Lecture 11 : The Basic Numerical Quantities Associated to a Continuous X

In this lecture we will introduce four basic numerical quantities associated to a continuous random variable X. You will be asked to calculate these (and the cdf of X) given $f(x)$ on the midterms and the final.
These quantities are
1 The p-th percentile $\eta(P)$.
2 The α-th critical value X_{α}.
3 The expected value $E(X)$ or μ.
4 The variance $V(X)$ or σ^{2}.
I will compute all these for $\cup(a, b)$ the linear distribution and $\cup(a, b)$.

Percentiles and Critical Values of Continuous Random Variables

Percentiles

Let P be a number between 0 and 1. The $100 p$-th percentile, denoted $\eta(P)$, of a continuous random variable X is the unique number satisfying

$$
P(X \leq \eta(P))=P
$$

or

$$
F(\eta(P))=P
$$

So if you know F you can find $\eta(P)$. Roughly

$$
\eta(P)=F^{-1}(P)
$$

The geometric interpretation of $\eta(P)$ is very important

The geometric interpretation of $(\#)$
$\eta(P)$ is the number such that the vertical line $x=\eta(P)$ cuts off area P to the left under the graph of $f(x)$. (this is the picture above)

Special Case The median $\widetilde{\mu}$

The median $\widetilde{\mu}$ is the unique number so that

$$
\begin{aligned}
P(X \leq \widetilde{\mu}) & =\frac{1}{2} \\
\text { or } \quad F(\widetilde{\mu}) & =\frac{1}{2}
\end{aligned}
$$

so the median is the 50 -th percentile.
The picture

Since the total area is 1 , the area to the right of the vertical line $x=\widetilde{\mu}$ also $\frac{1}{2}$. So $x=\widetilde{\mu}$ bisects the area.

Critical Values

Roughly speaking if you switch left to right in the definition of percentile you get the definition of the critical value. Critical values play a key role in the formulas for confidence intervals (later).

Definition

Let α be a real number between 0 and 1 . Then the α-th critical value, denoted x_{α}, is the unique number satisfying

$$
\begin{equation*}
P\left(X \geq x_{\alpha}\right)=\alpha \tag{b}
\end{equation*}
$$

Let's rewrite (b) in terms of F. We have

$$
\begin{aligned}
P\left(X \geq x_{\alpha}\right) & =1-P\left(X \leq x_{\alpha}\right) \\
& =1-F\left(x_{\alpha}\right)
\end{aligned}
$$

So (b) becomes

$$
\begin{align*}
& 1-F\left(x_{\alpha}\right)=\alpha \\
& F\left(x_{\alpha}\right)=1-\alpha \\
& x_{\alpha}=F^{-1}(1-\alpha) \tag{bb}
\end{align*}
$$

What about the geometric interpretation?

The geometric interpretation

x_{α} is the number so that the vertical line $x=x_{\alpha}$ cuts off area α to the right under the graph of $f(x)$.

Relation between critical values and percentiles
$x=x_{\alpha}$ cuts off area $1-\alpha$ to the left since the total area is 1 . But $n(1-\alpha)$ is the number such that $x=\eta(1-\alpha)$ cuts off area $1-\alpha$ to the left.
So

$$
\underline{x_{\alpha}}=\eta(1-\alpha)
$$

Computation of Examples

Example 1 ($X \sim \cup(a, b)$)

Lets compute the $\eta(p)$-th percentile for $X \sim \cup(a, b)$

So the point $\eta(p)$ between a and b must have the property that the area of the shaded box is p. But the base of the box is $\eta(p)-a$ and the ????? is $\frac{1}{h-a}$ so

$$
\begin{align*}
& \text { Area }=b h=(\eta(p)-a)\left(\frac{1}{b-a}\right) \text { so } \\
& \quad(n(p)-a)\left(\frac{1}{b-a}\right)=p \text { or } \\
& \eta(p)=a+p(b-a)=(1-p) a+p b \tag{*}
\end{align*}
$$

Example 1 (Cont.)

How about the median $\widetilde{\mu}$.
So we want $\eta\left(\frac{1}{2}\right)$. By (${ }^{*}$) we have

$$
\widetilde{\mu}=\eta\left(\frac{1}{2}\right)-a+\frac{b-a}{2}=\frac{a+b}{2}
$$

Remark

$\frac{a+b}{2}$ is the midpoint of the interval $[a, b]$.

Critical Values for $\cup(a, b)$

$$
\begin{aligned}
x_{\alpha} & =\eta(1-\alpha)=a+(1-\alpha)(b-\alpha) \\
& =a+b-a-\alpha b+\alpha a \\
\text { So } \quad x_{\alpha} & =\alpha a+(1-\alpha) b .
\end{aligned}
$$

Example 2 (The linear distribution)

Recall the linear distribution has density

$$
f(x)=\begin{array}{cl}
0, & x<0 \\
2 x, & 0 \leq x \leq 1 \\
0, & x>1
\end{array}
$$

The 100 p-th percentile

We want the area of the triangle to be p. But the box is $\eta(p)$ and the height is $Z \eta(p)$ so

$$
\begin{aligned}
A=\frac{1}{2} b h & =\frac{1}{2} \eta(p)(2 n(p)) \\
& =\eta(p)^{2}
\end{aligned}
$$

We have to solve

$$
\begin{aligned}
\eta(p)^{2} & =p \\
\text { So } \quad \eta(p) & =\sqrt{p}
\end{aligned}
$$

In particular

$$
\widetilde{\mu}=\eta\left(\frac{1}{2}\right)=\sqrt{\frac{1}{2}}=\frac{\sqrt{2}}{2}
$$

This will be important ????.

Expected Value

Definition

The expected value or mean $E(X)$ or μ of a continuous random variable is defined by

$$
E(X)=\int_{-\infty}^{\infty} x f(x) d x
$$

We will compute some examples.
Example $1(X \sim \cup(a, b))$

$$
\begin{aligned}
E(X) & =\int_{-\infty}^{\infty} f(x) d x=\int_{a}^{b} \frac{1}{b-a} x d x \\
& =\left.\frac{1}{b-a}\left(\frac{x^{2}}{2}\right)\right|_{x=a} ^{x-b}=\frac{1}{2} \frac{\left(b^{2}-a^{2}\right)}{b-a}=\frac{b+a}{2}
\end{aligned}
$$

Example 1 (Cont.)

Now we showed on page 9 that if $X \sim \cup(a, b)$ then the median $\widetilde{\mu}$ was given by $\widetilde{\mu}=\frac{a+b}{2}$.
Hence in this the mean is equal to the median

$$
\mu=\widetilde{\mu}=\frac{a+b}{2}
$$

Z This is not always the case as we will see shortly.

The "reason" $\mu=\widetilde{\mu}$ is that $f(x)$ has a point of symmetry i.e. a point x_{0} so that $f\left(x_{0} f y\right)=f\left(x_{0}-y\right)$

This means that the graph is symmetrical about the vertical line (mirror) $x=x_{0}$.
Proposition (Useful fact)
If x_{0} is a point of symmetry for $f(x)$ then

$$
\mu=\widetilde{\mu}=x_{0}
$$

Proposition (Cont.)

Now if $X \sim \cup(a, b)$ then $x_{0}=\frac{a+b}{2}$ is a point of symmetry for $f(x)$

For a change we will prove the proposition

Proof

$\widetilde{\mu}=x_{0}$ is immediate because by symmetry there is equal area to the left and right of x_{0}.

Proof (Cont.)

Since the total area is 1 , the area to the left of x_{0} is $\frac{1}{2}$.
Hence $\tilde{\mu}=x_{0}$.
It is harder to prove

$$
E(X)=\int_{-\infty}^{\infty} x f(x)=x_{0}
$$

Trick : Since x_{0} is a constant and $\int_{-\infty}^{\infty} f(x) d x=1$ we have

$$
\int_{-\infty}^{\infty} x_{0} f(x) d x=x_{0}
$$

Proof (Cont.)

Thus to show

$$
\int_{-\infty}^{\infty} x f(x) d x=x_{0}
$$

It suffices to show

$$
\int_{-\infty}^{\infty} x f(x) d x=\int_{-\infty}^{\infty} x_{0} f(x) d x
$$

or

$$
\int_{-\infty}^{\infty}\left(x-x_{0}\right) f(x) d x=0
$$

But if we put

$$
g(x)=\left(x-x_{0}\right) f(x) \text { then }
$$

$g(x)$ is antisymmetric or "odd" about x_{0}

$$
g\left(x_{0}+y\right)=-g\left(x_{0}+g\right)
$$

Proof (Cont.)

This is because $x-x_{0}$ is

But antisymmetric symmetric = antisymmetric (or odd-even = odd).
Finally the integral of on antisymmetric (or "odd") function from $-\infty$ to ∞ is zero.

The integral to the left of x_{0} cancels the area to the right.

This fact can save a lot of painful computation of expected values.

Example 2 (The linear distribution)

We have seen $\widetilde{\mu}=\frac{\sqrt{2}}{2}$, page $12, f(x)$ is certainly not symmetric so it is possible $\mu=\widetilde{\mu}$ and we will see that it is the case.

$$
\begin{aligned}
E(X) & =\int_{-\infty}^{\infty} x f(x) d x \\
& =\int_{0}^{1} x(2 x) d x \\
& =2 \int_{0}^{1} x^{2} d x \\
& =2\left(\frac{1}{3}\right)=\frac{2}{3}
\end{aligned}
$$

Handy fact $\int_{0}^{1} x^{n}=\frac{1}{n}$.
So $\mu=\frac{2}{3}$ and $\widetilde{\mu}=\frac{2}{\sqrt{2}}$.
They aren't equal, which one is bigger?

Variance
The variance $V(X)$ or σ^{2} of a continuous random variable is defined by

$$
V(X)=\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) d x
$$

Remark

Once we learn about change of continuous random variable we will see this is

new random variable obtains from X using $h(x)=(x-\mu)^{2}$.

Once again there is a shortcut formula for $V(X)$.

Proposition (Shortcut Formula)

$$
\begin{aligned}
V(X) & =E\left(X^{2}\right)-(E(X))^{2} \\
& =E\left(X^{2}\right)-\mu^{2}
\end{aligned}
$$

This is the formula to use
Example $1(X \sim \cup(a, b))$
We know $\mu=\frac{a+b}{2}$. We have to compute $E\left(X^{2}\right)$

Example 1 (Cont.)

$$
\begin{aligned}
& \qquad \begin{aligned}
E\left(X^{2}\right) & =\int_{-\infty}^{\infty} x^{2} f(x) d x \\
& =\int_{a}^{b} x^{2} \frac{\perp}{b-a} d x \\
& =\left.\frac{1}{b-a}\left(\frac{x^{3}}{3}\right)\right|_{x=a} ^{x=b} \\
& =\frac{1}{3} \frac{b^{3}-a^{3}}{b-a}=\frac{1}{3}\left(b^{2}+a b+a^{2}\right) \\
\text { So } & \qquad \begin{aligned}
& V(X)=\frac{1}{3}\left(a^{2}+a b+b^{2}\right)-\left(\frac{a+b}{2}\right)^{2} \\
& \mu^{2}
\end{aligned} \\
& =\frac{a^{2}+a b+b^{2}}{3}-\frac{a^{2}+2 a b+b^{2}}{4} \\
& =\frac{a^{2}-2 a b+b^{2}}{12}=\frac{(b-a)^{2}}{12}
\end{aligned}
\end{aligned}
$$

Example 2 (The linear distribution)

We have seen (pg. 21)

$$
\mu=\frac{2}{3}
$$

We need $E\left(X^{2}\right)$

$$
\begin{aligned}
E\left(X^{2}\right) & =\int_{-\infty}^{\infty} x^{2} f(x) d x \\
& =\int_{0}^{1} x^{2}(2 x) d x \\
& =2 \int_{0}^{1} x^{3} d x=2\left(\frac{1}{4}\right)=\frac{1}{2} \\
\text { so } \quad V(X) & =\frac{1}{2}-\left(\frac{2}{3}\right)^{2}=\frac{1}{2}-\frac{4}{9} \\
& =\frac{9}{18}-\frac{8}{18}=\frac{1}{18}
\end{aligned}
$$

