Lecture 19: More Than Two Random Variables

Definition
If $X_{1}, X_{2}, \ldots, X_{n}$ are discrete random variables defined on the same sample space then their joint pmf is the function

$$
P_{x_{1}, X_{2}, \ldots, x_{n}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=P\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)
$$

If $X_{1}, X_{2}, \ldots, X_{n}$ are continuous then their joint pdf is the function $f_{X_{1}, x_{2}, \ldots, x_{n}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ such that

Definition (Cont.)

for any region A in \mathbb{R}^{n}

$$
P\left(\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in A\right)=\underbrace{\int \ldots \int_{A} f_{x_{1}, x_{2}, \ldots, x_{n}}\left(x_{1}, \ldots, x_{n}\right) d x_{1}, \ldots, d x_{n}}_{n \text {-fold multiple integral }}
$$

Definition

The discrete random variables $X_{1}, X_{2}, \ldots, X_{n}$ are independent if

$$
P_{X_{1}, \ldots, x_{n}}\left(x_{1}, \ldots, x_{n}\right)=P_{x_{1}}\left(x_{1}\right) P_{X_{2}}\left(x_{2}\right) \ldots P_{X_{n}}\left(x_{n}\right) .
$$

Equivalently

$$
P\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)=P\left(X_{1}=x_{1}\right) \ldots P\left(X_{n}=x_{n}\right)
$$

The continuous random variables $X_{1}, X_{2}, \ldots, X_{n}$ are independent if

$$
f_{x_{1}, x_{2}, \ldots, x_{n}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=f_{x_{1}}\left(x_{1}\right) f_{x_{2}}\left(x_{2}\right) \ldots f_{x_{n}}\left(x_{n}\right)
$$

Definition

$X_{1}, X_{2}, \ldots, X_{n}$ are pairwise independent if each pair $X_{i}, X_{j}(i \neq j)$ is independent.
We will now see
Pairwise independence \nRightarrow Independence
of random variables \Longleftarrow of random variables

First we will prove \Longleftarrow

Theorem

$X_{1}, X_{2}, \ldots, X_{n}$ independent $\Rightarrow X_{1}, X_{2}, \ldots, X_{n}$ are pairwise independent.
From now on we will restrict to the case $n=3$ so we have THREE random variables X, Y, Z.

How do we get

$$
P_{X, Y}(x, y) \text { from } P_{X, Y, Z}(x, y, z)
$$

Answer (left to you to prove)

$$
P_{X, Y}(x, y)=\sum_{\text {all } z} P_{X, Y, Z}(x, y, z)
$$

Now we can prove X, Y, Z independent.

$\Longrightarrow X, Y$ independent

Since X, Y, Z are independent we have

$$
P_{X, Y, Z}(x, y, z)=P_{X}(x) P_{Y}(y) P_{Z}(z)
$$

Now play the RHS of (\#\#) into the RHS of (\#)

$$
\begin{aligned}
P_{X, Y}(x, y) & =\sum_{\text {all } z} P_{X}(x) P_{Y}(y) P_{Z}(z) \\
& =P_{X}(x) P_{Y}(y) \sum_{\text {all } z} P_{Z}(z) \\
& =P_{X}(x) P_{Y}(y)
\end{aligned}
$$

This proves X and Y are independent Identical proofs prove the pairs X, Z and Y, Z are independent.
Now we construct X, Y, Z (actually X_{A}, X_{B}, X_{C}) so that each pair is independent but the triple X, Y, Z is not independent.

The multinomial coefficient

The multinomial coefficient $\left(\begin{array}{c}k_{1}, k_{2}, \cdots, k_{r}\end{array}\right)$ is defined by

$$
\binom{n}{k_{1}, k_{2}, \cdots, k_{r}}=\frac{n!}{k_{1}!k_{2}!\cdots k_{r}!}
$$

Suppose an experiment has r outcomes denoted $1,2,3, \cdots, r$ with probabilities $p_{1}, p_{2}, \cdots, p_{r}$ respectively. Repeat the experiment n times and assume the trials are independent.
$\left(\begin{array}{c}k_{1}, k_{2}, \cdots, k_{r} \\)\end{array}\right.$

A Variation on the Cool Counter example

Lets go back to the "cool counter example", Lecture 16, page 18 of three events A, B, C which are pairwise independent but no independent so

$$
P(A \cap B \cap C) \neq P(A) P(B) P(C)
$$

The idea is to convert the three events to random variables X_{A}, X_{B}, X_{C} so that $X_{A}=1$ on A and O on A^{\prime} etc.

In fact we won't need the corner points $(-1,-1),(-1,1),(1,-1)$ and $(1,1)$ we put $S_{1}=(0,1), S_{2}=(-1,0), S_{3}=(0,1), S_{4}=(1,0)$ and retain their probabilities so

$$
P\left(\left\{S_{j}\right\}\right)=\frac{1}{4}, \quad 1 \leq j \leq 4
$$

We define

$$
\begin{aligned}
A & =\left\{s_{1}, s_{2}\right\} \\
B & =\left\{s_{1}, s_{3}\right\} \\
C & =\left\{s_{1}, s_{4}\right\}
\end{aligned}
$$

We define X_{A}, X_{B}, X_{C} on S by

$$
X_{A}\left(s_{j}\right)= \begin{cases}1, & \text { if } s_{j} \in A \\ 0, & \text { if } s_{j} \notin A\end{cases}
$$

$$
\left.\begin{array}{rl}
X_{B}\left(s_{j}\right) & = \begin{cases}1, & \text { if } s_{j} \in B \\
0, & \text { if } s_{j} \notin B\end{cases} \\
X_{C}\left(s_{j}\right) & =\left\{\begin{array}{l}
1, \\
\text { if } s_{j} \\
0, \\
0, \\
\text { if } s_{j} \notin C
\end{array}\right.
\end{array}\right\} \begin{aligned}
& \text { So } \quad P\left(X_{A}=1\right)=P\left(\left\{S_{1}, S_{2}\right\}\right)=\frac{1}{2} \\
& P\left(X_{A}=0\right)=P\left(\left\{S_{3}, S_{4}\right\}\right)=\frac{1}{2}
\end{aligned}
$$

and similarly for X_{B} and X_{C}.
So $\quad X_{A}, X_{B}$ and X_{C}
are Bernoulli random variables

Let's compute the joint pmf of X_{A} and X_{B}. We know the margin

X_{B}	0	1	
0			$1 / 2$
1			$1 / 2$
	$1 / 2$	$1 / 2$	

The subset where $X_{A}=1$ is the subset $\left\{s_{1}, s_{2}\right\}$ so we write an equality of events

$$
\left(X_{A}=1\right)=\left\{s_{1}, s_{2}\right\}
$$

Similarly

$$
\begin{gathered}
\left(X_{A}=0\right)=\left\{s_{3}, s_{4}\right\} \\
\left(X_{B}=1\right)=\left\{s_{1}, x_{3}\right\},\left(X_{B}=0\right)=\left\{s_{2}, s_{4}\right\} \\
\left(X_{C}=1\right)=\left\{s_{1}, s_{4}\right\},\left(X_{C}=0\right)=\left\{s_{2}, s_{3}\right\}
\end{gathered}
$$

Hence

$$
\text { so } \begin{aligned}
\left(X_{A}=0\right) \cap\left(X_{B}=0\right) & =\left\{S_{4}\right\} \\
P\left(X_{A}=0, X_{B}=0\right) & =\frac{1}{4} \\
\left(X_{A}=0\right) \cap\left(X_{B}=1\right) & =\left\{S_{3}\right\} \\
P\left(X_{A}=0, X_{B}=1\right) & =\frac{1}{4} \\
\left(X_{A}=1\right) \cap\left(X_{B}=0\right) & =\left\{S_{2}\right\} \\
P\left(X_{A}=1, X_{B}=0\right) & =\frac{1}{4} \\
\left(X_{A}=1\right) \cap\left(X_{B}=1\right) & =\left\{S_{1}\right\} \\
P\left(X_{A}=1, X_{B}=1\right) & =P\left(\left\{S_{1}\right\}\right)=\frac{1}{4}
\end{aligned}
$$

etc.

So the joint proof of X_{A} and X_{B} is

	X_{B}	0	1
	0	$1 / 4$	
0	$1 / 4$	$1 / 4$	$1 / 2$
1	$1 / 4$	$1 / 4$	$1 / 2$
	$1 / 2$	$1 / 2$	

so X_{A} and X_{B} are independent. The same is true for X_{A} and X_{C} and X_{B} and χ_{C}. Now we show the triple X_{A}, X_{B} and X_{C} is NOT independent.

We will show

$$
\begin{aligned}
& P\left(X_{A}=1, X_{B}=1, X_{C}=1\right) \\
& \quad \neq P\left(X_{A}=1\right) P\left(X_{B}=1\right) P\left(X_{C}=1\right)
\end{aligned}
$$

The RHS $=\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)=\frac{1}{8}$
The left-hand side is the probability of the event

$$
\begin{aligned}
& \left(X_{A}=1\right) \cap\left(X_{B}=1\right) \cap\left(X_{C}=1\right) \\
& =\left\{S_{1}, S_{2}\right\} \cap\left\{S_{1}, S_{3}\right\} \cap\left\{S_{1}, S_{4}\right\} \\
& =\left\{S_{1}\right\} .
\end{aligned}
$$

So

$$
P\left(X_{A}=1, X_{B}=1, X_{C}=1\right)=P\left(\left\{S_{1}\right\}\right)=\frac{1}{4}
$$

SO

$$
\mathrm{LHS}=\frac{1}{4}
$$

RHS $=\frac{1}{8}$

Remark

This counter example is more or less the some as the "cool counter example". We just replaced (more or less) A, B, C by their "characteristic functions".

