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1. Statistics and Sampling Distributions
Suppose we have a random sample from some population with mean µX and
variance σ2

X .
In the next diagram YX should by µX .

and a function w = h(x1, x2, . . . , xn) of n variables. Then (as we know) the
combined random variable

W = h(X1,X2, . . . ,Xn)

is called a statistic.
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If the population random variable X is discrete then X1,X2, . . . ,Xn will all be
discrete and since W is a combination of discrete random variables it too will be
discrete.

The $64,000 question
How is W distributed ?
More precisely, what is the pmf pW (x) of W .
The distribution pW (x) of W is called a “sampling distribution”.
Similarly if the population random variable X is continuous we want to compute
the pdf fW (x) of W (now it is continuous)
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We will jump to §5.5.
The most common h(x1, . . . , xn) is a linear function

h(x1, x2, . . . , xn) = a1x1 + · · ·+ anxn

where
W = a1X1 + a2X2 + · · ·+ anXn

Proposition L (page 219)

Suppose W = a1X1 + · · ·+ anXn.
Then

(i) E(W) = E(a1X + · · ·+ anXn)

= a1E(X1) + · · ·+ anE(Xn)

(ii) If X1,X2, . . . ,Xn are independent then

V(a1X1 + · · ·+ anXn) = a2
1V(X1) + · · ·+ a2

nV(Xn)

(so V(cX) = c2V(X))
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Proposition L (Cont.)

Now suppose X1,X2, . . . ,Xn are a random sample from a population of mean µ
and variance σ2 so

E(Xi) = E(X) = µ, 1 ≤ i ≤ n

V(Xi) = V(X) = σ2, 1 ≤ i ≤ n

and X1,X2, . . . ,Xn are independent.
We recall

T0 = the sample total = X1 + · · ·+ Xn

X = the sample mean =
X1 + · · ·+ Xn

n
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As an immediate consequence of the previous proposition we have

Proposition M

Suppose X1,X2, . . . ,Xn is a random sample from a population of mean µX and
variance σ2

X . Then

(i) E(T0) = nµX2

(ii) V(T0) = nσ2
X

(iii) E(X) = µX

(iv) V(X) =
σ2

X

n
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Proof (this is important)

(i) E(T0) = E(X1 + · · ·+ Xn)

by the Prop.

= E(X1) + · · ·+ E(Xn)

why

= µX + · · ·+ µX︸            ︷︷            ︸
n copies

= nµX

(ii) V(T0) = V(X1 + · · ·+ Xn)

by the Prop

= V(X1) + · · ·+ V(Xn)

= σ2
X + · · ·+ σ2

X

= nσ2
X
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Proof (Cont.)

�
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Remark

It is important to understand the symbols – µX and σ2
X are the mean and

variance of the underlying population. In fact they are called the population
mean and the population variance. Given a statistic W = h(X1, . . . ,Xn) we
would like to compute E(W) = µW and V(W) = σ2

W in terms of the population
mean µX and the population variance σ2

X .

So we solved this problem for W = X namely

µX = µX

and
σ2

X
=

1
n
σ2

X

Never confuse population quantities with sample quantities.
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Corollary

σX = the standard deviation of X

=
σX
√

n
=

population standard deviation
√

n

Proof.

σX =

√
V(X)

=

√
σ2

X

n

=

√
σ2

X
√

n
=

σX
√

n

�
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Sampling from a Normal Distribution

Theorem LCN (Linear combination of normal is normal)

Suppose X1,X2, . . . ,Xn are independent and

X1 ∼ N(µ, σ2
1), . . . ,Xn ∼ N(µn, σ

2
n).

Let W = a1X1 + · · ·+ anXn. Then

W ∼ N(a1µ1 + · · ·+ anµn, a2
1σ

2
1 + · · ·+ a2

nσ
2
n)

Proof

At this stage we can’t prove W is normal (we could if we have moment
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Proof (Cont.)

generating functions available).
But we can compute the mean and variance of W using Proposition L.

E(W) = E(a1X1 + · · ·+ anXn)

= a1E(X1) + · · ·+ anE(Xn)

= a1µ1 + · · ·+ anµn

and

V(W) = V(a1X1 + · · ·+ anXn)

= a2
1V(X1) + · · ·+ a2

nV(Xn)

= a2
1σ

2
1 + · · ·+ a2

nσ
2
n

�
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Now we can state the theorem we need.

Theorem N

Suppose X1,X2, . . . ,Xn is a random sample from N(µ, σ2)

Then
T0 ∼ N(nµ, nσ2)

and

X ∼ N
(
µ,
σ2

n

)

Proof

The hard part is that T0 and X are normal (this is Theorem LCN)
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Proof (Cont.)

You show the mean of X is µ using either Proposition M or Theorem 10 and the

same for showing the variance of X is
σ2

n
. �

Remark

It is very important for statistics that the sample variance

S2 =
1

n − 1

n∑
i=1

(Xi − X)2

satisfies
S2 ∼ χ2(n − 1).

This is one reason that the chi-squared distribution is so important.
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3. The Central Limit Theorem (§5.4)
In Theorem N we saw that if we sampled n times from a normal distribution with
mean µ and variance σ2 then

(i) T0 ∼ N(nµ, nσ2)

(ii) X ∼ N
(
µ, σ

2

n

)
So both T0 and X are still normal
The Central Limit Theorem says that if we sample n times with n large enough
from any distribution with mean µ and variance σ2 then T0 has approximately
N(nµ, nσ2) distribution and X has approximately N(µ, σ2) distribution.
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We now state the CLT.

The Central Limit Theorem
In the figure σ2 should be σ2

n

X ≈ N(µ, σ
2

n ) provided n > 30.

Remark

This result would not be satisfactory to professional mathematicians because
there is no estimate of the error involved in the approximation.
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However an error estimate is known - you have to take a more advanced course.
The n > 30 is a “rule of thumb”. In this case the error will be neglible up to a
large number of decimal places (but I don’t know how many).

So the Central Limit Theorem says that for the purposes of sampling if n > 30
then the sample mean behaves as if the sample were drawn from a NORMAL
population with the same mean and variance equal to the variance of the actual
population divided by n.
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Example 5.27
A certain consumer organization reports the number of major defects for each
new automobile that it tests. Suppose that the number of such defects for a
certain model is a random variable with mean 3.2 and standard deviation 2.4.
Among 100 randomly selected cars of this model what is the probability that the
average number of defects exceeds 4.
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Solution

Let Xi = ] of defects for the i-th car.
In the following figure the equation 6 = 24 should be σ = 24.

n = 100 > 30 so we can use the CLT

X =
X1 + X2 + · · ·+ X100

100

So
X = average number of defects

So we want
P(X > 4)
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Solution (Cont.)

Now

E(X) = µ = 3.2

V(X) =
σ2

n
=

(2.4)2

100

Let Y be a normal random with the same mean and variance as X so µY = 3.2
and σ2

Y =
(2.4)2

100 and so

By the CLT X ≈ Y so

don't use 

correction

for continuity
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How the Central Limit Theorem Gets Used More Often
The CLT is much more useful than one would expect. That is because many
well-known distributions can be realized as sample totals of a sample drawn
from another distribution. I will state this as

General Principle
Suppose a random variable W can be realized as a sample total
W = T0 = X1 + · · ·+ Xn from some X and n > 30.
Then W is approximately normal.
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Examples

1 W ∼ Bin(n, p) with n large.

2 W ∼ Gamma(α, β) with α large.

3 W ∼ Poisson(λ) with λ large.

We will do the example of W ∼ Bin(n, p) and recover (more or less) the normal
approximation to the binomial so

CLT⇒ normal approx to binomial.
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The point is

Theorem (sum of binomials is binomial)

Suppose X and Y are independent, X ∼ Bin(m, p) and Y ∼ Bin(n, p). Then

W = X + Y ∼ Bin(m + n, p)

Proof

For simplicity we will assume p =
1
2

.

Suppose Fred tosses a fair coin m times and Jack tosses a fair coin n times.
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Proof (Cont.)

Let

X = ] of head Fred observes

Y = ] of heads Jack observes

So

X ∼ Bin
(
m,

1
2

)
and Y ∼ Bin

(
n,

1
2

)
What is X + Y ?
Forget who was doing the tossing, X + Y is just the total number of heads in
m + n tosses of a fair coin so

X + Y ∼ Bin
(
m + n,

1
2

)
.

�
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Now suppose we have

Then Xi ∼ Bin(1, p), 1 ≤ i ≤ n,

T0 = X1 + X2 + · · ·+ Xn ∼ Bin(n, p)

Now if n > 30 we know T0 is approximately normal so if W ∼ Bin(n, p) and
n > 30 the W ≈ normal

E(W) = np and V(W) = npq AND
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W ∼ N(np, npq)

So we get the normal approximation to the binomial (with n > 30 replacing
np ≥ 10 and nq ≥ 10)

Remark

If p =
1
2

then the second conditions gives n > 20.

- so better then CLT but if p =
1
5

then the second conditions gives n > 50.

- so worse than the CLT.
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