty)$ such that for any interval $[a, b]$ we have,

$$
P(a \leq X \leq b)=\int_{a}^{b} f(x) d x
$$

Definition (Cont.)

$f(x)$ is said to be the probability density function of X, abbreviated pdf.
The usual geometric interpretation of the integral $\int_{a}^{b} f(x) d x$ as the area between a and b under the graph of f will be very important later

$Z f(x) \neq P(X=x)$ in fact $f(x)$ is not the probability of anything f is a density i.e., something you integrate to get the magnitude of a physical quantity.

Think of a wire stretching from a to b with density $\lambda \frac{g m}{c m}$

Then the actually mass of the wire between a and b is $\int_{a}^{b} \lambda(x) d x$.

So λ is mass per unit length

$$
\lambda(x)=\lim \frac{\Delta m}{\Delta x}
$$

Similarly $f(x)=$ probability per unit length.
So both $\lambda(x)$ resp. $f(x)$ are densities which must be integrated to get the actual length resp. probability.

Properties of $f(x)$
(i) $f(x) \geq 0 \leftarrow$ no immediate physic interpretation, see later.
(ii) $\int_{-\infty}^{\infty} f(x) d x=1 \leftarrow$ total probability $=1$

Any function $f(x)$ satisfying (i) and (ii) is a probability density function.

Example : The Uniform Distribution on $[0,1]$

Physical Problem
Pick a random number in $[0,1]$
Call the result X.
So X is a random variable.
Questions
What is $P\left(X=\frac{1}{2}\right)$?
What is $P\left(0 \leq X \leq \frac{1}{2}\right)$
What is $P\left(\frac{1}{4} \leq X \leq \frac{3}{4}\right)$

So for any interval $[a, b]$ which is a subinterval of $[0,1]$ we have the formula

$$
P(X \in[a, b])=P(a \leq X \leq b)=\int_{a}^{b} 1 d x=b-a=\text { length }([a, b])
$$

This is a continuous random variable. The density function is the "characteristic function of $[0,1]$ " i.e.,

$$
f(x)= \begin{cases}1, & 0 \leq x \leq 1 \\ 0, & \text { otherwise } .\end{cases}
$$

Definition

A continuous random variable X is said to have uniform distribution on $[0,1]$, abbreviate $X \sim U(0,1)$ if its pdf f is given by

$$
f(x)= \begin{cases}1, & 0 \leq x \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

More generally suppose we replace $[0,1]$ by the interval $[a, b]$
Z We can't have

$$
f(x)= \begin{cases}1, & a \leq x \leq b \\ 0, & \text { otherwise }\end{cases}
$$

Why?

$$
\begin{aligned}
& \begin{aligned}
\int_{-\infty}^{\infty} f(x) d x=\text { this area } \\
\left.\qquad \begin{array}{l}
\square \\
a
\end{array}\right\} 1 \\
b
\end{aligned} \\
& =b-a \neq 1
\end{aligned}
$$

So we have to define

$$
f(x)=\left\{\begin{array}{cl}
\frac{1}{b-a}, & a \leq x \leq b \\
0, & \text { otherwise }
\end{array}\right.
$$

Then $\int_{a}^{b} f(x) d x=1$

Another Example

Linear density

Consider the function

$$
f(x)= \begin{cases}2 x, & 0 \leq x \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

Then the total probability is

$$
\int_{-\infty}^{\infty} f(x) d x=\int_{0}^{1} 2 x=\left.\left(x^{2}\right)\right|_{x=0} ^{x=1}=1
$$

Since $f(x) \geq 0$ and

$$
\int_{-\infty}^{\infty} f(x) d x=1
$$

$f(x)$ is indeed a pdf.

Problem

For the linear density compute

$$
P\left(\frac{1}{4} \leq X \leq \frac{3}{4}\right)
$$

Solution

$$
\begin{aligned}
P\left(\frac{1}{4} \leq X \leq \frac{3}{4}\right) & =\int_{-\infty}^{\infty} f(x) d x=\int_{\frac{1}{4}}^{\frac{3}{4}} 2 x d x \\
& =\left.\left(x^{2}\right)\right|_{x=\frac{1}{4}} ^{x=\frac{3}{4}}=\frac{9}{16}-\frac{1}{16}=\frac{1}{2}
\end{aligned}
$$

No decimals please.

Here are some usual properties of continuous random variables. They are all consequences of the fact that if X is continuous and c is any number then

$$
P(X=c)=0
$$

So if X is a continuous random variable, all point probabilities are zero.

Theorem

(i) $P(a \leq X \leq b)=P(a \leq X<b)$ (because $P(X=b)=0)$
(ii) $P(a \leq X \leq b)=P(a<X \leq b)$ (because $P(X=a)=0)$
(iii) $P(a \leq X \leq b)=P(a<X<b)$
end points don't matter.

Good Citizen Computations

The Cumulative Distribution Function

Definition

Let X be a continuous random variable with pdf f. Then the cumulative distribution function F, abbreviate cdf, is defined by

$$
F(x)=\int_{-\infty}^{x} f(x) d x
$$

$=$ the area under the graph of f to the left of x.

We will compute the cdfs for $X \sim U(0,1)$ and $X \sim$ the linear distribution. $X \sim U(0,1)$

There will be three formulas corresponding to the two discontinuities in $f(x)$.
$F(x)=0, x<0$
This is clear because we haven't accumulated any probability/area get.

$F(x)=1, x>1$
This is not quite so clean

We have area 1 to the left of x and that's all we are going to get no matter how far we push the vertical line to the right.
$F(x)=$?, $0 \leq x \leq 1$
This is where the action is.

How much area have we accumulated to the left of x. It is the area of a rectangle with base x and height 1 hence area $x \cdot 1=x$. Thus

$$
F(x)=x, 0 \leq x \leq 1
$$

We could have done this with integrals instead of pictures but pictures are better.

We have obtained

$$
F(x)= \begin{cases}0, & x<0 \\ x, & 0 \leq x \leq 1 \\ 1, & x>1\end{cases}
$$

Lesson

cdf's of continuous random variables are continuous and satisfy

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} F(x) & =0 \\
\lim _{x \rightarrow \infty} F(x) & =1
\end{aligned}
$$

The cdf of the linear distribution

We will go faster. Clearly again

$$
\begin{array}{ll}
& F(x)=0, \quad x<0 \\
\text { and } & F(x)=1, \quad x>1
\end{array}
$$

We have to compute $F(x)$ for $0 \leq x \leq 1$.

So $\quad F(x)=$ shaded area

So we have to compute the area of a triangle with base $b=x$ and height $h=2 x$. But

$$
\text { area }=\frac{1}{2} b h=\frac{1}{2} x(2 x)=x^{2}
$$

So

$$
F(x)=\left\{\begin{array}{cl}
0, & x<0 \\
x^{2}, & 0 \leq x \leq 1 \\
1, & x>1
\end{array}\right.
$$

Do this with integrals.

Importance of the cdf
Coded into the cdf F are all the probabilities $P(a \leq X \leq b)$.

Theorem

$P(a \leq X \leq b)=F(b)-F(c)$.

Proof.

$P(a \leq X \leq b)=P(X \leq b)-P(X<a)$
But because X is continuous

$$
P(X<a)=P(X \leq a)
$$

So

$$
\begin{aligned}
P(a \leq X \leq b) & =P(X \leq b)-P(X \leq 0) \\
& =F(b)-F(a)
\end{aligned}
$$

Remark

The previous theorem is critical. It is the basis of using tables (in a book or in a computer) to compute probabilities. A grid of values of F (up to 10 decimal places say) are tabulated.

Theorem (How to recover the pdf from the cdf) $F^{\prime}(x)=f(x)$ at all points where $f(x)$ is continuous.

Example

Suppose $X \sim U(0,1)$ hence $F(x)$ has the graph

So $F(x)$ is differentiable except at 0 and 1 and has derivative

But this is $f(x)$. Note $f(x)$ is discontinuous of 0 and 1 .

