Lecture 18 : Pairs of Continuous Random Variables

Definition

Let X and Y be continuous random variables defined on the same sample space S. Then the joint probability density function, joint pdf, $f_{X, Y}(x, y)$ is the function such that

$$
\begin{equation*}
P((X, Y) \in A)=\underbrace{\iint_{A} f_{X, Y}(x, y) d x d y}_{\text {double integral }} \tag{*}
\end{equation*}
$$

for any region A in the plane.

Again the geometric interpretation of $\left(^{*}\right)$ is very important

 graph of f and above the region A.

For $f(x, y)$ to be a joint pdf for some pair of random variables X and Y it is necessary and sufficient that

$$
f(x, y) \geq 0, \quad \text { all } \quad x, y
$$

and

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d x d y=1
$$

or geometrically, the total volume under the graph of f has to be 1 .

Example 5.3 (from text)

A bank operates a drive-up window and a walkup window. On a randomly selected day, let

$$
X=\text { proportion of time the }
$$ drive-up facilty is in use.

$Y=$ proportion of time the walk-up facilty is in use.

The set of possible outcomes for the pair (X, Y) is the square

$$
R=\{(x, y), 0 \leq x \leq 1,0 \leq y \leq 1\}
$$

Suppose the joint pdf of (X, Y) is given by

$$
f_{x, y}(x, y)=\left\{\begin{array}{cc}
6 / 5\left(x+y^{2}\right), & 0 \leq x \leq 1 \\
0 \leq y \leq 1 \\
0, & \text { otherwise }
\end{array}\right.
$$

Find the probability that neither facilty is in use more than $1 / 4$ of the time.

Solution

Neither facilty is in use more than $\frac{1}{4}$ of the time when re-expressed in terms of X and Y is

$$
x \leq \frac{1}{4}\left(\text { the drive-up facilty is in use } \leq \frac{1}{4} \text { of the time }\right)
$$

and

$$
Y \leq \frac{1}{4}\left(\text { the walk-up facilty is in use } \leq \frac{1}{4} \text { of the time }\right)
$$

Solution (Cont.)

The author formulated the problem in a confusing fashion, don't worry about it. So we want

$$
P\left(0 \leq X \leq \frac{1}{4}, 0 \leq Y \leq \frac{1}{4}\right)
$$

or

$$
P((X, Y) \in S)
$$

where S is the small square

This probability is given by

$$
\begin{align*}
\int_{0}^{\frac{1}{4}} & \int_{0}^{\frac{1}{4}} \frac{6}{5}\left(x+y^{2}\right) d x d y \\
& \iint_{S} \frac{6}{5}\left(x+y^{2}\right) d x d y
\end{align*}
$$

Remark

For general (X, Y) we have

$$
\begin{aligned}
& P(a \leq X \leq b, c \leq Y \leq d) \\
&=\int_{a}^{b} \int_{c}^{d} f_{X, Y}(x, y) d x d y
\end{aligned}
$$

Let's do the integral (\sharp). We will do the x-integration first. So

$$
\begin{aligned}
P(0 & \left.\leq X \leq \frac{1}{4}, 0 \leq Y \leq \frac{1}{4}\right) \\
& \left.=\int_{0}^{\frac{1}{4}} \int_{0}^{\frac{1}{4}} \frac{6}{5}\left(x+y^{2}\right) d x\right) d y \\
& =\left.\frac{6}{5} \int_{0}^{\frac{1}{4}}\left(\frac{X^{2}}{2}+x y^{2}\right)\right|_{x=0} ^{x=\frac{1}{4}} d y
\end{aligned}
$$

Remark (Cont.)

$$
\begin{aligned}
& =\frac{6}{5} \int_{0}^{\frac{1}{4}}\left(\frac{1}{32}+\frac{y}{4}\right) d y \\
& =\frac{6}{5}\left[\left.\left(\frac{y}{32}+\frac{y^{3}}{12}\right)\right|_{y=0} ^{y=\frac{1}{4}}\right] \\
& =\frac{6}{5}\left[\frac{1}{128}+\frac{1}{(64)(12)}\right] \\
& =\left(\frac{6}{5}\right)\left(\frac{1}{64}\right)\left(\frac{1}{2}+\frac{1}{12}\right) \\
& =\left(\frac{6}{5}\right)\left(\frac{1}{64}\right)\left(\frac{7}{12}\right) \\
& =\frac{7}{640}
\end{aligned}
$$

An exercise in the forgotten art of fractions- more of the same later.

More Theory Marginal Distributions in the Continuous Case

Problem

Suppose you know the joint pdf $f_{X, Y}(x, y)$ of (X, Y). How do you find the individual pdf's $f_{X}(x)$ of X and $f_{Y}(y)$. The answer is

Proposition

$$
\begin{aligned}
& \text { (i) } f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y \\
& \text { (ii) } f_{Y}(y)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d x
\end{aligned}
$$

Proposition (Cont.)

The formula (*) is the continuous analogue of the formula for the discrete case. Namely

Discrete Case

$$
f_{X}(x)=\sum_{\text {all }} f_{X}, Y(y)
$$

Continuous Case

$$
f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y
$$

In the first case we sum away the "extra variable" y and in the second case we integrate it away.
By analogy once again we call $f_{X}(x)$ and $f_{Y}(y)$ (obtained via (*)) the marginal densities or marginal pdf's.

Note the $f_{X}(x)$ and $f_{Y}(y)$ are the two partial definite integrals of $f_{X, Y}(x, y)$ - see Lecture 16.

Example 5.4

We compute the two marginal pdf's for the bank problem, Example 5.3.

$$
\begin{aligned}
f_{X}(x) & =\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y \\
& =\left\{\begin{array}{cc}
\int_{0}^{1} \frac{6}{5}\left(x+y^{2}\right) d y, & 0 \leq x \leq 1 \\
0, & \text { otherwise }
\end{array}\right. \\
& \text { this is a little tricky. }
\end{aligned}
$$

The formula for $f_{X}(x)$ says you integrate $f_{X, Y}(x, y)$ over the vertical
line passing through x.
If x does not satisfy $0 \leq x \leq 1$ then the vertical line does not pass through the square R where $f_{X, Y}(x, y)$ is non zero

You get $f_{X}(2)$ by integrating over the line $x=2$ above which $f_{X, Y}(x, y)=0$.
Equivalently (without geometry)

$$
f_{X}(2)=\int_{-\infty}^{\infty} f_{X, Y}(2, g) d y=\int_{-\infty}^{\infty} 0 d y=0
$$

Now we finish the job

$$
\begin{aligned}
& \int_{0}^{1} \frac{6}{5}\left(x+y^{2}\right) d y=\frac{6}{5} \int_{0}^{1}\left(x+y^{2}\right) d y \\
& \quad=\left.\frac{6}{5}\left(x y+\frac{y^{3}}{3}\right)\right|_{y=0} ^{y=1}=\frac{6}{5}\left(x+\frac{1}{3}\right)
\end{aligned}
$$

Similarly

$$
\begin{aligned}
f_{Y}(y) & =\left\{\begin{array}{cc}
\frac{6}{5} \int_{0}^{1} \frac{6}{5}\left(x+y^{2}\right) d x, & 0 \leq y \leq 1 \\
0, & \text { otherwise }
\end{array}\right. \\
& =\left\{\begin{array}{cl}
\frac{6}{5} y^{2}+\frac{3}{5}, & 0 \leq y \leq 1 \\
0, & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Independence of Two Continuous Random Variables

Definition

Two continuous random variables X and Y are independent of their joint pdf $f_{X, Y}(x, y)$ is the product of the two marginal pdf's $f_{X}(x)$ and $f_{Y}(y)$ so

$$
f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)
$$

This not true for the bank example pg. 5.

$$
f_{X, Y}(x, y)=6 / 5(\underbrace{x+y^{2}}_{\uparrow})
$$

Covariance and Correlation of Pairs of Continuous Random Variables We continue with a pair of continuous random variables X and Y as before. Again we define

$$
\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)
$$

and

$$
\rho_{X, Y}=\operatorname{Corr}(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}}
$$

But now

$$
E(X Y)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y f_{X, Y}(x, y) d x d y
$$

We will now compute the $\operatorname{Cov}(X, Y)$ and $\operatorname{Corr}(X, Y)$ for the bank problem. So

$$
\begin{aligned}
f_{X, Y}(x, y) & =\left\{\begin{array}{cc}
\frac{6}{5}\left(x+y^{2}\right), & 0 \leq x \leq 1 \\
0, & 0 \leq y \leq 1 \\
\text { otherwise }
\end{array}\right. \\
f_{X}(x) & =\left\{\begin{array}{cc}
\frac{6}{5}\left(x+\frac{1}{3}\right), & 0 \leq x \leq 1 \\
0, & \text { otherwise }
\end{array}\right. \\
f_{Y}(y) & =\left\{\begin{array}{cc}
\frac{6}{5} y^{2}+\frac{3}{5}, & 0 \leq y \leq 1 \\
0, & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Let's first do the calculations for X and Y - we need

$$
E(X), E(Y), \sigma_{X}=\sqrt{V(X)} \text { and } \sigma_{Y}=\sqrt{V(Y)}
$$

$$
\begin{aligned}
E(X) & =\int_{0}^{1} x \frac{6}{5}\left(x+\frac{1}{3}\right) d x \\
& =\frac{6}{5} \int_{0}^{1}\left(x^{2}+\frac{x}{3}\right) d x=\left.\frac{6}{5}\left(\frac{x^{3}}{3}+\frac{x^{2}}{6}\right)\right|_{x=0} ^{x=1} \\
& =\frac{6}{5}\left(\frac{1}{3}+\frac{1}{6}\right)=\frac{6}{5}\left(\frac{3}{6}\right)=\frac{3}{5} \\
E\left(X^{2}\right) & =\int_{0}^{1} x^{2} \frac{6}{5}\left(x+\frac{1}{3}\right) d x \\
& =\frac{6}{5} \int_{0}^{1}\left(x^{3}+\frac{x^{2}}{3}\right) d x=\left.\frac{6}{5}\left(\frac{x^{4}}{4}+\frac{x^{3}}{9}\right)\right|_{x=0} ^{x=1} \\
& =\frac{6}{5}\left(\frac{1}{4}+\frac{1}{9}\right)=\frac{6}{5}\left(\frac{13}{36}\right)=\frac{13}{30} \\
V(X) & =\frac{13}{30}-\left(\frac{3}{5}\right)^{2}=\frac{13}{30}-\frac{9}{25}=\frac{65-54}{150}=\frac{11}{150} \\
\sigma x & =\sqrt{\frac{11}{150}}=\frac{1}{5} \sqrt{\frac{11}{6}}
\end{aligned}
$$

$$
\begin{aligned}
E(Y) & =\int_{y}^{1}\left(\frac{6}{5} y^{2}+\frac{3}{5}\right) d y \\
& =\frac{6}{5} \int_{0}^{1} y^{3} d y+\frac{3}{5} \int_{0}^{1} y d y \\
& =\left(\frac{6}{5}\right)\left(\frac{1}{4}\right)+\left(\frac{3}{5}\right)\left(\frac{1}{2}\right)=\frac{6}{20}+\frac{3}{10}=\frac{12}{20} \\
E\left(Y^{2}\right) & =\int_{0}^{1} y^{2}\left(\frac{6}{5} y^{2}+\frac{3}{5}\right) d y \\
& =\frac{6}{5} \int_{0}^{1} y^{4} d y+\frac{3}{5} \int_{0}^{1} y^{2} d y \\
& =\left(\frac{6}{5}\right)\left(\frac{1}{5}\right)+\left(\frac{\not x}{5}\right)\left(\frac{1}{\not 又}\right)=\frac{6}{25}+\frac{? ?}{5}=\frac{11}{25} \\
V(Y) & =\frac{11}{25}-\frac{144}{400}=\frac{176}{400}-\frac{144}{400}=\frac{32}{400}=\frac{2}{25} \\
\sigma Y & =\sqrt{\frac{2}{25}}=\frac{1}{5} \sqrt{2}
\end{aligned}
$$

Finally we need

$$
\begin{aligned}
E(X Y) & =\int_{0}^{1} \int_{0}^{1}(x y) \frac{6}{5}\left(x+y^{2}\right) d x d y \\
& =\int_{0}^{1} \int_{0}^{1} \underbrace{x y \frac{6}{5} x}_{\text {product function }} d x d y+\int_{0}^{1} \int_{0}^{1} \underbrace{x y \frac{6}{5} y^{2}}_{\text {product function }} d x d y \\
& =\frac{6}{5}\left(\int_{0}^{1} x^{2} d x\right)\left(\int_{0}^{1} y d y\right)+\frac{6}{5}\left(\int_{0}^{1} x d x\right)\left(\int_{0}^{1} y^{3} d y\right) \\
& =\left(\frac{6}{5}\right)\left(\frac{1}{3}\right)\left(\frac{1}{2}\right)+\left(\frac{6}{5}\right)\left(\frac{1}{2}\right)\left(\frac{1}{4}\right) \\
& =\left(\frac{6}{5}\right)\left(\frac{1}{2}\right)\left(\frac{1}{3}+\frac{1}{4}\right)=\left(\frac{6}{5}\right)\left(\frac{1}{2}\right)\left(\frac{7}{12}\right)=\frac{7}{20}
\end{aligned}
$$

Now we can mop the fruits of our labours.

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =E(X Y)-E(X) E(Y) \\
& =\frac{7}{20}-\left(\frac{3}{5}\right)\left(\frac{12}{20}\right) \\
& =\frac{7}{20}-\frac{36}{100}=\frac{35}{100}-\frac{36}{100} \\
\operatorname{Cov}(X, Y) & =\frac{-1}{100} \\
\operatorname{Cov}(X, Y) & =\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}}=\frac{\frac{-1}{100}}{\left(\frac{1}{5} \sqrt{\frac{11}{6}}\right)\left(\frac{1}{5} \sqrt{2}\right)} \\
& =\left(\frac{-1}{100}\right)\left(\frac{\not 5}{\sqrt{\frac{11}{\phi}}}\right)\left(\frac{\not \supset}{\sqrt{2}}\right)=-\frac{1}{4}\left(\frac{1}{\sqrt{\frac{11}{3}}}\right)=-\frac{\sqrt{3}}{4 \sqrt{11}}
\end{aligned}
$$

Independence of Continuous Random Variables

Definition

Two continuous random variables X and Y are independent if the joint pdf is the product of the two marginal pdf's

$$
f_{X, Y}(x, y)=f_{X}(x) f_{Y}(g)
$$

(so \Longleftrightarrow the joint pdf is a product function)
So in Example 5.3, page 4, X and Y are NOT independent.

