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Definition

Two discrete random variables X and Y defined on the same sample space are
said to be independent if for nay two numbers x and y the two events (X = x)
and (Y = y) are independent⇔

and

(*)
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Now (*) say the joint pmf PX ,Y (x, y) is determined by the marginal pmf ’s PX(x)
and PY (y) by taking the product.

Problem

In case X and Y are independent how do you recover the matrix (table)
representing PX ,y(x, y) from its margins?
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Let’s examine the table for the standard example

HH
HHHHX

Y
0 1 2 3

0 1
8

2
8

1
8 0 1

2

1 0 1
8

2
8

1
8

1
2

1
8

3
8

3
8

1
8

Note that

X = ] of heads on the first toss
Y = total ] of heads in all three tosses

So we wouldn’t expect X and Y to be independent (if we know X = 1 that
restricts the values of Y .)
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Lets use the formula (*)
It says the following.
Each position inside the table corresponds to two positions on the margins

1 Go to the right

2 Go Down

So in the picture

1 If we go right we get
1
2

2 If we go down we get
3
8
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If X and Y are independent then the formula (*) says the entry inside the table is
obtain by multiplying 1 and 2

So if X and Y wave independent then we would set

HH
HHHHX

Y
0 1 2 3

0 1
16

3
16

3
16

1
16

1
2

1 1
16

3
16

3
16

1
16

1
2

1
8

3
8

3
8

1
8

(])
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So as we expected for the basic example X and Y are not independent.
From (*) on page 5 we have

HHH
HHHX

Y
0 1 2 3

0 1
8

2
8

1
8 0

1 0 1
8

2
8

1
8

(*)

This is not the same as (]).
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Covariance and Correlation
In the “real world” e.g., the newspaper one often hears (reeds) that two
quantities are correlated. This word is often taken to be synonymous with
causality. This is not correct and the difference is extremely important even in
reel life. Here are two real word examples of correlations.

1 Being rich and driving on expensive car.

2 Smoking and lung cancer.

In the first case there is no causality whereas it is critical that in the second there
is.
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Statisticians can observe correlations (say for 2) but not causalities.

Now for the mathematical theorem Covariance

Definition

Suppose X and Y are discrete and defined on the same sample space. Then
the covariance Cov(X ,Y) between X and Y is defined by

Cov(X ,Y) = E((X − µX)(Y − µY ))

=
∑
x,y

(x − µX)(y − µY )PX ,Y (x, y)
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Remark

Cov(X ,X) = E
(
(X − µX)

2
)
= V(X)

There is a shortcut formula for covariance.

Theorem (Shortcut formula)

Cov(X ,Y) = E(XY) − µXµY

Remark

If you put X = Y you get the shortcut formula for the variance

V(X) = E(X2) − µ2
X
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Recall that X and Y are independent⇔ PX ,Y (x, y) = PX(x)PY (y).

Theorem

X and Y are independent
⇒ Cov(X ,Y) = 0

(the reverse implication does not always hold).

Proof

E(XY) =
∑
x,y

xyPX ,Y (x, y)
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Proof (Cont.)

Now if X and Y are independent then

PX ,Y (x, y) = PX(x)PY (y)

So

E(XY) =
∑
x,y

xyPX(x)PY (y)

=
∑

x

×PX(x)
∑

y

yPy(y)

= µXµY

Hence

Cov(X ,Y) = µXµY − µXµY

= 0

�
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Corelation
Let X and Y be as before and suppose σX =

√
V(X) and σY =

√
V(Y) be their

respective standard deviations.

Definition

The correlation, Corr(X ,Y) or ρX ,Y or just ρ, is defined by

ρX ,Y =
Cov(X ,Y)

σXσY
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Proposition

−1 ≤ ρX ,Y ≤ 1

Theorem

The meaning of correlation.

1 eX ,Y = 1⇔ Y = aX + b with a > 0 “perfectly correlated”

2 PX ,Y = −1⇔ Y = aX + b with a < 0 “perfectly anticorrelated”

3 X and Y are independent⇒ ρX ,Y = 0 but not conversely as we will see Pg.
18-21.
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A Good Citizen’s Problem
Suppose X and Y are discrete with joint pmf given by that of the basic example
(*)

HHH
HHHX

Y
0 1 2 3

0 1
8

2
8

1
8 0

1 0 1
8

2
8

1
8

(i) Compute Cov(X ,Y)

(ii) Compute ρX ,Y

Solution

We first need the marginal distributions.
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Solution (Cont.)

X 0 1
P(X = x) 1

2
1
2

So X ∼ Bin
(
1,

1
2

)
so E(X) =

1
2

, V(X) =
1
4

and σX =
1
2

Y 0 1 2 3

P(Y = y) 1
8

3
8

3
8

1
8

So Y ∼ Bin
(
3,

1
2

)
so E(Y) =

3
2

, V(X) =
3
4

so σY =

√
3

2
.

Now we need E(XY) (the hard part)

E(XY) =
∑
xy

xy P(X = x,Y = y)

Trick - We are summing over entries in the matrix times xy so potentially eight
terms.
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Solution (Cont.)

But the four terms from first row don’t contribute because x = 0 so xy = 0. Also
the first term in the second row doesn’t contribute since y = 0. So there are only
three terms.

E(XY) = (1)(1)
(
1
8

)
+ (1)(2)

(
2
8

)
+ (1)(3)

(
1
8

)
=

1
8
[1 + 4 + 3] =

8
8
= 1

So

Cov(X ,Y) = E(XY) − µXµY

= 1 −
(
1
2

) (
3
2

)
=

1
4
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Solution (Cont.)

(ii) ρX ,Y =
Cov(X ,Y)

σXσY

=
1/4(

1
2

) ( √
3

2

) =
1/�4
√

3/�4

=
−1
√

3
=

√
3

3
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A cool counter example
We need an example to show

Cov(X ,Y) = 0 ; X and Y are independent

So we need to describe a pmf . Here is its “graph”

(])

What does this mean.
The corner points (with the zeroes) are (1, 1), (1,−1), (−1,−1) and (−1, 1)
(clockwise)
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and of course the origin.
Here is the bar graph

The vertical spikes have height 1/4.
The matrix of the pmf is

HHH
HHHX

Y
−1 0 1

−1 0 1
4 0 1

4
0 1

4 0 1
4

1
2

1 0 1
4 0 1

4
1
4

1
2

1
4

(*)

I have given the marginal distributions.
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Here are the tables for the marginal distributions

X −1 0 1
P(X = x) 1

4
1
2

1
4

E(X) = 0

Y −1 0 1
P(Y = y) 1

4
1
2

1
4

E(Y) = 0

Now for the covariance.
Here is the really cool thing.
Every term in the Formula for E(XY) so E(XY) is the sum of nine zeroes so
E(XY) = 0.
So

Cov(X ,Y) = E(XY) − E(X)E(Y) = 0 − (0)(0)
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But X and Y are not independent because if we go from the outside in we get

H
HHH

HHX
Y
−1 0 1

−1 1/16 1/8 1/16 1/4

0 1/8 1/4 1/8 1/2

1 1/16 1/8 1/16 1/4
1/4 1/2 1/4

(**)

(*) , (**).
So X and Y are not independent.
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It turns out the picture (]) gives us another counter example. Consider the
following three events

So A = {(0, 1), (−1, 1), (−1, 0)}

B = {(0, 1), (0, 0), (0,−1)}

C = {(0, 1), (1, 1), (1, 0)}
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We claim

1 A , B, C are pairwise independent but not independent.
That is

P(A ∩ B) = P(A)P(B)

P(A ∩ C) = P(A)P(C)

P(B ∩ C) = P(B)P(C)

but
P(A ∩ B ∩ C) = P(A)P(B)P(C)
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Let’s check this

P(A) = P({(0, 1), (−1, 1), (−1, 0)}

=
1
2

P(B) = P({(0, 1), (0, 0), (0,−1)}

=
1
2

P(C) = P({(0, 1), (1, 1), (1, 0)}

=
1
2

A ∩ B = {(0, 1)}

A ∩ C = {(0, 1)}

B ∩ C = {(0, 1)}

So they all of probability
1
4

.
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?

yes and the some for A ∩ C and B ∩ C.
But A ∩ B ∩ C = {(0, 1)}
So

P(A ∩ B ∩ C) = P((0, 1)) =
1
4

But

P(A)P(B)P(C) =

(
1
2

) (
1
2

) (
1
2

)
=

1
8

So
P(A ∩ B ∩ C) , P(A)P(B)P(C)
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An Analogy with Vectors
Here is how I remember the properties of covariance (I learned statistics long
after I learned about vectors). This analogy really comes from advanced
mathematics on the notion of a “Hilbert space”.

corresponds to

So
V(X) = Cov(X ,X)←→ −→u − −→u = || −→u ||2
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So

the length of 

the vector 

Now gives two vectors in the plane the (un oriented) angle between them which I

will denote ≮ (−→u ,−→v is the inverse cosine of
−→u · −→v

||
−→u || || −→v ||

that is

cos(≮ (−→u ,−→v )) =
−→u · −→v

||
−→u || || −→v ||
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So what does this correspond to in the world of random variables

But this is just the correlation 

ρX ,Y −→ Cos ≮ (−→u ,−→v )

So what do we get from all this?

Lecture 16 : Independence, Covariance and Correlation of Discrete Random Variables



29/ 31

Positive Correlation

cos ≮ (−→u ,−→v ) = 1⇐⇒≮ (−→u ,−→v ) = 0

−→u and −→v lie in the same ray (half-line) so −→u = a−→v , a > 0.
Now what about correlation

Corr(X ,Y) = 1⇐⇒ Y = aX + b with a > 0.

Negative Correlation
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What about correlation

Corr(X ,Y) = −1⇐⇒ Y = aX + b with a < 0

Zero Correlation

cos ≮ (−→u ,−→v ) = 0⇐⇒ −→u · −→v = 0

⇐⇒ u and −→v are orthogonal.

Corr(X ,Y) = 0⇐= X and Y are independent
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Bottom Line
Intuitively ρX ,Y corresponds to the cosine of the angle between the two random
variables X and Y .
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