Lecture 24: The Sample Variance S^{2} The squared variation

Suppose we have n numbers $x_{1}, x_{2}, \ldots, x_{n}$. Then their squared variation
$s v=s v\left(x_{1}, x_{2}, \ldots, x_{n}\right) \operatorname{sv}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$
Their mean (average) squared variation msv or σ_{n}^{2} (denoted σ^{2} and called the "population variance on page 33 of our text) is given by

$$
m s v=\sigma_{n}^{2}=\frac{1}{n} s v=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

Here \bar{x} is the average $\frac{1}{n} \sum_{i=1}^{n} x_{i}$.

The msv measure how much the numbes $x_{1}, x_{2}, \ldots, x_{n}$ vary (precisely how much they vary from their average \bar{x}). For example if they are all equal then they will be all equal to their average \bar{x} so

$$
s v=0 \quad \text { and } \quad m s v=0
$$

We also define the sample variance s^{2} by

$$
\begin{aligned}
& S^{2}=\frac{1}{n-1} s v=\frac{n}{n-1} m s v \\
& S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
\end{aligned}
$$

Amazingly, s^{2} is more important then msv in statistics

The Shortcut Formula for the Squared Variation

Theorem

$$
\begin{equation*}
\operatorname{sv}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{i=1}^{n} x_{i}^{2}-\frac{1}{n}\left(\sum_{i=1}^{n} x_{i}\right)^{2} \tag{*}
\end{equation*}
$$

Proof

Note since $\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$ we have $\sum_{i=1}^{n} x_{i}=n \bar{x}$
Now

$$
\begin{aligned}
& \sum_{i=1}^{n}(x-i-\bar{x})^{2}=\sum_{i=1}^{n}\left(x_{i}^{2}-2 x_{1} \bar{x}+\bar{x}\right)^{2} \\
= & \sum_{i=1}^{n} x_{1}^{2}-\sqrt{\sum_{i=1}^{n}} \sqrt[2]{2 \sqrt{x}} \bar{x} \\
= & \sum_{i=1}^{n}\left(\bar{x}^{2}\right. \\
= & \sum_{i=1}^{n} x_{1}^{2}-2 \bar{x} \sum_{i=1}^{n} x_{i}+\bar{x}^{2} \sum_{i=1}^{n} 1
\end{aligned}
$$

Proof (Cont.)

$$
\begin{aligned}
& =\sum_{i=1}^{n} x_{i}^{2}-2 \bar{x}(n \bar{x})+n \bar{x}^{2} \\
& =\sum_{i=1}^{n} x_{i}^{2}-2 n \bar{x}^{2}+n \bar{x}^{2} \\
& =\sum_{i=1}^{n} x_{i}^{2}-n \bar{x}^{2}
\end{aligned}
$$

$$
=\sum_{i=1}^{n} x_{i}^{2}-n\left(\frac{\sum_{i=1}^{n} x_{i}}{n}\right)^{2}
$$

$$
=\sum_{i=1}^{n} x_{i}^{2}-\not x \frac{\left(\sum_{i=1}^{n} x_{i}\right)^{2}}{\not n^{2}}
$$

$$
=\sum_{i=1}^{n} x_{i}^{2}-\frac{1}{n}\left(\sum_{i=1}^{n} x_{i}\right)^{2}
$$

Corollary 1

Divide both sides of (*) by n to get

$$
m s v=\frac{1}{n} \sum_{i=1}^{n} x_{1}^{2}-\frac{1}{n^{2}}\left(\sum_{i=1}^{n} x_{i}\right)^{2}
$$

Corollary 2 ((Shortcut formula for $\left.s^{2}\right)$)
Divide both sides of (*) by $n-1$ to get

$$
S^{2}=-\frac{1}{n-1} \sum_{i=1}^{n} x_{i}^{2}-\frac{1}{n(n-1)}\left(\sum_{i=1}^{n} x_{i}\right)^{2}
$$

It is this last formula that we will need.

Let met give a conceptual proof of the theorem the way a professorial mathematician would prove the theorem.

Definition

A polynomial $p\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is symmetric, if it is unchanged by permuting the variables.

Examples 3

$$
\begin{aligned}
& p(x, y, z)=x^{2}+y^{2}+z^{2} \quad \text { is symmetric } \\
& p(x, y, z)=x y+z^{2} \quad \text { is not symmetric }
\end{aligned}
$$

Theorem

Any symmetric polynomial pin $x_{1}, x_{2}, \ldots, x_{n}$ can be rewritten as a polynomial in the power sums $\sum_{i=1}^{n} x_{i}^{k}$ that is

$$
p\left(x_{1}, \ldots, x_{n}\right)=q\left(\sum x_{i}, \sum x_{1}^{2}, \ldots, \sum x_{i}^{\ell}\right)
$$

if $\operatorname{deg} p=\ell$.

Bottom Line

$s v=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$ is a symmetric polynomial in $x_{1}, x_{2}, \ldots, x_{n}$ so there exist a and b with

$$
\begin{equation*}
s v\left(x_{1}, x_{2}, \ldots, x_{n}\right)=a \sum_{i=1}^{n} x_{i}^{2}+b\left(\sum_{i=1}^{n} x_{i}\right)^{2} \tag{**}
\end{equation*}
$$

This is true for all x_{1}, \ldots, x_{n} (an "identify") so we just choose x_{1}, \ldots, x_{n} cleverly to get a and b.
First choose $x_{1}=1, x_{2}=-1, x_{3}=\ldots=x_{n}=0$ so $\sum_{i=1}^{n} x_{i}=0$ and $\sum_{i=1}^{n} x_{i}^{2}=2$
since $\bar{x}=0$

$$
\text { and } \quad \operatorname{sv}(1,-1,0, \ldots, 0)=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \stackrel{\sum_{i=1}^{n} x_{i}^{2}}{ }
$$

(**) becomes

$$
2=a 2+b(0) \text { so } a=1
$$

To find b take all the x 's to be 1 . so $\bar{x}=1$ and $\operatorname{sv}(1,1: 1)=0$ (there is no variation in the x 's)

$$
\begin{gathered}
\sum_{i=1}^{n} x_{1}^{2}=n, \quad \sum_{i=1}^{n} x_{i}=n \text { so } \\
\operatorname{sv}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} x_{i}^{2}+b\left(\sum x_{i}\right)^{2}
\end{gathered}
$$

gives as

$$
0=h+b n^{2} \quad \text { so } \quad b=-\frac{1}{n}
$$

and

$$
\operatorname{sv}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{i=1}^{n} x_{i}^{2}-\frac{1}{n}\left(\sum x_{i}\right)^{2}
$$

as before.

Remark 1

Any symmetric quadratic function $q\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is a linear combination of $\sum_{i=1}^{n} x_{1}^{2}$ and $\left(\sum_{i=1}^{n} x_{i}\right)^{2}$ that is

$$
q\left(x_{1}, \ldots, x_{n}\right)=a \sum_{i=1}^{n} x_{i}^{2}+b\left(\sum_{i=1}^{n} x_{i}\right)^{2}
$$

In Which We Return to Statistics

Estimating the Population Variance We have seen that \bar{X} is a good (the best) estimator of the population mean- μ, in particular it was an unbiased estimator.

How do we estimate the population variance?

$$
\begin{gathered}
X \\
V(x)=\sigma^{2} \\
\end{gathered} \longrightarrow x_{1}, x_{2}, \ldots, x_{n} \rightarrow s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

Answer - use the Sample variance s^{2} to estimate the population variance σ^{2} The reason is that if we take the associated sample variance random variable

$$
S^{2}=\frac{1}{n-1} \sum_{i=1}^{n-1}\left(X_{i}-\bar{X}\right)^{2}
$$

then we have
Amazing Theorem

Why do you need $\frac{1}{n-1}$? We will see.

Before starting the proof we first note the Corollary 2, page 2 implies
Proposition (Shortcut formula for the sample variance random variable's)

$$
\begin{equation*}
S^{2}=\frac{1}{n-1} \sum_{i=1}^{n} x_{i}^{2}-\frac{1}{n(n-1)}\left(\sum_{i=1}^{n} x_{i}\right)^{2} \tag{b}
\end{equation*}
$$

Why does this follow from the formula for s^{2} ? We will also need the following

Proposition

Suppose Y is a random variable then

$$
E\left(Y^{2}\right)=E(Y)^{2}+V(Y)
$$

Proof.

$$
V(Y)=E\left(Y^{2}\right)-(E(Y))^{2}
$$

(Shortcut formula for $V(Y)$

Corollary

Suppose $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample from a population of mean μ and variance σ^{2}. Then
(i) $E\left(X_{i}^{2}\right)=\mu^{2}+\sigma^{2}$
(ii) $E\left(T_{0}\right)=n^{2} \mu^{2}+n \sigma^{2}$

Proof.

(i) $E\left(X_{i}\right)=\mu$ and $V(Y)=\sigma^{2}$ so plug into (\#)
(ii) $E\left(T_{0}\right)=n \mu$ and $V\left(T_{0}\right)=n \sigma^{2}$ so plug into (\#)

We can now prove (b)

$$
E\left(S^{2}\right)=E\left(\frac{1}{n-1} \sum_{i=1}^{n} X_{i}^{2}-\frac{1}{n(n-1)}\left(\sum X_{i}\right)^{2}\right)
$$

since E is linear

$$
=\frac{1}{n-1} \sum_{i=1}^{n} E\left(X_{i}^{2}\right)-\frac{1}{n(n-1)} E\left(T_{0}^{2}\right)
$$

by (i) and (ii)

$$
\begin{aligned}
& =\frac{1}{n-1} \sum_{i=1}^{n}\left(\mu^{2}+\sigma^{2}\right)-\frac{1}{n-1} \frac{1}{n}\left(n^{2} \mu^{2}+n \sigma^{2}\right) \\
& =\frac{1}{n-1}\left[n \mu^{2}+n \sigma^{2}-\frac{1}{n}\left(n^{2} \mu^{2}+n \sigma^{2}\right)\right] \\
& =\frac{1}{n-1}\left[n \mu^{2}+n \sigma^{2}-n \mu^{2}-\sigma^{2}\right] \\
& =\frac{1}{n-1}\left[(n-1) \sigma^{2}\right] \\
& =\sigma^{2}
\end{aligned}
$$

Amazing - you need $\frac{1}{n-1}$ not $\frac{1}{n}$.

