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We have been discussing the problem of estimating on unknown parameter θ in
a probability distribution if we are given a sample x1, x2, . . . , xn from that
distribution. We introduced two examples.

Use the sample mean x =
x1 + . . .+ xn

n
to estimate population mean µ. X is an

unbiased estimator of µ.
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Also we had the more subtle problem of estimators B in U(0,B)

W =
n + 1

n
max(x1, x2, . . . , xn)

is an unbiased estimators of θ = B.
We discussed two desirable properties of estimators

(i) unbiased

(ii) minimum variance
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the general problems. Given

How do you find an estimator θ̂ = h(x1, x2, . . . , xn) for θ?
There are two methods.

(i) The method of moments

(ii) The method of maximum likelihood.
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The Method of Moments

Definition 1

Let k be a non negative integer and X be a random variable. Then the k -th
moment mk (x) of X is given by

mk (X) = E(Xk ), k ≥ 0

so m0(X) = 1

m1(X) = E(X) = µ

m2(X) = E(X2) = σ2 + µ2

Definition 2

Let x1, x2, . . . , xn be a sample from X . Then the k -th sample moment Sk is

Sk =
1
n

n∑
1=1

xk
i , so S1 = x

Lecture 23: How to find estimators §6.2



5/ 29

Key Point
Given

the k -th moment mk (X) (k -th population moment) depends on θ whereas the
k -th sample moment does not - it is just the average sum of powers of the x ’s.
The method of moments says

(i) Equate the k -the population moment mk (X) to the k -th sample moment Sk .

(ii) Solve the resulting system of equations for θ.
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(∗) mk (X) = Sk , 1 ≤ k < ∞

We will denote the answer by θ̂mme

Example 1

Estimating P in a Bernoulli distribution

The first population moment m1(X) is the near E(X) = p = θ

The first sample moment S1 is the sample mean so looking at the first equation
of (∗)

m1(X) = S1 so p = x

gives us the sample mean as an estimator for p
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Example 1 (Cont.)

Recall that because the x ’s are all either 1 or zero x1 + . . .+ xn =, of successes
and

x =
# ofsuccesses

n
= the sample proportion

p̂mme = X

Example 2

The method of moments works well when you here several unknown
parameters. Suppose we want to estimate both the mean µ and the variance σ2

from a normal distribution (or any distribution)

X ∼ N(µ, σ2)
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Example 2 (Cont.)

We equate the first two population moments to the first two sample moments

m1(X) = S1

m2(X) = S2

so

µ = X

σ2 + µ2 =
1
n

n∑
i=1

x2
i

Solving (we get µ for free, µ̂mme = X )

σ2 =
1
n

n∑
i=1

X2
i − µ

2

=
1
n

n∑
i=1

X2
i −

(∑
Xi

n

)2

=
1
n

 n∑
i=1

X2
i −

1
n
(
∑

Xi)
2


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Example 2 (Cont.)

So

σ̂2
mme =

1
n

(∑
X2

i −
(
∑

Xi)
2

n

)
Actually the best estimator for σ2 is the sample variance

S2 =
1

n − 1

 n∑
i=1

X2
i −

(
∑

xi)
2

n


σ̂2

mme is a biased estimator.

Example 3

Estimating B in U(0,B)
Recall that we come up with the unbiased estimator

B̂ =
n + 1

n
max(x2, x2, . . . , xn)

Put w = max(x1, . . . , xn+1)
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What do we get from the Method of Moments ?

Then E(X) =
0 + B

2
=

B
2

So equating the first population moment m1(X) = µ to the first sample moment
S1 = x we get

B
2

= x

so B = 2x and B̂mme = 2X

This is unbiased because

E(X) = population mean =
B
2

so E(2X) = B
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So we have a new unbiased estimator

B̂1 = B̂mme = 2X .

Recall the other was
B̂2 =

n + 1
n

W

where W = Max (X1, . . . ,Xn)
Which one is better?
We will interpret this to mean “which one has the smaller variance”?
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V(B̂1) = V(2X)

Recall from the Distribution Hard out that X ∼ U(A ,B)

⇒ V(X) =
(B − A)2

12

Now X ∼ U(0,B) so

V(X) =
B2

12
This is the population variance. We also know

V(X) =
σ2

n
=

population variance
n

so V(X) =
B2

12n

Then V(B̂1) = V(2X) = 4
B2

12n
=

B2

3n
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V(B2) = V
(
n + 1

n
Max (X1, . . . ,Xn)

)
We have W = Max (X1,X2, . . . ,Xn)
We have from Problem 32, pg 252

E(W) =
n

n + 1
B

and fW (w) =


nwn−1

Bn , 0 ≤ w ≤ B

0, otherwise

Hence

E(W2) =

B∫
0

w2 nwn−1

Bn dw =
n

Bn

B∫
0

wn+1dw

=
n

Bn

(
Wn+2

n + 2

)∣∣∣∣∣∣w=B

w=0
=

n
n + 2

B2
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Hence

V(W) = E(W2) − E(W)2

=
n

n + 2
B2 −

( n
n + 1

B
)2

= B2
(

n
n + 2

−
n2

(n + 1)2

)
= B2

(
n(n + 1)2 − n2(n + 2)

(n + 1)2(n + 2)

)
= B2

(
n3 + zn2 + n − n3 − 2n2

(n + 1)2(n + 2)

)
=

n
(n + 1)2(n + 2)

B2

V(B̂2) = V
(
n + 1

n
W

)
=

(n + 1)2

n2 V(W)

=
���

��
(n + 1)2

n2

n

��
��(n + 1)2(n + 2)

B2 =
1

n(n + 2)
B2
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B̂2 is the winner because n ≥ 1. If n = 1 they tie but of course n >> 1 so B̂2 is a
lot better.
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The Method of Maximum Likelihood (a brilliant idea)
Suppose we have an actual sample x1, x2, . . . , xn from the space of a discrete
random variable x whose proof pX(x, θ) depends on an unknown parameter θ.

What is the probability P of getting the sample x1, x2, . . . , xn that we actually
obtained. It is

P(X1 = x1,X2 = x2, . . . ,Xn = xn)

by independence

= P(X1 = x1)P(X2 = x2) . . .P(Xn = xn)
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But since X1,X2, . . . ,Xn are samples from X they have the sample proof’s as X
so

P(X1 = x1) = P(X = x1) = PX(x1, θ)

P(X2 = x2) = P(X = x2) = PX(x2, θ)

...

P(Xn = xn) = P(X = xn) = PX(xn, θ)

Hence
P = pX(x1, θ)pX(x2, θ) . . . pX(xn, θ)

P is a function of θ, it is called the likelihood function and denoted Lθ-it is the
likelihood of getting the sample we actually obtained.
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Note, θ is unknown but x1, x2, . . . , xn are known (given). So what is the nest
guess for θ - the number that maximizes the probability of getting the sample use
actually observed. This is the value of θ that is most compatible with the
observed data.

Bottom Line
Find the value of θ that maximizes the likelihood function L(θ)
This is the “method of maximum likelihood”.
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The resulting estimator will be called the maximum likelihood estimator,
abbreviated mle and denoted θ̂mle.

Remark (We will be lazy)
In doing problems, following the text, we won’t really maximize L(θ) we will just
find a critical point of L(θ) ie. a point where L ′(θ) is zero. Later in your cancer if
your have to do this you should check that the critical point is indeed a maximum.
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Examples

1. The mle for p in Bin(1, p)

X ∼ Bin(1, p) means the proof of X is
x 0 1

p (X=x) 1 − p P
There is a simple formula for this

pX(x) = px(1 − p)1−x , x = 0, 1

Now since p is our unknown parameter θ we write

pX(x, θ) = θx(1 − θ)1−x , x = 0, 1

so

pX(x, θ) = θx1(1 − θ)1−x1

...

pX(xn, θ) = θxn(1 − θ)1−xn
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Hence
L(θ) = pX(x1, θ) . . . pX(xn, θ)

and hence

L(θ) = θx1(1 − θ)1−x1θx2(1 − θ)1−x2 . . . θxn(1 − θ)1−xn︸                                                       ︷︷                                                       ︸
positive number

Now we want to
1. Compute L ′(θ)
2. Set L ′(θ) = 0 and solve for

θ in terms of x1, x2, . . . , xn

 (∗)

We can make things much simpler by using the following trick. Suppose f(x) is a
real valued function that only takes positive value.
Put h(x) = ln f(x)
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So the critical points of h are the same points as those of f

h1(x) = 0⇔
f ′(x)
f(x)

= 0⇔ f ′(x) = 0

Also h takes a maximum value of x∗ ⇔ f takes a maximum value at x∗. This is
because ln is an increasing function so it preserves order relations.
(a < b ⇔ ln a < ln b, have we assume a > 0 and b > 0)
Bottom Line Change (∗) to (∗∗)
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1. Compute h(θ) = ln L(θ)

2. Compute h′(θ)

3. Set h′(θ) = 0 and solve for θ in terms of x1, x2, . . . , xn

Now back to Bin(l, p)

L(θ) = θx1(1 − θ)1−x1 . . . θxn(1 − θ)1−xn

rearrange

= θx1θx2 . . . θxn(1 − θ)1−x1(1 − θ)1−x2 . . . (1 − θ)1−xn

= θx1+x2+...+xn(1 − θ)n−(x1+x2+...+xn)

Now take the natural logarithm

h(θ) = lnL(θ) = (x1 + . . .+ xn)lnθ + (n − (x1 + . . .+ xn))ln(1 − θ)

Now apply
d
dθ

to each side using

d
dθ

ln(1 − θ) =
1

1 − θ
d
dθ

(1 − θ)︸ ︷︷ ︸
−1

=
−1

1 − θ
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so

h′(θ) =
x1 + . . .+ xn

θ
−

n − (x1 + . . .+ xn)

1 − θ
So we have to solve h′(θ) = 0 or

x1 + . . .+ xn

θ
=

n − (x1 + . . .+ xn)

1 − θ

(1 − θ)(x1 + . . .+ xn) = θ(n − (x1 + . . .+ xn))

x1 + . . .+ xn − θ((((
((((x1 + . . .+ xn) = nθ − θ((((

((((x1 + . . .+ xn)

x1 + . . .+ xn = nθ

θ =
x1 + . . .+ xn

n
= x

so θ̂mle = X
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2. The mle for λ in Exp(λ)

We have

f(x, λ) =

λe−λx , x ≥ 0

0, x < 0

Now we have a continuous distribution we define L(θ) by

L(θ) = f(x1, θ)f(x2, θ) . . . f(xn, θ)

and procede as before.
L(θ) nolonger has a nice interpretation
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Let’s try to guess the answer. We have E(X) = µ =
1
λ

and we know that x is the

best estimator for µ so it is reasonable to guess the best estimator for λ =
1
µ

will

be
1
x

. This is for from correct logically but it helps to know where you are going.

Away we go -let’s not bother changing λ to θ.

L(λ) = λe−λx1λe−λx2 . . . λe−λxn

= λne−λx1e−λx2e−λxn

L(λ) = λne−λ(x1+...+xn)
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Now we suspect we are looking for a function of x so lets use

x1 + x2 + . . .+ xn = nx

(sum = n average)
to obtain

L(λ) = λne−λnx

Once again it helps to take the notarial logarithm

h(λ) = lnL(λ) = ln(λne−λnx)

= lnλn + lne−λnx

h(λ) = nlnλ − λnx

Now

h′(λ) =
n
λ
− nx so

h′(λ) = 0⇔
n
λ
= nx ⇔ λ =

1
x
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Hence
λ̂mle =

1

X

Problem What if we wanted the mle of λ2 instead of. The answer would be

λ̂2
mle =

1

X
2

by the
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In variance Principle
Suppose we are given a sample x1, x2, . . . , xn from a probability distribution
whose pdf (or proof) depends on k unknown parameters θ1, θ2, . . . , θk . Suppose
we have computed the mle’s (θθ1)mle′s . . . (θ̂k )mle of these parameters in terms of
x1, x2, . . . , xn. Then the mle of h(θ1, θ2, . . . , θn) is h

(
(θ̂1)mles . . . , (θ̂k )mle

)
or

̂h(θ1, . . . , θk )mle = h
(
(θ̂1)mle , . . . , (θ̂k )mle

)
One more example
In Example 6.17 of the text if is shown that

σ̂2
mle =

1
n

(∑
X2

i −
(
∑

Xi)
2

n

)
= σ̂2

mme

Hence σ̂mle =

√
1
n

∑
X2

i −
(
∑

Xi)2

n
(here h(θ) =

√
θ and θ = σ2)
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