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1. [5 pts.] (Complete reducibility and group cohomology) In this
problem, G is a group, k is a field, and all G-modules are assumed to
be k-vector spaces (i.e., we are considering kG-modules). Recall that a
G-module M is called simple or irreducible if its only G-submodules are
0 and M itself. By the Jordan-Holder Theorem, every finite-dimensional
G-module V has a filtration 0 =V, € V4 C --- C V,, = V with all the
subquotients V;/V;_; irreducible. These composition factors are unique
up to isomorphism and reordering. V is called completely reducible if V'
is a direct sum of irreducible G-modules. The aim of this problem is to
prove:

Theorem 1 Let G be a group, k a field. Then every finite-dimensional
kG-module is completely reducible if and only if H'(G,W) = 0 for every
finite-dimensional kG-module W

To handle the “only if” direction, suppose H*(G, W) # 0. Use the re-
lationship between group cohomology and Ext, as well as the connec-
tion between Ext' and classification of extensions, to construct a finite-
dimensional kG-module that is not completely reducible.

For the other direction, suppose H!(G, W) = 0 for every finite-dimensional
kG-module W. Given any short exact sequence

0o—-2vZv o

of finite-dimensional kG-modules with V; irreducible, apply Homy(__, V4)
and then group cohomology (you only need HY and H!). Deduce that
H°(G,Homy(V, V1)) # 0, and thus that there is a G-equivariant splitting
to a.. Then use induction.

Solution. Suppose H'(G, W) # 0 for some finite-dimensional kG-module
W. We have H'(G,W) = Extjo(k, W), which corresponds to classes of
extensions of kG-modules

0-W->XLk-o,



where k has the trivial G-action. We claim X is not completely reducible.
For otherwise, X = @, X; for some simple finite-dimensional kG-modules
X, and since q is surjective and X is the direct sum of the X;’s, ¢ must
be non-zero on some X;. Since q: X; — k is non-zero and X; and k are
both simple, g restricted to X; must be an isomorphism. Then there is a
splitting map k =N X,; — X, contradicting the fact that the extension X
of k by W is non-trivial in Ext.

For the other direction, suppose given a short exact sequence
0-vSvEE&woo

of finite-dimensional kG-modules with V; irreducible. Since k is a field,

Homy (__, V1) is exact and gives a short exact sequence of finite-dimensional
kG-modules

0 — Homy(Va, Vi) 25 Homy (V, Vi) 25 Homy,(V4, Vi) — 0.

Take the corresponding long exact sequence in group cohomology. Since,
by assumption, H' vanishes on all finite-dimensional kG-modules, this
degenerates to a short exact sequence

0 — Homy(Va, V1) 25 Homy (V, 11)€ 25 Homy,(Vi, V1) — 0.

In particular, the identity map V3 — Vi, which is certainly G-equivariant,
has a G-equivariant lifting V' — V; under a*. That means precisely
that our original exact sequence splits in the category of kG-modules.
SoV =2V, &V, Now we argue by induction on the number of simple
composition factors that all finite-dimensional kG-modules V' are com-
pletely reducible. If there is only one composition factor, V' is simple and
this is obvious. Otherwise, V contains a simple submodule V; and the
quotient V5 has shorter length, hence is completely reducible by inductive
hypothesis. Since we’ve just shown that V' = V; @ V5, that takes care of
the inductive step. O

. [4 pts.] Suppose G is finite group and the characteristic of k is either 0
or relatively prime to |G|. Verify the cohomology vanishing criterion in
Problem 1 and deduce Maschke’s Theorem, that every finite-dimensional
kG-module is completely reducible. Hint: Given a 1-cocycle f: G — W,
“average” its values to get an element w € W with f = dw.

Solution. Let f: G — W be a l-cocycle. Let w = |C1¥_|Eg€Gf(g)’ the
“average” of the values of f. This makes sense since k is a field and |G| is



(by the assumption on the characteristic) non-zero in k. Then
dwh) =h-w—w

|G|Zh fle

geaG

(cocycle identity)

. _ldl,
=t |G|Zf AR

=—w+w—f(h)=—f(h).

In other words, f = d(—w) and f is a coboundary. Thus the condition of
(1) holds and Maschke’s Theorem follows. O

. [6 pts] (Grothendieck, Borel-Serre) Let X and Y be topological
spaces, f: X — Y a continuous map, and F a sheaf of abelian groups
over X. Recall (Weibel, Exercise 2.6.2) that the push-forward functor
f« is a right adjoint and is therefore left exact. Its derived functors are
denoted R f,.

(a) Show that R’ f.F is the sheaf associated to the presheaf
U~ H(fH(U), F).

Solution. First of all, a comment about the fact that I said “presheaf”
here. The gluing condition is satisfied when j = 0, since F is a
sheaf and not just a presheaf. But for higher values of j, suppose
U = U, UU; with U; open. Then we have a Mayer-Vietoris sequence

HIZY (Ui N Uy), F) & HI(fY(U), F)
— HI(f~Y(Uy), F) e H (f~1(Us), F)
— HI (YU, nUy), F)

The map 0 is thus an obstruction to the gluing condition for this value
of j; i.e., if 9 # 0, then a class in H/~1(f~1(U), F) is not necessarily
determined by its restrictions to f~*(U;) and f~1(Us). However,
the other direction of the gluing condition is satisfied, i.e., classes
in H=Y(f~Y(Uy), F) with the same restriction to f~1(U; N Uz) do
come from a class over f~(U).

Now let’s check the assertion. Let (Z°, d) be an injective resolution of
F over X. By definition, RYf.(F) is the cohomology of the complex



of sheaves (f.(Z*), f«d) over Y, i.e.,

RUf(F) = H(f.(Z*), f.d)
— ker(fud: fo(T%) — [.(Z7H))
/image(f.d: f.(Z77") — f.(Z9)).
But a quotient sheaf is, by definition, the sheafification of the quotient

of the corresponding presheaves. So R?f,(F) is the sheafification of
the presheaf

U —ker(fud: f(Z)(U) = f.(Z7)(U))
Jimage(f.d: f.(Z)(U) = LZ(U)).
But by the recipe for computing cohomology,
H(f~1(U), F) = HI(T (f71(U), %), d).
By the definition of f, this is the same as
HY(T (U, f.1°), f*d),

which is precisely what we had for the presheaf defining R?f,(F). O
Deduce from (a) that if, for a point y € Y, every neighborhood
of f~1(y) in X contains a neighborhood of the form f=*(U), U a
neighborhood of y in Y (this condition is satisfied if, for example, X
and Y are locally compact Hausdorff and f is proper), then the stalk
of RIf.F at y € Y is cohomology group HY(f~1(y), t=1F), where
t: f7H(y) = X is the inclusion.

Solution. First note that if a sheaf G* is the sheafification of a presheaf
G, then the stalk of Gt at a point y is the same as

lim G(U).
yelU

(See standard books on sheaf theory, e.g., Godement 11.1.2.) Apply
this with G* = R7 f,F and with G the presheaf of (a). That gives

(R fuF), = lim H(f~1(U), F).
‘ yeU

We want to identify this (under certain topological conditions) with
HI(f~(y), :=1F). Now for each open U containing y, the inclusion
f~Hy) — f~Y(U) induces a map

HY(f7H(U), F) = H (7} (y), ' F),

and as U varies, these satisfy an obvious compatibility condition. So
by the universal property of the colimit, we get a map

(R £.F), =l HO(f~1(U), F) — HI(F 1 (y), 1 F)
yeU



which under favorable circumstances should be an isomorphism.
The condition that every neighborhood of f~!(y) in X contains a
neighborhood of the form f~1(U), U a neighborhood of y in Y, im-
plies that open sets of the form f~!(U) are cofinal in the family of
all open neighborhoods of f~*(y). Thus we get

lim H(f~1(U), )= lim  HI(f~}(U), F)
yel U W)Sf1 )
= 1 HI(V, F).
—
= y)cv

This maps isomorphically to H7(f~*(y), :~'F) under mild condi-
tions (see Godement, Théoréme 11.4.11.1), for example, if X is para-
compact and f~1(y) is closed (the latter is automatic if Y is Haus-
dorff, or if X is metrizable). O

Show that there is a spectral sequence with E5 term
EY? = HP(Y,RIf.F)

converging to HPT4(X, F). (Hint: Factor the unique map X — pt

asX Ly pt and use a composition-of-functors spectral sequence.
Check that all the requirements for this are satisfied. You may use
the result of Weibel, Exercise 2.6.3.)

Solution. As explained in the hint, let cx: X — ptand cy: Y — pt
be the “collapse” maps. Then cx = cy o f. Furthermore,

Ri(cx)«(F) = H (X, F) and R’ (cy).(G) = HI(Y,G).

So the result will follow from the composition-of-functors spectral
sequence if the conditions of Theorem 5.8.3 in Weibel are satisfied.
We need to check that f, sends injective sheaves over X to acyclic
sheaves over Y. But f. is right adjoint to f~! (Weibel, Exercise
2.6.2), and f~! is exact (Weibel, Exercise 2.6.6), so f. preserves
injectives (Weibel, Proposition 2.3.10), and the condition holds. O

Suppose the topological condition in (b) is satisfied, e.g., X and Y are
locally compact Hausdorff and f is proper, and that F and f have the
property that H9(f~*(y), t71F) =0 for all ¢ > 0 and for all y € Y.
Deduce from (b) that R?f,F = 0 for all ¢ > 0, and then deduce from
(c) that there are natural isomorphisms H? (X, F) = HP(Y, f.F) for
all p.

Solution. Apply the spectral sequence from (c),

HP(Y,RIf,F) = HP*9(X, F).

If the conditions in (b) are satisfied, then for ¢ > 0, the stalk of RY . F
at yis HI(f~1(y), =1 F), which by assumption vanishes. Thus every



stalk of RYf.F vanishes, and so R?f,F vanishes. Hence Fs of the
spectral sequence is concentrated on the p-axis, so all differentials
must be zero, and in addition, there cannot be any extension issues
(since EY? = 0 for ¢ > 0). Thus the spectral sequence collapses at
E; to give natural isomorphisms H?(X, F) = HP(Y, f.F) for all p.
O

4. [5 pts.] (See Weibel Exercises 9.1.4 and 9.6.4.) Let k be a field of char-
acteristic 0, and let R be the truncated polynomial algebra k[z]/(x"1).
Show that R has a periodic resolution as an R ® R°P-module, and use this
to compute H H,(R). Then compute HC,(R).

Solution. Observe that in this case R® = R ® R°P = k[z,y]/ (2™, y"+1)
has dimension (dim R)? = (n + 1) over k, and the monomials 2%y’ with
0 <14, j < n are a basis. Following in the hint in Weibel, consider the
sequence of R°-modules

L RLRLRL RS R0,

where ¢ is the ring homomorphism induced by sending both x and y to x,
w is multiplication by x —y, and v is multiplication by ), tien z'y7. Since
wv =vu ="t —y"t =0 and e(uf(z,y)) = (v —2)f(z,r) =0, thisis a
complex, periodic to the left with period 2. Since ¢ is clearly split by the
map sending a polynomial in z to itself (i.e., without any terms involving
y), € is surjective, and ker ¢ has dimension (n +1)? — (n + 1) = n(n + 1)
over k. Now the image of u in total degree m = i + j + 1 is spanned
by all 27yl — gyt 0 <4, j <n,i+j+1=m. Now we can count
dimensions: the subspace of R of total degree m in x and y has dimension
min(m+1,2n—m+1) and the dimension of the image of u in total degree
m =14+ j + 1 has dimension

min (min(m + 1,2n — m + 1), min(m, 2n — m + 2))

_jm—1, 1<m<n+1,
N 2n—m+1, n+1<m<2n.

Summing up, one finds that dimimageu = w -2 =n(n+1) =
dimkere. Thus dimkeru = (n + 1)2 —n(n + 1) = n + 1. However,

the image of v contains

n—m
E xz-l—my] — E ‘,L,z-l—myn—z7
=0

i+j=n

0 < m < n, and these elements are obviously linearly independent (since
they have different degrees), so dim imagev > n+1. Since imagev C keru,
we must have equality, and thus our complex is a resolution of R by free
R¢-modules.



Now we can compute HH,(R). This is Tor® (R, R), so we compute it
by tensoring our resolution (over R¢) with R and taking homology. Since
R ®pe R® = R, we get the complex

-5 R~ R~ R-5 R,

where u, and v, are induced by w and v after mapping both = and y
to x. So ws is multiplication by x — x = 0, and v, is multiplication
by iy @'@? = (n 4 1)z". Since we are in characteristic 0, n + 1 is
invertible, so v, can be replaced by multiplication by ™ and our complex
becomes

RO R RYR,

Thus we see

R, m =0,
HH,,(R) = § R/(x") = Kla] /(z"), m > 1 odd,
kerz” = xR, m > 2 even.

As k-vector spaces, we thus see that dim H H,,, = n for m > 1.

Finally, we compute HC,(R) from the SBI sequence. Recall that for
any ring, we always have HCy(R) = HHy(R), which coincides with
R itself if R is commutative. Also, for R commutative, we know that
B: HCy(R) — HH;(R) can be identified (up to sign) with the exterior
differential d: R — Qpg/x. Since the d(z™*'/(m + 1)) = z™ dx span
HH,(R), this map is surjective. (Here we are using characteristic zero
again in order to divide by m + 1.) From the exact sequence

HCo(R) 2 HH(R) L HCy(R) — 0,
it follows that HC1(R) = 0. We now show by induction on m that
HC5pn-1(R) = 0 and dim HC2,,(R) = n+ 1 for m > 1. Indeed we've
show already that HC;(R) = 0. Next consider the exact sequence
0=HC,(R) 2 HHy(R) L HCy(R)
2, HCy(R) 2 HHy(R) & HCL(R) = 0.

Since all vector spaces are finite dimensional, the rank-nullity formula
implies the alternating sum of the dimensions must vanish. So

dim HHy(R) + dim HCy(R) = dim HCy(R) + dim HH; (R).

Since we already know dim H H,,(R) is independent of m for m > 1, this
gives dim HC5(R) = dim HCy(R) =n + 1.

To show HC5(R) = 0, because of the exact sequence

HC5(R) 2 HH3(R) & HC5(R) S5 HC,(R) = 0,



it’s enough to show that B: HCy(R) — HH3(R) is surjective. Assume
for now that we’ve checked this. Then consider the exact sequence

0=HC3(R) 2 HH,(R) & HCy(R)
5, HCy(R) 2 HH3(R) L HCO3(R) = 0.
The same argument as before shows that
dim HH,(R) + dim HC5(R) = dim HCy(R) + dim H H3(R),

and so in this way we find dim HCy(R) = dim HC3(R) = n + 1. The rest
of the induction is exactly the same.

It remains to show that B: HCo,,(R) — HHapmi1(R) is always surjec-
tive. Recall we’ve already proved this for m = 0. By the way the induction
works, we can assume we’ve already shown that dim HCs,,(R) = dim R =
n+1, and we also know dim H Ho;;,+1(R) = n. As explained in Weibel, Ex-
ercise 9.8.2, the map B comes from the d? differential in the first-quadrant
spectral sequence with E2 = Hy(R), p > 0 even, and E? = 0, p odd,
arising from the cyclic homology double complex when you take first ho-
mology along the columns, then homology along the rows. This differential
sends H Hap, (R) = 2R in the (2, 2m) position to H Hapm+1(R) = R/(2™) in
the (0,2m+1) position. But one can see that this map is compatible with
the periodicity of HH, of period 2 coming from the periodic resolution
we constructed earlier, so it agrees with the map HHo(R) — HH;(R)
studied earlier. (Here HHo(R) denotes ‘reduced homology,” obtained by
dividing out by the extra copy of k in HH, coming from the scalars.)
Since this map is an isomorphism, B is surjective in all degrees.

Incidentally, there is another way to compute the cyclic homology, using
H? and reducing to the case n = 1, but I won’t give it here. [



