Lecture 23: How to find estimators §6.2

We have been discussing the problem of estimating on unknown parameter θ in a probability distribution if we are given a sample $x_{1}, x_{2}, \ldots, x_{n}$ from that distribution. We introduced two examples.

Use the sample mean $\bar{x}=\frac{x_{1}+\ldots+x_{n}}{n}$ to estimate population mean $\mu . \bar{X}$ is an unbiased estimator of μ.

Also we had the more subtle problem of estimators B in $U(0, B)$

$$
W=\frac{n+1}{n} \max \left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

is an unbiased estimators of $\theta=B$.
We discussed two desirable properties of estimators
(i) unbiased
(ii) minimum variance
the general problems. Given

X
$p_{x}(x, \theta)$

How do you find an estimator $\hat{\theta}=h\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ for θ ?
There are two methods.
(i) The method of moments
(ii) The method of maximum likelihood.

The Method of Moments

Definition 1

Let k be a non negative integer and X be a random variable. Then the k-th moment $m_{k}(x)$ of X is given by

$$
\text { so } \left.\begin{array}{rl}
m_{k}(X) & =E\left(X^{k}\right), k \geq 0 \\
m_{0}(X) & =1 \\
m_{1}(X) & =E(X)=\mu \\
& m_{2}(X)
\end{array}\right) E\left(X^{2}\right)=\sigma^{2}+\mu^{2} .
$$

Definition 2

Let $x_{1}, x_{2}, \ldots, x_{n}$ be a sample from X. Then the k-th sample moment S_{k} is

$$
S_{k}=\frac{1}{n} \sum_{1=1}^{n} x_{i}^{k}, \text { so } S_{1}=\bar{x}
$$

Key Point

Given

the k-th moment $m_{k}(X)$ (k-th population moment) depends on θ whereas the k-th sample moment does not - it is just the average sum of powers of the x 's.
The method of moments says
(i) Equate the k-the population moment $m_{k}(X)$ to the k-th sample moment S_{k}.
(ii) Solve the resulting system of equations for θ.

$$
(*) \quad m_{k}(X)=S_{k}, \quad 1 \leq k<\infty
$$

We will denote the answer by $\hat{\theta}_{\text {mme }}$

Example 1

Estimating P in a Bernoulli distribution

The first population moment $m_{1}(X)$ is the near $E(X)=p=\theta$
The first sample moment S_{1} is the sample mean so looking at the first equation of $(*)$

$$
m_{1}(X)=S_{1} \quad \text { so } \quad p=\bar{x}
$$

gives us the sample mean as an estimator for p

Example 1 (Cont.)

Recall that because the x 's are all either 1 or zero $x_{1}+\ldots+x_{n}=\neq$ of successes and

$$
\begin{aligned}
\bar{x} & =\frac{\# \text { ofsuccesses }}{n} \\
& =\text { the sample proportion } \\
\hat{p}_{\text {mme }} & =\bar{X}
\end{aligned}
$$

Example 2

The method of moments works well when you here several unknown parameters. Suppose we want to estimate both the mean μ and the variance σ^{2} from a normal distribution (or any distribution)

$$
X \sim N\left(\mu, \sigma^{2}\right)
$$

Example 2 (Cont.)

We equate the first two population moments to the first two sample moments

$$
\begin{aligned}
& m_{1}(X)=S_{1} \\
& m_{2}(X)=S_{2}
\end{aligned}
$$

so

$$
\begin{aligned}
\mu & =\bar{X} \\
\sigma^{2}+\mu^{2} & =\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}
\end{aligned}
$$

Solving (we get μ for free, $\hat{\mu}_{\text {mme }}=\bar{X}$)

$$
\begin{aligned}
\sigma^{2} & =\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}-\mu^{2} \\
& =\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}-\left(\frac{\sum X_{i}}{n}\right)^{2} \\
& =\frac{1}{n}\left(\sum_{i=1}^{n} X_{i}^{2}-\frac{1}{n}\left(\sum X_{i}\right)^{2}\right)
\end{aligned}
$$

Example 2 (Cont.)

So

$$
{\widehat{\sigma^{2}}}_{m m e}=\frac{1}{n}\left(\sum X_{i}^{2}-\frac{\left(\sum X_{i}\right)^{2}}{n}\right)
$$

Actually the best estimator for σ^{2} is the sample variance

$$
S^{2}=\frac{1}{n-1}\left(\sum_{i=1}^{n} x_{i}^{2}-\frac{\left(\sum x_{i}\right)^{2}}{n}\right)
$$

$\widehat{\sigma^{2}}{ }_{m m e}$ is a biased estimator.

Example 3

Estimating B in $U(0, B)$
Recall that we come up with the unbiased estimator

$$
\widehat{B}=\frac{n+1}{n} \max \left(x_{2}, x_{2}, \ldots, x_{n}\right)
$$

Put $w=\max \left(x_{1}, \ldots, x_{n+1}\right)$

What do we get from the Method of Moments ?

Then $E(X)=\frac{0+B}{2}=\frac{B}{2}$
So equating the first population moment $m_{1}(X)=\mu$ to the first sample moment $S_{1}=\bar{x}$ we get

$$
\begin{array}{rlrl}
& \frac{B}{2} & =\bar{x} \\
\text { so } \quad B & =2 \bar{x} \text { and } \hat{B}_{m m e}=2 \bar{X}
\end{array}
$$

This is unbiased because

$$
E(\bar{X})=\text { population mean }=\frac{B}{2}
$$

so $E(2 \bar{X})=B$

So we have a new unbiased estimator

$$
\hat{B}_{1}=\hat{B}_{m m e}=2 \bar{X}
$$

Recall the other was

$$
\hat{B}_{2}=\frac{n+1}{n} W
$$

where $W=\operatorname{Max}\left(X_{1}, \ldots, X_{n}\right)$
Which one is better?
We will interpret this to mean "which one has the smaller variance"?

$V\left(\hat{B}_{1}\right)=V(2 \bar{X})$

Recall from the Distribution Hard out that $X \sim U(A, B)$

$$
\Rightarrow V(X)=\frac{(B-A)^{2}}{12}
$$

Now $X \sim U(0, B)$ so

$$
V(X)=\frac{B^{2}}{12}
$$

This is the population variance. We also know

$$
\begin{aligned}
\quad V(\bar{X}) & =\frac{\sigma^{2}}{n}=\frac{\text { population variance }}{n} \\
\text { so } \quad V(\bar{X}) & =\frac{B^{2}}{12 n} \\
\text { Then } \quad V\left(\hat{B}_{1}\right) & =V(2 \bar{X})=4 \frac{B^{2}}{12 n}=\frac{B^{2}}{3 n}
\end{aligned}
$$

$V\left(B_{2}\right)=V\left(\frac{n+1}{n} \operatorname{Max}\left(X_{1}, \ldots, X_{n}\right)\right)$
We have $W=\operatorname{Max}\left(X_{1}, X_{2}, \ldots, X_{n}\right)$
We have from Problem 32, pg 252

$$
\begin{aligned}
E(W) & =\frac{n}{n+1} B \\
f_{W}(w) & =\left\{\begin{array}{l}
\frac{n w^{n-1}}{B^{n}}, \quad 0 \leq w \leq B \\
0, \quad \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Hence

$$
\begin{aligned}
E\left(W^{2}\right) & =\int_{0}^{B} w^{2} \frac{n w^{n-1}}{B^{n}} d w=\frac{n}{B^{n}} \int_{0}^{B} w^{n+1} d w \\
& =\left.\frac{n}{B^{n}}\left(\frac{W^{n+2}}{n+2}\right)\right|_{w=0} ^{w=B}=\frac{n}{n+2} B^{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
V(W) & =E\left(W^{2}\right)-E(W)^{2} \\
& =\frac{n}{n+2} B^{2}-\left(\frac{n}{n+1} B\right)^{2} \\
& =B^{2}\left(\frac{n}{n+2}-\frac{n^{2}}{(n+1)^{2}}\right) \\
& =B^{2}\left(\frac{n(n+1)^{2}-n^{2}(n+2)}{(n+1)^{2}(n+2)}\right) \\
& =B^{2}\left(\frac{n^{3}+z n^{2}+n-n^{3}-2 n^{2}}{(n+1)^{2}(n+2)}\right) \\
& =\frac{n}{(n+1)^{2}(n+2)} B^{2} \\
V\left(\hat{B}_{2}\right) & =V\left(\frac{n+1}{n} W\right)=\frac{(n+1)^{2}}{n^{2}} V(W) \\
& =\frac{(n+1)^{2}}{n^{2}} \frac{n}{(n+1)^{2}(n+2)} B^{2}=\frac{1}{n(n+2)} B^{2}
\end{aligned}
$$

\hat{B}_{2} is the winner because $n \geq 1$. If $n=1$ they tie but of course $n \gg 1$ so \hat{B}_{2} is a lot better.

The Method of Maximum Likelihood (a brilliant idea)
Suppose we have an actual sample $x_{1}, x_{2}, \ldots, x_{n}$ from the space of a discrete random variable x whose proof $p_{x}(x, \theta)$ depends on an unknown parameter θ.

What is the probability P of getting the sample $x_{1}, x_{2}, \ldots, x_{n}$ that we actually obtained. It is

$$
P\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right)
$$

by independence

$$
=P\left(X_{1}=x_{1}\right) P\left(X_{2}=x_{2}\right) \ldots P\left(X_{n}=x_{n}\right)
$$

But since $X_{1}, X_{2}, \ldots, X_{n}$ are samples from X they have the sample proof's as X SO

$$
\begin{gathered}
P\left(X_{1}=x_{1}\right)=P\left(X=x_{1}\right)=P_{x}\left(x_{1}, \theta\right) \\
P\left(X_{2}=x_{2}\right)=P\left(X=x_{2}\right)=P_{x}\left(x_{2}, \theta\right) \\
\vdots \\
P\left(X_{n}=x_{n}\right)=P\left(X=x_{n}\right)=P_{x}\left(x_{n}, \theta\right)
\end{gathered}
$$

Hence

$$
P=p_{X}\left(x_{1}, \theta\right) p_{X}\left(x_{2}, \theta\right) \ldots p_{X}\left(x_{n}, \theta\right)
$$

P is a function of θ, it is called the likelihood function and denoted $L \theta$-it is the likelihood of getting the sample we actually obtained.

Note, θ is unknown but $x_{1}, x_{2}, \ldots, x_{n}$ are known (given). So what is the nest guess for θ - the number that maximizes the probability of getting the sample use actually observed. This is the value of θ that is most compatible with the observed data.

Bottom Line

Find the value of θ that maximizes the likelihood function $L(\theta)$
This is the "method of maximum likelihood".

The resulting estimator will be called the maximum likelihood estimator, abbreviated mle and denoted $\hat{\theta}_{\text {mle }}$.

Remark (We will be lazy)
In doing problems, following the text, we won't really maximize $L(\theta)$ we will just find a critical point of $L(\theta)$ ie. a point where $L^{\prime}(\theta)$ is zero. Later in your cancer if your have to do this you should check that the critical point is indeed a maximum.

Examples

1. The mle for p in $\operatorname{Bin}(1, p)$

$X \sim \operatorname{Bin}(1, p)$ means the proof of X is | x | 0 | 1 | |
| :---: | :---: | :---: | :---: |
| $p(X=x)$ | $1-p$ | P | |

There is a simple formula for this

$$
p_{X}(x)=p^{x}(1-p)^{1-x}, x=0,1
$$

Now since p is our unknown parameter θ we write

$$
p_{X}(x, \theta)=\theta^{x}(1-\theta)^{1-x}, x=0,1
$$

SO

$$
\begin{gathered}
p_{X}(x, \theta)=\theta^{x_{1}}(1-\theta)^{1-x_{1}} \\
\vdots \\
p_{X}\left(x_{n}, \theta\right)=\theta^{x_{n}}(1-\theta)^{1-x_{n}}
\end{gathered}
$$

Hence

$$
L(\theta)=p_{X}\left(x_{1}, \theta\right) \ldots p_{X}\left(x_{n}, \theta\right)
$$

and hence

$$
L(\theta)=\underbrace{\theta^{x_{1}}(1-\theta)^{1-x_{1}} \theta^{x_{2}}(1-\theta)^{1-x_{2}} \ldots \theta^{x_{n}}(1-\theta)^{1-x_{n}}}_{\text {positive number }}
$$

Now we want to

$$
\left.\begin{array}{l}
\text { 1. Compute } L^{\prime}(\theta) \tag{*}\\
\text { 2. Set } L^{\prime}(\theta)=0 \text { and solve for } \\
\theta \text { in terms of } x_{1}, x_{2}, \ldots, x_{n}
\end{array}\right\}
$$

We can make things much simpler by using the following trick. Suppose $f(x)$ is a real valued function that only takes positive value.
Put $h(x)=\ln f(x)$
Then $\quad h^{\prime}(x)=\frac{d}{d x} \ln f(x) \stackrel{\downarrow}{=} \frac{1}{f(x)} \frac{d f}{d x}=\frac{f^{\prime}(x)}{f(x)}$

So the critical points of h are the same points as those of f

$$
h^{1}(x)=0 \Leftrightarrow \frac{f^{\prime}(x)}{f(x)}=0 \Leftrightarrow f^{\prime}(x)=0
$$

Also h takes a maximum value of $x_{*} \Leftrightarrow f$ takes a maximum value at x_{*}. This is because In is an increasing function so it preserves order relations.
($a<b \Leftrightarrow \ln a<\ln b$, have we assume $a>0$ and $b>0$)
Bottom Line Change (*) to (**)

1. Compute $h(\theta)=\ln L(\theta)$
2. Compute $h^{\prime}(\theta)$
3. Set $h^{\prime}(\theta)=0$ and solve for θ in terms of $x_{1}, x_{2}, \ldots, x_{n}$

Now back to $\operatorname{Bin}(l, p)$

$$
L(\theta)=\theta^{x_{1}}(1-\theta)^{1-x_{1}} \ldots \theta^{x_{n}}(1-\theta)^{1-x_{n}}
$$

rearrange

$$
\begin{aligned}
& =\theta^{x_{1}} \theta^{x_{2}} \ldots \theta^{x_{n}}(1-\theta)^{1-x_{1}}(1-\theta)^{1-x_{2}} \ldots(1-\theta)^{1-x_{n}} \\
& =\theta^{x_{1}+x_{2}+\ldots+x_{n}}(1-\theta)^{n-\left(x_{1}+x_{2}+\ldots+x_{n}\right)}
\end{aligned}
$$

Now take the natural logarithm

$$
h(\theta)=\ln L(\theta)=\left(x_{1}+\ldots+x_{n}\right) \ln \theta+\left(n-\left(x_{1}+\ldots+x_{n}\right)\right) \ln (1-\theta)
$$

Now apply $\frac{d}{d \theta}$ to each side using

$$
\frac{d}{d \theta} \ln (1-\theta)=\frac{1}{1-\theta} \frac{d}{d \theta} \underbrace{(1-\theta)}_{-1}=\frac{-1}{1-\theta}
$$

So

$$
h^{\prime}(\theta)=\frac{x_{1}+\ldots+x_{n}}{\theta}-\frac{n-\left(x_{1}+\ldots+x_{n}\right)}{1-\theta}
$$

So we have to solve $h^{\prime}(\theta)=0$ or

$$
\begin{aligned}
& \quad \frac{x_{1}+\ldots+x_{n}}{\theta}=\frac{n-\left(x_{1}+\ldots+x_{n}\right)}{1-\theta} \\
& (1-\theta)\left(x_{1}+\ldots+x_{n}\right)=\theta\left(n-\left(x_{1}+\ldots+x_{n}\right)\right) \\
& x_{1}+\ldots+x_{n}-\theta\left(x_{1}+\ldots+x_{n}\right)=n \theta-\theta\left(x_{1}+\ldots+x_{n}\right) \\
& x_{1}+\ldots+x_{n}=n \theta \\
& \\
& \theta=\frac{x_{1}+\ldots+x_{n}}{n}=\bar{x} \\
& \text { so } \quad \hat{\theta}_{\text {mle }}=\bar{X}
\end{aligned}
$$

2. The mle for λ in $\operatorname{Exp}(\lambda)$

We have

$$
f(x, \lambda)=\left\{\begin{array}{l}
\lambda e^{-\lambda x}, x \geq 0 \\
0, x<0
\end{array}\right.
$$

Now we have a continuous distribution we define $L(\theta)$ by

$$
L(\theta)=f\left(x_{1}, \theta\right) f\left(x_{2}, \theta\right) \ldots f\left(x_{n}, \theta\right)
$$

and procede as before.
$L(\theta)$ nolonger has a nice interpretation

Let's try to guess the answer. We have $E(X)=\mu=\frac{1}{\lambda}$ and we know that \bar{x} is the best estimator for μ so it is reasonable to guess the best estimator for $\lambda=\frac{1}{\mu}$ will be $\frac{1}{\bar{x}}$. This is for from correct logically but it helps to know where you are going. Away we go -let's not bother changing λ to θ.

$$
\begin{aligned}
L(\lambda) & =\lambda e^{-\lambda x_{1}} \lambda e^{-\lambda x_{2}} \ldots \lambda e^{-\lambda x_{n}} \\
& =\lambda^{n} e^{-\lambda x_{1}} e^{-\lambda x_{2}} e^{-\lambda x_{n}} \\
L(\lambda) & =\lambda^{n} e^{-\lambda\left(x_{1}+\ldots+x_{n}\right)}
\end{aligned}
$$

Now we suspect we are looking for a function of \bar{x} so lets use

$$
x_{1}+x_{2}+\ldots+x_{n}=n \bar{x}
$$

(sum = n average)
to obtain

$$
L(\lambda)=\lambda^{n} e^{-\lambda n \bar{x}}
$$

Once again it helps to take the notarial logarithm

$$
\begin{aligned}
h(\lambda) & =\ln L(\lambda)=\ln \left(\lambda^{n} e^{-\lambda n \bar{x}}\right) \\
& =\ln \lambda^{n}+\ln e^{-\lambda n \bar{x}} \\
h(\lambda) & =n \ln \lambda-\lambda n \bar{x}
\end{aligned}
$$

Now

$$
\begin{aligned}
& h^{\prime}(\lambda)=\frac{n}{\lambda}-n \bar{x} \text { so } \\
& h^{\prime}(\lambda)=0 \Leftrightarrow \frac{n}{\lambda}=n \bar{x} \Leftrightarrow \lambda=\frac{1}{x}
\end{aligned}
$$

Hence

$$
\widehat{\lambda}_{m l e}=\frac{1}{\bar{X}}
$$

Problem What if we wanted the mle of λ^{2} instead of. The answer would be

$$
\widehat{\lambda}_{m l e}^{2}=\frac{1}{\bar{X}} 2
$$

by the

In variance Principle

Suppose we are given a sample $x_{1}, x_{2}, \ldots, x_{n}$ from a probability distribution whose pdf (or proof) depends on k unknown parameters $\theta_{1}, \theta_{2}, \ldots, \theta_{k}$. Suppose we have computed the mle's $\left(\theta \theta_{1}\right)_{\text {mle's }} \ldots\left(\hat{\theta}_{k}\right)_{\text {mle }}$ of these parameters in terms of $x_{1}, x_{2}, \ldots, x_{n}$. Then the mle of $h\left(\theta_{1}, \theta_{2}, \ldots, \theta_{n}\right)$ is $h\left(\left(\hat{\theta}_{1}\right)_{\text {mles }} \ldots,\left(\hat{\theta}_{k}\right)_{\text {mle }}\right)$ or

$$
h\left(\theta_{1}, \ldots, \theta_{k}\right)_{m l e}=h\left(\left(\hat{\theta}_{1}\right)_{m l e}, \ldots,\left(\hat{\theta}_{k}\right)_{m l e}\right)
$$

One more example

In Example 6.17 of the text if is shown that

$$
{\widehat{\sigma^{2}}}_{m l e}=\frac{1}{n}\left(\sum X_{i}^{2}-\frac{\left(\sum X_{i}\right)^{2}}{n}\right)={\widehat{\sigma^{2}}}_{m m e}
$$

Hence $\quad \widehat{\sigma}_{m l e}=\sqrt{\frac{1}{n} \sum X_{i}^{2}-\frac{\left(\sum X_{i}\right)^{2}}{n}}$
(here $h(\theta)=\sqrt{\theta}$ and $\theta=\sigma^{2}$)

