Lecture 2 : Counting Techniques

2.3 The Three Basic Rules

1. The Product Rule for Ordered Pairs and Ordered k-tuples

Our first counting rule applies to any situation in which a set consists of ordered pairs of objects (a, b) where a comes from a set B.
In terms of pure mathematics the Cartesian product $A \times B$ is the set of such pairs

$$
A \times B=\{(a, b): a \in A, b \in B\}
$$

Proposition (text pg. 60)

If the first element of the ordered pair can be selected in n_{1} ways and if for each of these n_{1} ways the second element can be selected in n_{2} ways then the number of pairs is $n_{1} n_{2}$.

Mathematically - If $\sharp(A)=n_{1}$ and $\sharp(B)=n_{2}$ then $\sharp(A \times B)=n_{1} n_{2}$. There are analogous results for ordered triples etc.

$$
\sharp(A \times B \times C)=n_{1} n_{2} n_{3}
$$

Example

How many "words" of two letters can we make from the alphabet of five letters $\{a, b, c, d, e\}$.

Solution

Note that order counts $a b \neq b a$.
There are two ways to think about the problem pictorially.

1. Filling in two slots _

We have a choice of 5 ways to fill in the first slot and for each of these we have 5 more ways to fill in the second slot so we have 25 ways.

$$
\underline{5} \underline{5}=25
$$

Solution (Cont.)

2. Draw a tree where each edge is a choice

The number of pairs is the number paths from the root to a "leaf" (i.e., a node at the far right).

In this case there are 25 paths.

Problem

How many words of length 3?
2. Permutations (pg. 62)

In the previous problem the word aa was allowed. What if we required the letters in the word to be distinct. Then we would get 2 -permutations from the 5 -element set $\{a, b, c, d\}$ according to the following definition.

Definition

An ordered sequence of k distinct objects taken from a set of n elements is called a k-permutation of the n objects. The number of k-permutations of the n objects will be denoted $P_{k, n}$.

So order counts
Let us return to our 5 element set $\{a, b, c, d, e\}$ and count the number of 2－permutations．
It is best to think in terms of slots

$$
\underline{5} \underline{4}=20
$$

There are 5 choices for the first slot but only 4 for the second because whatever we put in the first slot cannot be put in the second slot so $P_{2,5}=20$ ．
What is $P_{3,5}$ ？

Proposition (pg. 68)

$$
P_{k, n}=\underbrace{n(n-1)(n-2) \ldots(n-k+1)}_{k \text { terms }}
$$

Proof.

Fill in k slots with no repetitions

Note that if we allowed repetitions we would get n^{k}

$$
\underbrace{\underline{n} \underline{n} \underline{n}-\underline{n}}_{k}
$$

There is a very important spacial case

$$
P_{n, n}=n!=n(n-1)(n-2) \ldots \text { 3.2.1 }
$$

There are n ! ways to take n distinct objects and arrange them in order.

Example

$n=3,\{a, b, c\}$

$$
\begin{aligned}
& \left.\begin{array}{l}
a b c \\
a c b \\
b a c \\
b c a \\
c a b \\
c b a
\end{array}\right\} \quad 3!=(3)(2)(1)=6
\end{aligned}
$$

When you list objects it is helpful to list them in dictionary order.

A Better Formula for $P_{k, n}$

Here is a better formula for $P_{k, n}$.

Proposition

$$
P_{k, n}=\frac{n!}{(n-k)!}
$$

Proof.

This is an algebraic trick

$$
\frac{n!}{(n-k)!}=\frac{n(n-1) \ldots(n-k+1) \overbrace{(n-k)(n-k-1) \ldots 3.2 .1}^{(n-k)!}}{(n-k)!}
$$

So cancel the second part of the numerator with the denominator

$$
\frac{n!}{n-k!}=n(n-1) \ldots(n-k+1)=P_{k, n}
$$

The Birthday Problem

Suppose there are n people in a room. What is the probability B_{n} that at least two people have the same birthday (eg., March 11)? Let S be the set of all possible birthdays for then n people so

$$
\begin{aligned}
& \sharp(S)=(365)^{n} \\
& \underbrace{}_{n \text { people }}
\end{aligned}
$$

(we ignore leap-years so this isn't quite right)

Now let $A \subset S$ be the event that at least two people have the same birthday. So $A^{\prime}=$ all the people in the room have different birthdays.
So

$$
B_{n}=1-P\left(A^{\prime}\right)
$$

Now what is $P\left(A^{\prime}\right)$? Order the people. The total number of people with different birthdays is $P_{n, 365}=$ the number of n-permutations of a set with 365 elements. So

$$
\sharp\left(A^{\prime}\right)=P_{n, 365}=\frac{n!}{n-k!}=n(n-1) \ldots(n-k+1)
$$

So

$$
B_{n}=1-\frac{P_{n, 365}}{(365)^{n}}
$$

Combinations
There are many counting problems in which one is given a set of n objects and one wants to count the number of unordered subsets with k elements.
An unordered subset with k elements taken from a set of n elements is called a k-combination of that set. The number of k-combinations is denoted $C_{k, n}$.
Which is bigger $C_{k, n}$ or $P_{k, n}$?
What is $C_{n, n}$?

Example

$P_{2,3}=6, C_{2,3}=3$
$S=\{a, b, c\}$

2 permutations of S	2 combinations of S
$a b$ ba	$\{a, b\}$
$b c c b$	$\{b, c\}$
$a c c a$	$\{a, c\}$

Each two combination gives rise to 2. 2-permutations. So

$$
P_{2,3}=2 C_{2,3}=(2)(3)=6
$$

A Formula for $C_{k, n}$
Proposition (pg. 64)

$$
\begin{gathered}
P_{k, n}=C_{k, n} \cdot k!\text { So } \\
C_{k, n}=\frac{P_{k, n}}{k!}=\frac{n!}{k!(n-k)!}
\end{gathered}
$$

Proof.

To make a k-permutation first make an unordered choice of the k-elements i.e., choose a k-combination, then, for each such choice arrange the elements in order (there are $P_{k, k}=k$! ways to do this). So we have

$$
\sharp(k \text {-permutations })=\sharp(k \text {-combinations }) . k \text { ! }
$$

More notation

The binomial coefficient $\binom{n}{k}$ is defined by

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

This is because a famous result from the past is

$$
\underbrace{(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}}_{\text {The binomial theorem. }}
$$

But a counting argument gives that coefficient of $a^{k} b^{n-k}$ is also equal to $C_{k, n}$. I will leave that argument to you with the hint that you should write $(a+b)^{n}$ as $\underbrace{(a+b) \ldots(a+b)}_{n \text { terms }}$ and make a
choice of either a or b from each bracket.
We will use the symbol $\binom{n}{k}$ in place of of symbol $C_{k, n}$.

More Problems

1 How many 5 card poker hands are there?
2 How many 13 card bridge hands are there?
Lastly
Proposition

$$
\binom{n}{k}=\binom{n}{n-k}
$$

Proof.
Challenge.
Find two proofs, one "combinatorial" and one algebraic.
\qquad

