Lecture 19: More Than Two Random Variables

Definition

If $X_1, X_2, ..., X_n$ are discrete random variables defined on the same sample space then their joint pmf is the function

$$P_{X_1,X_2,...,X_n}(x_1,x_2,...,x_n) = P(X_1 = x_1,...,X_n = x_n)$$

If $X_1, X_2, ..., X_n$ are continuous then their joint pdf is the function $f_{X_1, X_2, ..., X_n}(x_1, x_2, ..., x_n)$ such that

Definition (Cont.)

for any region A in \mathbb{R}^n

$$P((X_1, X_2, \ldots, X_n) \in A) = \int \ldots \int_A f_{X_1, X_2, \ldots, X_n}(x_1, \ldots, x_n) dx_1, \ldots, dx_n$$

n-fold multiple integral

Definition

The discrete random variables X_1, X_2, \ldots, X_n are independent if

$$P_{X_1,...,X_n}(x_1,...,x_n) = P_{X_1}(x_1)P_{X_2}(x_2)...P_{X_n}(x_n).$$

Equivalently

$$P(X_1 = x_1, ..., X_n = x_n) = P(X_1 = x_1) ... P(X_n = x_n)$$

The continuous random variables X_1, X_2, \ldots, X_n are independent if

$$f_{X_1,X_2,\ldots,X_n}(x_1,x_2,\ldots,x_n) = f_{X_1}(x_1)f_{X_2}(x_2)\ldots f_{X_n}(x_n)$$

Definition

 $X_1, X_2, ..., X_n$ are pairwise independent if each pair $X_i, X_j (i \neq j)$ is independent. We will now see

Pairwise independence $\neq \Rightarrow$ Independence of random variables \iff of random variables First we will prove ⇐=

Theorem

 X_1, X_2, \ldots, X_n independent $\Rightarrow X_1, X_2, \ldots, X_n$ are pairwise independent.

From now on we will restrict to the case n = 3 so we have THREE random variables *X*, *Y*, *Z*.

How do we get

$$P_{X,Y}(x,y)$$
 from $P_{X,Y,Z}(x,y,z)$

Answer (left to you to prove)

$$P_{X,Y}(x,y) = \sum_{\text{all } z} P_{X,Y,Z}(x,y,z) \tag{#}$$

Now we can prove X, Y, Z independent.

 \implies X, Y independent

Since X, Y, Z are independent we have

$$P_{X,Y,Z}(x,y,z) = P_X(x)P_Y(y)P_Z(z)$$
 (##)

Now play the RHS of (##) into the RHS of (#)

This proves X and Y are independent Identical proofs prove the pairs X, Z and Y, Z are independent. Now we construct X, Y, Z (actually X_A , X_B , X_C) so that each *pair* is independent

but the triple X, Y, Z is not independent.

The multinomial coefficient

The multinomial coefficient $\binom{n}{k_1,k_2,\dots,k_r}$ is defined by

$$\binom{n}{k_1, k_2, \cdots, k_r} = \frac{n!}{k_1! k_2! \cdots k_r!}$$

Suppose an experiment has *r* outcomes denoted $1, 2, 3, \dots, r$ with probabilities p_1, p_2, \dots, p_r respectively. Repeat the experiment *n* times and assume the trials are independent.

 $\binom{n}{k_1,k_2,\cdots,k_r}$

A Variation on the Cool Counter example

Lets go back to the "cool counter example", Lecture 16, page 18 of three events A, B, C which are pairwise independent but no independent so

 $P(A \cap B \cap C) \neq P(A)P(B)P(C)$

The idea is to convert the three events to random variables X_A , X_B , X_C so that $X_A = 1$ on A and O on A' etc.

In fact we won't need the corner points (-1, -1), (-1, 1), (1, -1) and (1, 1) we put $S_1 = (0, 1)$, $S_2 = (-1, 0)$, $S_3 = (0, 1)$, $S_4 = (1, 0)$ and retain their probabilities so

We define

$$A = \{s_1, s_2\} \\ B = \{s_1, s_3\} \\ C = \{s_1, s_4\}$$

We define X_A , X_B , X_C on S by

$$X_A(s_j) = egin{cases} 1, & ext{if } s_j \in A \ 0, & ext{if } s_j \notin A \end{cases}$$

$$X_B(s_j) = egin{cases} 1, & ext{if } s_j \in B \ 0, & ext{if } s_j
otin B \ X_C(s_j) = egin{cases} 1, & ext{if } s_j \in C \ 0, & ext{if } s_j
otin C \ 0, & ext{if } s_j \$$

So
$$P(X_A = 1) = P(\{S_1, S_2\}) = \frac{1}{2}$$

 $P(X_A = 0) = P(\{S_3, S_4\}) = \frac{1}{2}$

and similarly for X_B and X_C .

So
$$X_A, X_B$$
 and X_C

are Bernoulli random variables

Let's compute the joint pmf of X_A and X_B . We know the margin

The subset where $X_A = 1$ is the subset $\{s_1, s_2\}$ so we write an equality of events

$$(X_A = 1) = \{s_1, s_2\}$$

Similarly

$$(X_A = 0) = \{s_3, s_4\}$$

 $(X_B = 1) = \{s_1, x_3\}, (X_B = 0) = \{s_2, s_4\}$
 $(X_C = 1) = \{s_1, s_4\}, (X_C = 0) = \{s_2, s_3\}$

Hence

$$(X_{A} = 0) \cap (X_{B} = 0) = \{S_{4}\}$$

so $P(X_{A} = 0, X_{B} = 0) = \frac{1}{4}$
 $(X_{A} = 0) \cap (X_{B} = 1) = \{S_{3}\}$
so $P(X_{A} = 0, X_{B} = 1) = \frac{1}{4}$
 $(X_{A} = 1) \cap (X_{B} = 0) = \{S_{2}\}$
 $P(X_{A} = 1, X_{B} = 0) = \frac{1}{4}$
 $(X_{A} = 1) \cap (X_{B} = 1) = \{S_{1}\}$
 $P(X_{A} = 1, X_{B} = 1) = P(\{S_{1}\}) = \frac{1}{4}$

etc.

So the joint proof of X_A and X_B is

so X_A and X_B are independent. The same is true for X_A and X_C and X_B and χ_C . Now we show the triple X_A , X_B and X_C is NOT independent. We will show

$$P(X_A = 1, X_B = 1, X_C = 1) \neq P(X_A = 1)P(X_B = 1)P(X_C = 1)$$

The RHS = $\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)\left(\frac{1}{2}\right) = \frac{1}{8}$ The left-hand side is the probability of the event

$$(X_A = 1) \cap (X_B = 1) \cap (X_C = 1)$$

= {S₁, S₂} \circ {S₁, S₃} \circ {S₁, S₄}
= {S₁}.

So

$$P(X_A = 1, X_B = 1, X_C = 1) = P(\{S_1\}) = \frac{1}{4}$$

so

$LHS = \frac{1}{4}$ $RHS = \frac{1}{8}$

Remark

This counter example is more or less the some as the "cool counter example". We just replaced (more or less) A, B, C by their "characteristic functions".