
Lecture 7
The Five Basic Discrete Random Variables

In this lecture we define and study the five basic discrete random variables.
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The Five Basic Discrete Random Variables

1 Binomial

2 Hypergeometric

3 Geometric

4 Negative Binomial

5 Poisson

Remark

On the handout “The basic probability distributions” there are six distributions. I
did not list the Bernoulli distribution above because it is too simple.

In this lecture we will do 1. and 2. above.
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The Binomial Distribution
Suppose we have a Bernoulli experiment with P(S) = P, for example, a
weighted coin with P(H) = p. As usual we put q = 1 − p.
Repeat the experiment (flip the coin). Let X = ] of successes (] of heads).
We want to compute the probability distribution of X . Note, we did the special
case n = 3 in Lecture 6, pages 4 and 5.
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Clearly the set of possible values for X is 0, 1, 2, 3, . . . , n.
Also

P(X = 0) = P(TT T) = qq . . . q = qn

Explanation
Here we assume the outcomes of each of the repeated experiments are
independent so

P((T on 1st) ∩ (T on 2nd) ∩ · · · ∩ (T onn-th)

P(T on 1st)P(T on 2rd) . . .P(T on n-th)

q q . . . q = qn

Note T on 2nd means T on 2nd with no other information so

P(T on 2nd) = q.
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Also
P(X = n) = P(HH . . .H) = pn

Now we have to work
What is P(X = 1)?

Another standard mistake
The events (X = 1) and HTT . . .T︸      ︷︷      ︸

n−1

are NOT equal.

Why - the head doesn’t have to come on the first toss
So in fact

(X = 1) = (HTT . . .T) ∪ (THT . . .T) ∪ · · · ∪ (TTT . . .TH)
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All of the n events on the right have the same probability namely pqn−1 and they
are mutually exclusive. There are n of them so

P(X = 1) = npqn−1

Similarly
P(X = n − 1) = npqn−1

(exchange H and T above)
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The general formula
Now we want P(X = k)
First we note

P(H . . .H︸  ︷︷  ︸
k

TT . . .T︸   ︷︷   ︸
n−k

) = pk qn−k

But again the heads don’t have to come first. So we need to

(1) Count all the words of length n in H and T that involve k H’s and n − k T ’s.

(2) Multiply the number in (1) by pk qn−k .

Lecture 7The Five Basic Discrete Random Variables



7/ 26

So how do we solve 1. Think of filling n slot’s with k H’s and n − k T ’s

︸                      ︷︷                      ︸
Main Point
Once you decide where the k H’s go you have no choice with the T ’s. They have
to go in the remaining n − k slots.
So choose the k -slots when the heads go. So we have to make a choose of k
things from n things so

(
n
k

)
.
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So,

P(X = k) =
(
n
k

)
pk qn−k

So we have motivated the following definition.

Definition

A discrete random variable X is said to have binomial distribution with
parameters n and p (abbreviated X ∼ Bin(n, p))
If X takes values 0, 1, 2, . . . , n and

P(X = k) =
(
n
k

)
pk qn−k , 0 ≤ k ≤ n. (*)
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Remark

The text uses x instead of k for the independent (i.e., input) variable. So in the
text this would be written

P(X = x) =
(
n
x

)
pxqn−x

I like to save x for the variable case of continuous random variables however I
will sometimes use x in the discrete case too.

Finally we may write

p(k) =
(
n
k

)
pk qn−k , 0 ≤ k ≤ n (**)

The text uses b(·, n, p) for p(·) so would write for (**)

b(k , n, p) =
(
n
k

)
pk qn−k
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The Expected Value and Variance of a Binomial Random Variable

Proposition

Suppose X ∼ Bin(n, p). Then E(X) = np and V(X) = npq so σ = standard
deviation =

√
npq.

Remark

The formula for E(X) is what you might expect. If you toss a fair coin 100 times

the E(X) = expected number of heads np = (100)
(
1
2

)
= 50.

However if you toss it 51 times then E(X) =
51
2

- not what you “expect”.
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Using the binomial tables
Table A1 in the text
pg. A2,A3,A4 tabulate the cdf B(x, n, p) = P(X ≤ x) for n = 5, 10, 15, 20, 25 and
selected values of p.

Example (3.32)

Suppose that 20% of all copies of a particular text book fail a certain binding
strength text. Let X denote the number among 15 randomly selected copies that
fail the test. Find

P(4 ≤ X ≤ 7).
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Solution

X ∼ Bin(15, .2). We want to compute P(4 ≤ X ≤ 7) using the table on page 664.
So how to we write P(4 ≤ X ≤ 7) in terms of terms of the form P(X ≤ a)

3 4 5 6 7

In the figure P(X ≤ 3) is the region to the left of the left-most arc and P(X ≤ 7) is
the region to the left of the right-most arc.

Answer

(])P(4 ≤ X ≤ 7) = P(X ≤ 7) − P(X ≤ 3)

So
P(4 ≤ X ≤ 7) = B(7, .15, .2) − B(3, .15, .2)

from table
= .996 − .648

N.B. Understand (]). This the key using computers and statistical calculators to
compute.
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The hypergeometric distribution

Example

chips
black chips
white chips

Consider an urn containing N chips of which M are black and L = N −M are
white. Suppose we remove n chips without replacement so n ≤ N.
In the figure there are 3 black chips and 2 white chips so in the picture
N = 5,M = 3 and L = 2.
Define a random variable X by X = ] of black chips we get.
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Find the probability distribution of X .

Proposition

P(X = k) =

(
M
k

)(
L

n−k

)(
N
n

) (*)

if
(b) max(0, n − L) ≤ k , min(n,M)︸                                    ︷︷                                    ︸

This means k ≤ both n and M and both 0 and n − L ≤ k .
These are the possible values of k , that is, if k doesn’t satisfy (b) then

P(X = k) = 0.
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Proof of the formula (*)
Suppose we first consider the special case where all the chips are black so

P(X = n).

This is the same problem as the one of finding all hearts in bridge.

black chip←→ heart

white chip←→ non heart

So we use the principle of restricted choise

P(X = n) =

(
M
n

)(
N
n

)
This agrees with (*).
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But (*) is harder because we have to consider the case where there are k < n
black chips. So we have to choose n − k white chips as well.
So choose k black chips, there are

(
M
k

)
ways, then for each such choice, choose

n − k white chips, there are
(

L
n−k

)
ways.

So

]


choices of exactly
k black chips
in the n chips

 =

(
M
k

)(
L

n − k

)
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Clearly there are
(
N
n

)
ways of choosing n chips from N chips so (*) follows.

Definition

If X is a discrete random variable with pmf defined by the formula in the previous
Proposition then X is said to have hyper geometric distribution with parameters
n, M, N. In the text the pmf is denoted

h(x; n,M,N).
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What about the conditions

max(0, n − L) ≤ k ≤ min(n,M) (b)

This really means
k ≤ both n and M (b1)

and
k ≥ both 0 and n − L (b2)

(b1) says

k ≤ n ←→ we can’t choose more then n
black chips because we are
only choosing n chips in total

k ≤ M ←→ because there are only M black
chips to choose from

(b2)
k ≥ 0 is obvious and k ≥ n − L follows because k = n − L
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So the above three inequalities are necessary. At first glance they look sufficient
because if k satisfies the above three inequalities you can certainly go ahead
and choose k black chips.
But what about the white chips? We aren’t done yet, you have to choose n − k
white chips and there are only L white chips available so if n − k > L we are sun
k .
So we must have

n − k ≤ L ⇔ k ≥ n − L

This is the second inequality of (b2). If it is satisfied we can go ahead and choose
the n − k white chips so the inequalities in (b) are necessary and sufficient.
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Proposition

Suppose X has hypergeometric distribution with parameters n, M, N. Then

(i) E(X) = n
M
N

(ii) V(X) =

(
N − n
N − 1

)
n

M
N

(
1 −

M
N

)
If you put

p =
M
N

=
the probability of getting
a black chip on the first draw

then we may rewrite the above formulas as

E(X) = np

V(X) =

(
N − n
N − 1

)
npq


reminiscent
of the
binomial
distribution
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Another way to Derive (*)
There is another way to derive (*) - the way we derived the binomial distribution.
It is way harder.

Example

Take n = 2

P(X = 0) =
L
N

L − 1
N + 1

P(X = 2) =
M
N

M − 1
N − 1

P(X = 1) = P(RW) + P(WR)

=
M
N

L
N − 1

+
xy
L
N

M
N − 1

= 2
M
N

L
N − 1

= 2
M
N

L
N − 1
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In general, we claim that all the words with k B ’s and n − k W ’s have the some
probability. Indeed each of these probabilities are fractions with the same
denominator

N(N − 1) . . . (N − n − 1)

and they have the same factors in the numerator scrambled up

M(M − 1)(M − L + 1) and L(L − 1), . . . , (L − n − k + i)

But the order of the factors doesn’t matter so

P(X = k) =
(
n
k

)
P(

k︷  ︸︸  ︷
R . . .R W . . .W)

=

(
n
k

)
M(M − 1) . . . (M − k + 1)L(L − 1) . . . (L − n − k + 1)

N(N − 1) . . .N(−n + 1)
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Why is (*) equal to this?

cancellin
g

cancelling

goes on top

(∗) =

(
M
k

)(
L

n−k

)(
N
n

)
=

M(M−1)...(M−k+1)
k !

L(L−1)...(L−n−k+1)
(n−k)!

N(N−1)...(N−n+1)
n!

exercise in fractions

=
n!

k !(n − k)!
M(M − 1) . . . (M − k + 1)L(L − 1) . . . (L − n − k + 1)

N(N − 1) . . . (N − n + 1)

=

(
n
k

)
M(M − 1) . . . (M − k + 1)L(L − 1) . . . (L − n − k + 1)

N(N − 1) . . . (N − n + 1)
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Obviously, the first way (*) is easier so if you are doing a real-world problem and
you start getting things that look like (**) step back and see if you can use the
first method instead. You will tend to try the second method first. I will test you
on this later.

Prediction (I was wrong before)
Most of you will use the second (wrong) method.
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An Important General Problem
Suppose you draw n chips with replacement and let X be the number of black
chips you get. What distribution does X have?
This explains (a little) the formulas on page 21. Note that if N is far bigger than n
then it is almost like drawing with replacement. “The urn doesn’t notice that any
chaps have been removed because so few (relatively) have been removed.”
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In this case
N − n
N − 1

=
N

(
1 − n

N

)
N

(
1 − 1

N

) ≈ N
N

= 1

(because N is huge
1
N

and
n
N

are approximately 0)

So V(X) ≈ npq

The number
N − n
N − 1

is called the “finite population correction factor”.
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