Lecture 30: Confidence Intervals for σ^{2}

Today we will discuss the material in Section 7.4.
Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a normal population with mean μ and variance σ^{2}.

In this lecture we want to construct a $100(1-\alpha) \%$ confidence for σ^{2}. We recall that S^{2} is a point estimator for σ^{2}.

What is new here is that we are going to note a "multiplicative confidence interval".
Here is the idea. We want a random interval that has the point estimator S^{2} in the interior
Now given a number x there are two ways to make an interval $I(x)$ that has x in its interior.

1. The additive method

Choose two positive numbers c_{1} and c_{2}. Put $l(x)=\left(x-c_{1}, x+c_{2}\right)$.
2. The multiplicative method

Choose a number $c_{1}<1$ and another number $c_{1}>1$. Put

$$
I(x)=\left(c_{1} x, c_{2} x\right) .
$$

We will use the second method now. The clue to why we do this is that $S^{2}>0$. First we need to know the probability distribution of the point estimator S^{2}. We have already seen this

Theorem A (pg 278)

$$
\begin{equation*}
V=\left(\frac{n-1}{\sigma^{2}}\right) s^{2} \sim \chi^{2}(n-1) \tag{*}
\end{equation*}
$$

Now we can give the confidence interval.

Theorem B

The random interval $\left(\frac{n-1}{\chi_{\alpha / 2, n-1}^{2}} S^{2}, \frac{n-1}{\chi_{1-\alpha / 2, n-1}^{2}} S^{2}\right)$ is a $100(1-\alpha) \%$ confidence random interval for the population variance σ^{2} from a normal population.

Remark

It must be true (see page 2) that

$$
\begin{aligned}
& c_{1}=\frac{n-1}{\chi_{\alpha / 2, n-1}^{2}}<1 \text { and } \\
& c_{2}=\frac{n-1}{\chi_{1-\alpha / 2, n-1}^{2}}>1
\end{aligned}
$$

I have never checked this.
Now we prove Theorem B. We must prove

$$
\begin{aligned}
& P\left(\sigma^{2} \in\left(\frac{n-1}{\chi_{\alpha / 2, n-1}^{2}} S^{2}, \frac{n-1}{\chi_{1-\alpha / 2, n-1}^{2}} S^{2}\right)\right)=1 \\
& \text { LHS }=P\left(\frac{n-1}{\chi_{\alpha / 2, n-1}^{2}} S^{2}<\sigma^{2}, \quad \sigma^{2}<\frac{n-1}{\chi_{1-\alpha / 2, n-1}^{2}} S^{2}\right)
\end{aligned}
$$

Remark

Now we manipulate the two resulting inequalities to get V so we can sue (*)

$$
P\left(\frac{n-1}{\left(x_{\alpha \alpha 2, n-1}^{2}\right)} S^{2}<\sigma^{2}, \sigma^{\sigma}<\frac{n-1}{x_{1-\alpha / 2, n-1}^{2}} S^{2}\right)
$$

Swap and make a V

$$
\begin{aligned}
& =P\left(\frac{n-1}{\sigma^{2}} \delta^{2}<\chi_{\alpha / 2, n-1}^{2}, \quad \chi_{1-\alpha / 2, n-1}^{2}<\frac{n \nmid}{\sigma^{2}} \delta^{2}\right) \\
& =P\left(V<\chi_{\alpha / 2, n-1}^{2}, \quad \chi_{1-\alpha / 2, n-1}^{2}<V\right) \\
& =P\left(\chi_{1-\alpha / 2, n-1}^{2}<V<\chi_{\alpha / 2, n-1}^{2}\right)
\end{aligned}
$$

MAKE A PICTURE
= the shaded area

Remark (Cont.)

$=1-(\alpha / 2+\alpha / 2)=1-\alpha$

Question

Why do we need the strange $\chi_{1-\alpha / 2}^{2}, n-1$? This is because the χ^{2} density curve does not have the symmetry that the z-density and t-densities did. In all three coses we need something that cut off $\alpha / 2$ on the left under the density curve so $1-\alpha / 2$ on the right. For the z-curve $-z_{\alpha / 2}$ did the job.

In other words

Lemma

$$
z_{1-\alpha / 2}=-Z_{\alpha / 2}
$$

Proof．

so $-\boldsymbol{Z}_{\alpha / 2}$ cots off $1-\alpha / 2$ to the right to $-\boldsymbol{Z}_{\alpha / 2}=\boldsymbol{Z}_{1-\alpha / 2}$

The Upper-Tailed 100(1- α) \% Confidence Interrol for σ^{2}

Theorem

$\left(\frac{n-1}{\chi_{\alpha, n-1}^{2}} S^{2}, \infty\right)$ is a $100(1-\alpha) \%$ confidence interrol for σ^{2}
Proof.
If could be on the final - do it yourself.

Remark

As used we took the lower limit from the two-sided interval and changed $\alpha / 2$ to α.

The Lower-Tailed 100 $(1-\alpha) \%$ Confidence Interval for σ^{2}
Since S^{2} is always positive $P C S^{2} \in(-\infty, 01)=0$ so the negative axis will not appear.
Lower tailed multiplication intervals go down to 0 not $-\infty$. Another (philosophical) way to look at it is.

We are in the multiplicative world.

Theorem
$\left(0, \frac{n-1}{\chi_{1-\alpha, n-1}^{2}} S^{2}\right)$ is a $100(1-\alpha) \%$ confidence interval for σ^{2}.
Proof.
Do it yourself

Remark

$\left(-\infty, \frac{n-1}{\chi_{1-\alpha, n-1}^{2}} S^{2}\right)$ is also a $100(1-\alpha) \%$ confidence interval for σ^{2} but the $(-\infty, 0)$ is "wasted space", Remember, small intervals or better.

Confidence Intervals for the standard Deviation
Note that if $a>0, b>0$ and $x>0$ then

$$
a \leq x \leq b \leftrightarrow \sqrt{a} \leq \sqrt{x} \leq \sqrt{b}
$$

so

$$
\begin{aligned}
& \frac{n-1}{\chi_{\alpha / 2, n-1}^{2}} S^{2} \leq \sigma^{2} \leq \frac{n-1}{\chi_{1-\alpha / 2, n-1}^{2}} S^{2} \\
& \Leftrightarrow \sqrt{\frac{n-1}{\chi_{\alpha / 2, n-1}^{2}}} S \leq \sigma \leq \sqrt{\frac{n-1}{\chi_{1-\alpha / 2, n-1}^{2}}} S
\end{aligned}
$$

Hence

$$
\begin{aligned}
\left(\sqrt{\frac{n-1}{\chi_{\alpha / 2, n-1}^{2}}} S<\sigma<\sqrt{\frac{n-1}{\chi_{1-\alpha / 2, n-1}^{2}}} S\right) & =P\left(\frac{n-1}{\chi_{\alpha / 2, n-1}^{2}} S^{2} \leq \sigma^{2} \leq \frac{n-1}{\chi_{1-\alpha / 2, n-1}^{2}} S^{2}\right) \\
& \text { from pg3 } \\
& =1-\alpha
\end{aligned}
$$

In other words

$$
P\left(\sigma \in\left(\sqrt{\frac{n-1}{\chi_{\alpha / 2, n-1}^{2}}} S, \sqrt{\frac{n-1}{\chi_{1-\alpha / 2, n-1}^{2}}} S\right)\right)=1-\alpha
$$

and we have

Theorem

The random interval

$$
\left(\sqrt{\frac{n-1}{\chi_{\alpha / 2, n-1}^{2}}} S, \sqrt{\frac{n-1}{\chi_{1-\alpha / 2, n-1}^{2}}} \varsigma\right)
$$

is a $100(1-\alpha) \%$ confidence interval for the standard deviation σ in a normal population.

Problem

Write down the upper and lower-tailed confidence intervals for σ. (hint: just take the square notes of the end points of those for σ^{2})

