MATH 602 (Homological Algebra) Final Assignment Solutions

Prof. Jonathan Rosenberg

May 17, 2007

1. [5 pts.] (Complete reducibility and group cohomology) In this problem, G is a group, k is a field, and all G-modules are assumed to be k-vector spaces (i.e., we are considering $k G$-modules). Recall that a G-module M is called simple or irreducible if its only G-submodules are 0 and M itself. By the Jordan-Hölder Theorem, every finite-dimensional G-module V has a filtration $0=V_{0} \subset V_{1} \subset \cdots \subset V_{n}=V$ with all the subquotients V_{j} / V_{j-1} irreducible. These composition factors are unique up to isomorphism and reordering. V is called completely reducible if V is a direct sum of irreducible G-modules. The aim of this problem is to prove:

Theorem 1 Let G be a group, k a field. Then every finite-dimensional $k G$-module is completely reducible if and only if $H^{1}(G, W)=0$ for every finite-dimensional $k G$-module W.

To handle the "only if" direction, suppose $H^{1}(G, W) \neq 0$. Use the relationship between group cohomology and Ext, as well as the connection between Ext ${ }^{1}$ and classification of extensions, to construct a finitedimensional $k G$-module that is not completely reducible.
For the other direction, suppose $H^{1}(G, W)=0$ for every finite-dimensional $k G$-module W. Given any short exact sequence

$$
0 \rightarrow V_{1} \xrightarrow{\alpha} V \xrightarrow{\beta} V_{2} \rightarrow 0
$$

of finite-dimensional $k G$-modules with V_{1} irreducible, apply $\operatorname{Hom}_{k}\left(\ldots, V_{1}\right)$ and then group cohomology (you only need H^{0} and H^{1}). Deduce that $H^{0}\left(G, \operatorname{Hom}_{k}\left(V, V_{1}\right)\right) \neq 0$, and thus that there is a G-equivariant splitting to α. Then use induction.
Solution. Suppose $H^{1}(G, W) \neq 0$ for some finite-dimensional $k G$-module W. We have $H^{1}(G, W) \cong \operatorname{Ext}_{k G}^{1}(k, W)$, which corresponds to classes of extensions of $k G$-modules

$$
0 \rightarrow W \rightarrow X \xrightarrow{q} k \rightarrow 0
$$

where k has the trivial G-action. We claim X is not completely reducible. For otherwise, $X=\bigoplus_{i} X_{i}$ for some simple finite-dimensional $k G$-modules X_{i}, and since q is surjective and X is the direct sum of the X_{i} 's, q must be non-zero on some X_{i}. Since $q: X_{i} \rightarrow k$ is non-zero and X_{i} and k are both simple, q restricted to X_{i} must be an isomorphism. Then there is a splitting map $k \stackrel{\cong}{\leftrightarrows} X_{i} \hookrightarrow X$, contradicting the fact that the extension X of k by W is non-trivial in Ext.
For the other direction, suppose given a short exact sequence

$$
0 \rightarrow V_{1} \xrightarrow{\alpha} V \xrightarrow{\beta} V_{2} \rightarrow 0
$$

of finite-dimensional $k G$-modules with V_{1} irreducible. Since k is a field, $\operatorname{Hom}_{k}\left(\ldots, V_{1}\right)$ is exact and gives a short exact sequence of finite-dimensional $k G$-modules

$$
0 \rightarrow \operatorname{Hom}_{k}\left(V_{2}, V_{1}\right) \xrightarrow{\beta^{*}} \operatorname{Hom}_{k}\left(V, V_{1}\right) \xrightarrow{\alpha^{*}} \operatorname{Hom}_{k}\left(V_{1}, V_{1}\right) \rightarrow 0
$$

Take the corresponding long exact sequence in group cohomology. Since, by assumption, H^{1} vanishes on all finite-dimensional $k G$-modules, this degenerates to a short exact sequence

$$
0 \rightarrow \operatorname{Hom}_{k}\left(V_{2}, V_{1}\right)^{G} \xrightarrow{\beta^{*}} \operatorname{Hom}_{k}\left(V, V_{1}\right)^{G} \xrightarrow{\alpha^{*}} \operatorname{Hom}_{k}\left(V_{1}, V_{1}\right)^{G} \rightarrow 0
$$

In particular, the identity map $V_{1} \rightarrow V_{1}$, which is certainly G-equivariant, has a G-equivariant lifting $V \rightarrow V_{1}$ under α^{*}. That means precisely that our original exact sequence splits in the category of $k G$-modules. So $V \cong V_{1} \oplus V_{2}$. Now we argue by induction on the number of simple composition factors that all finite-dimensional $k G$-modules V are completely reducible. If there is only one composition factor, V is simple and this is obvious. Otherwise, V contains a simple submodule V_{1} and the quotient V_{2} has shorter length, hence is completely reducible by inductive hypothesis. Since we've just shown that $V \cong V_{1} \oplus V_{2}$, that takes care of the inductive step.
2. [4 pts.] Suppose G is finite group and the characteristic of k is either 0 or relatively prime to $|G|$. Verify the cohomology vanishing criterion in Problem 1 and deduce Maschke's Theorem, that every finite-dimensional $k G$-module is completely reducible. Hint: Given a 1-cocycle $f: G \rightarrow W$, "average" its values to get an element $w \in W$ with $f=d w$.
Solution. Let $f: G \rightarrow W$ be a 1-cocycle. Let $w=\frac{1}{|G|} \sum_{g \in G} f(g)$, the "average" of the values of f. This makes sense since k is a field and $|G|$ is
(by the assumption on the characteristic) non-zero in k. Then

$$
\begin{aligned}
d w(h)= & h \cdot w-w \\
= & -w+\frac{1}{|G|} \sum_{g \in G} h \cdot f(g) \\
= & -w+\frac{1}{|G|} \sum_{g \in G}(f(h g)-f(h)) \\
& (\text { cocycle identity }) \\
= & -w+\left(\frac{1}{|G|} \sum_{\tilde{g} \in G} f(\tilde{g})\right)-\frac{|G|}{|G|} f(h) \\
= & -w+w-f(h)=-f(h)
\end{aligned}
$$

In other words, $f=d(-w)$ and f is a coboundary. Thus the condition of (1) holds and Maschke's Theorem follows.
3. [6 pts.] (Grothendieck, Borel-Serre) Let X and Y be topological spaces, $f: X \rightarrow Y$ a continuous map, and \mathcal{F} a sheaf of abelian groups over X. Recall (Weibel, Exercise 2.6.2) that the push-forward functor f_{*} is a right adjoint and is therefore left exact. Its derived functors are denoted $R^{j} f_{*}$.
(a) Show that $R^{j} f_{*} \mathcal{F}$ is the sheaf associated to the presheaf

$$
U \mapsto H^{j}\left(f^{-1}(U), \mathcal{F}\right)
$$

Solution. First of all, a comment about the fact that I said "presheaf" here. The gluing condition is satisfied when $j=0$, since \mathcal{F} is a sheaf and not just a presheaf. But for higher values of j, suppose $U=U_{1} \cup U_{2}$ with U_{j} open. Then we have a Mayer-Vietoris sequence

$$
\begin{aligned}
& H^{j-1}\left(f^{-1}\left(U_{1} \cap U_{2}\right), \mathcal{F}\right) \xrightarrow{\partial} H^{j}\left(f^{-1}(U), \mathcal{F}\right) \\
& \rightarrow H^{j}\left(f^{-1}\left(U_{1}\right), \mathcal{F}\right) \oplus H^{j}(\left.f^{-1}\left(U_{2}\right), \mathcal{F}\right) \\
& \rightarrow H^{j}\left(f^{-1}\left(U_{1} \cap U_{2}\right), \mathcal{F}\right)
\end{aligned}
$$

The map ∂ is thus an obstruction to the gluing condition for this value of j; i.e., if $\partial \neq 0$, then a class in $H^{j-1}\left(f^{-1}(U), \mathcal{F}\right)$ is not necessarily determined by its restrictions to $f^{-1}\left(U_{1}\right)$ and $f^{-1}\left(U_{2}\right)$. However, the other direction of the gluing condition is satisfied, i.e., classes in $H^{j-1}\left(f^{-1}\left(U_{k}\right), \mathcal{F}\right)$ with the same restriction to $f^{-1}\left(U_{1} \cap U_{2}\right)$ do come from a class over $f^{-1}(U)$.
Now let's check the assertion. Let $\left(\mathcal{I}^{\bullet}, d\right)$ be an injective resolution of \mathcal{F} over X. By definition, $R^{q} f_{*}(\mathcal{F})$ is the cohomology of the complex
of sheaves $\left(f_{*}\left(\mathcal{I}^{\bullet}\right), f_{*} d\right)$ over Y, i.e.,

$$
\begin{aligned}
R^{q} f_{*}(\mathcal{F})= & H^{q}\left(f_{*}\left(\mathcal{I}^{\bullet}\right), f_{*} d\right) \\
= & \operatorname{ker}\left(f_{*} d: f_{*}\left(\mathcal{I}^{q}\right) \rightarrow f_{*}\left(\mathcal{I}^{q+1}\right)\right) \\
& \quad / \operatorname{image}\left(f_{*} d: f_{*}\left(\mathcal{I}^{q-1}\right) \rightarrow f_{*}\left(\mathcal{I}^{q}\right)\right)
\end{aligned}
$$

But a quotient sheaf is, by definition, the sheafification of the quotient of the corresponding presheaves. So $R^{q} f_{*}(\mathcal{F})$ is the sheafification of the presheaf

$$
\begin{aligned}
U \mapsto \operatorname{ker}(& \left.f_{*} d: f_{*}\left(\mathcal{I}^{q}\right)(U) \rightarrow f_{*}\left(\mathcal{I}^{q+1}\right)(U)\right) \\
& \quad \operatorname{image}\left(f_{*} d: f_{*}\left(\mathcal{I}^{q-1}\right)(U) \rightarrow f_{*}\left(\mathcal{I}^{q}\right)(U)\right)
\end{aligned}
$$

But by the recipe for computing cohomology,

$$
H^{q}\left(f^{-1}(U), \mathcal{F}\right)=H^{q}\left(\Gamma\left(f^{-1}(U), \mathcal{I}^{\bullet}\right), d\right)
$$

By the definition of f_{*}, this is the same as

$$
H^{q}\left(\Gamma\left(U, f_{*} \mathcal{I}^{\bullet}\right), f_{*} d\right)
$$

which is precisely what we had for the presheaf defining $R^{q} f_{*}(\mathcal{F})$.
(b) Deduce from (a) that if, for a point $y \in Y$, every neighborhood of $f^{-1}(y)$ in X contains a neighborhood of the form $f^{-1}(U), U$ a neighborhood of y in Y (this condition is satisfied if, for example, X and Y are locally compact Hausdorff and f is proper), then the stalk of $R^{j} f_{*} \mathcal{F}$ at $y \in Y$ is cohomology group $H^{j}\left(f^{-1}(y), \iota^{-1} \mathcal{F}\right)$, where $\iota: f^{-1}(y) \hookrightarrow X$ is the inclusion.
Solution. First note that if a sheaf \mathcal{G}^{\sharp} is the sheafification of a presheaf \mathcal{G}, then the stalk of \mathcal{G}^{\sharp} at a point y is the same as

$$
{\underset{y \in U}{\lim }} \mathcal{G}(U) .
$$

(See standard books on sheaf theory, e.g., Godement II.1.2.) Apply this with $\mathcal{G}^{\sharp}=R^{j} f_{*} \mathcal{F}$ and with \mathcal{G} the presheaf of (a). That gives

$$
\left(R^{j} f_{*} \mathcal{F}\right)_{y}=\lim _{y \in U} H^{j}\left(f^{-1}(U), \mathcal{F}\right)
$$

We want to identify this (under certain topological conditions) with $H^{j}\left(f^{-1}(y), \iota^{-1} \mathcal{F}\right)$. Now for each open U containing y, the inclusion $f^{-1}(y) \rightarrow f^{-1}(U)$ induces a map

$$
H^{j}\left(f^{-1}(U), \mathcal{F}\right) \rightarrow H^{j}\left(f^{-1}(y), \iota^{-1} \mathcal{F}\right)
$$

and as U varies, these satisfy an obvious compatibility condition. So by the universal property of the colimit, we get a map

$$
\left(R^{j} f_{*} \mathcal{F}\right)_{y}=\lim _{y \in U} H^{j}\left(f^{-1}(U), \mathcal{F}\right) \rightarrow H^{j}\left(f^{-1}(y), \iota^{-1} \mathcal{F}\right)
$$

which under favorable circumstances should be an isomorphism.
The condition that every neighborhood of $f^{-1}(y)$ in X contains a neighborhood of the form $f^{-1}(U), U$ a neighborhood of y in Y, implies that open sets of the form $f^{-1}(U)$ are cofinal in the family of all open neighborhoods of $f^{-1}(y)$. Thus we get

$$
\begin{aligned}
\underset{y \in U}{\lim } H^{j}\left(f^{-1}(U), \mathcal{F}\right) & =\underset{f^{-1}(y) \subseteq f^{-1}(U)}{\lim _{\vec{\prime}}} H^{j}\left(f^{-1}(U), \mathcal{F}\right) \\
& =\underset{f^{-1}(y) \subseteq V}{\lim _{\longrightarrow}} H^{j}(V, \mathcal{F})
\end{aligned}
$$

This maps isomorphically to $H^{j}\left(f^{-1}(y), \iota^{-1} \mathcal{F}\right)$ under mild conditions (see Godement, Théorème II.4.11.1), for example, if X is paracompact and $f^{-1}(y)$ is closed (the latter is automatic if Y is Hausdorff, or if X is metrizable).
(c) Show that there is a spectral sequence with E_{2} term

$$
E_{2}^{p, q}=H^{p}\left(Y, R^{q} f_{*} \mathcal{F}\right)
$$

converging to $H^{p+q}(X, \mathcal{F})$. (Hint: Factor the unique map $X \rightarrow \mathrm{pt}$ as $X \xrightarrow{f} Y \rightarrow \mathrm{pt}$ and use a composition-of-functors spectral sequence. Check that all the requirements for this are satisfied. You may use the result of Weibel, Exercise 2.6.3.)
Solution. As explained in the hint, let $c_{X}: X \rightarrow \mathrm{pt}$ and $c_{Y}: Y \rightarrow \mathrm{pt}$ be the "collapse" maps. Then $c_{X}=c_{Y} \circ f$. Furthermore,

$$
R^{j}\left(c_{X}\right)_{*}(\mathcal{F})=H^{j}(X, \mathcal{F}) \text { and } R^{j}\left(c_{Y}\right)_{*}(\mathcal{G})=H^{j}(Y, \mathcal{G})
$$

So the result will follow from the composition-of-functors spectral sequence if the conditions of Theorem 5.8.3 in Weibel are satisfied. We need to check that f_{*} sends injective sheaves over X to acyclic sheaves over Y. But f_{*} is right adjoint to f^{-1} (Weibel, Exercise 2.6.2), and f^{-1} is exact (Weibel, Exercise 2.6.6), so f_{*} preserves injectives (Weibel, Proposition 2.3.10), and the condition holds.
(d) Suppose the topological condition in (b) is satisfied, e.g., X and Y are locally compact Hausdorff and f is proper, and that \mathcal{F} and f have the property that $H^{q}\left(f^{-1}(y), \iota^{-1} \mathcal{F}\right)=0$ for all $q>0$ and for all $y \in Y$. Deduce from (b) that $R^{q} f_{*} \mathcal{F}=0$ for all $q>0$, and then deduce from (c) that there are natural isomorphisms $H^{p}(X, \mathcal{F}) \cong H^{p}\left(Y, f_{*} \mathcal{F}\right)$ for all p.
Solution. Apply the spectral sequence from (c),

$$
H^{p}\left(Y, R^{q} f_{*} \mathcal{F}\right) \Rightarrow H^{p+q}(X, \mathcal{F})
$$

If the conditions in (b) are satisfied, then for $q>0$, the stalk of $R^{q} f_{*} \mathcal{F}$ at y is $H^{q}\left(f^{-1}(y), \iota^{-1} \mathcal{F}\right)$, which by assumption vanishes. Thus every
stalk of $R^{q} f_{*} \mathcal{F}$ vanishes, and so $R^{q} f_{*} \mathcal{F}$ vanishes. Hence E_{2} of the spectral sequence is concentrated on the p-axis, so all differentials must be zero, and in addition, there cannot be any extension issues (since $E_{2}^{p, q}=0$ for $q>0$). Thus the spectral sequence collapses at E_{2} to give natural isomorphisms $H^{p}(X, \mathcal{F}) \cong H^{p}\left(Y, f_{*} \mathcal{F}\right)$ for all p.
4. [5 pts.] (See Weibel Exercises 9.1.4 and 9.6.4.) Let k be a field of characteristic 0 , and let R be the truncated polynomial algebra $k[x] /\left(x^{n+1}\right)$. Show that R has a periodic resolution as an $R \otimes R^{\text {op }}$-module, and use this to compute $H H_{*}(R)$. Then compute $H C_{*}(R)$.
Solution. Observe that in this case $R^{e}=R \otimes R^{\mathrm{op}}=k[x, y] /\left(x^{n+1}, y^{n+1}\right)$ has dimension $(\operatorname{dim} R)^{2}=(n+1)^{2}$ over k, and the monomials $x^{i} y^{j}$ with $0 \leq i, j \leq n$ are a basis. Following in the hint in Weibel, consider the sequence of R^{e}-modules

$$
\cdots \xrightarrow{v} R^{e} \xrightarrow{u} R^{e} \xrightarrow{v} R^{e} \xrightarrow{u} R^{e} \xrightarrow{\varepsilon} R \rightarrow 0,
$$

where ε is the ring homomorphism induced by sending both x and y to x, u is multiplication by $x-y$, and v is multiplication by $\sum_{i+j=n} x^{i} y^{j}$. Since $u v=v u=x^{n+1}-y^{n+1}=0$ and $\varepsilon(u f(x, y))=(x-x) f(x, x)=0$, this is a complex, periodic to the left with period 2 . Since ε is clearly split by the map sending a polynomial in x to itself (i.e., without any terms involving $y), \varepsilon$ is surjective, and ker ε has dimension $(n+1)^{2}-(n+1)=n(n+1)$ over k. Now the image of u in total degree $m=i+j+1$ is spanned by all $x^{i+1} y^{j}-x^{i} y^{j+1}, 0 \leq i, j \leq n, i+j+1=m$. Now we can count dimensions: the subspace of R^{e} of total degree m in x and y has dimension $\min (m+1,2 n-m+1)$ and the dimension of the image of u in total degree $m=i+j+1$ has dimension

$$
\begin{aligned}
\min (\min (m+1,2 n-m+1), \min & (m, 2 n-m+2)) \\
= & \begin{cases}m-1, & 1 \leq m \leq n+1 \\
2 n-m+1, & n+1 \leq m \leq 2 n\end{cases}
\end{aligned}
$$

Summing up, one finds that dimimage $u=\frac{n(n+1)}{2} \cdot 2=n(n+1)=$ $\operatorname{dim} \operatorname{ker} \varepsilon$. Thus $\operatorname{dim} \operatorname{ker} u=(n+1)^{2}-n(n+1)=n+1$. However, the image of v contains

$$
\sum_{i+j=n} x^{i+m} y^{j}=\sum_{i=0}^{n-m} x^{i+m} y^{n-i}
$$

$0 \leq m \leq n$, and these elements are obviously linearly independent (since they have different degrees), so $\operatorname{dim} \operatorname{image} v \geq n+1$. Since image $v \subseteq \operatorname{ker} u$, we must have equality, and thus our complex is a resolution of R by free R^{e}-modules.

Now we can compute $H H_{*}(R)$. This is $\operatorname{Tor}_{*}^{R^{e}}(R, R)$, so we compute it by tensoring our resolution (over R^{e}) with R and taking homology. Since $R \otimes_{R^{e}} R^{e}=R$, we get the complex

$$
\ldots \xrightarrow{v_{*}} R \xrightarrow{u_{*}} R \xrightarrow{v_{*}} R \xrightarrow{u_{*}} R,
$$

where u_{*} and v_{*} are induced by u and v after mapping both x and y to x. So u_{*} is multiplication by $x-x=0$, and v_{*} is multiplication by $\sum_{i+j=n} x^{i} x^{j}=(n+1) x^{n}$. Since we are in characteristic $0, n+1$ is invertible, so v_{*} can be replaced by multiplication by x^{n} and our complex becomes

$$
\cdots \xrightarrow{x^{n}} R \xrightarrow{0} R \xrightarrow{x^{n}} R \xrightarrow{0} R,
$$

Thus we see

$$
H H_{m}(R)= \begin{cases}R, & m=0 \\ R /\left(x^{n}\right)=k[x] /\left(x^{n}\right), & m \geq 1 \text { odd } \\ \operatorname{ker} x^{n}=x R, & m \geq 2 \text { even }\end{cases}
$$

As k-vector spaces, we thus see that $\operatorname{dim} H H_{m}=n$ for $m \geq 1$.
Finally, we compute $H C_{*}(R)$ from the $S B I$ sequence. Recall that for any ring, we always have $H C_{0}(R)=H H_{0}(R)$, which coincides with R itself if R is commutative. Also, for R commutative, we know that $B: H C_{0}(R) \rightarrow H H_{1}(R)$ can be identified (up to sign) with the exterior differential $d: R \rightarrow \Omega_{R / k}$. Since the $d\left(x^{m+1} /(m+1)\right)=x^{m} d x$ span $H H_{1}(R)$, this map is surjective. (Here we are using characteristic zero again in order to divide by $m+1$.) From the exact sequence

$$
H C_{0}(R) \xrightarrow{B} H H_{1}(R) \xrightarrow{I} H C_{1}(R) \rightarrow 0,
$$

it follows that $H C_{1}(R)=0$. We now show by induction on m that $H C_{2 m-1}(R)=0$ and $\operatorname{dim} H C_{2 m}(R)=n+1$ for $m \geq 1$. Indeed we've show already that $H C_{1}(R)=0$. Next consider the exact sequence

$$
\begin{aligned}
& 0=H C_{1}(R) \xrightarrow{B} H H_{2}(R) \xrightarrow{I} H C_{2}(R) \\
& \xrightarrow{S} H C_{0}(R) \xrightarrow{B} H H_{1}(R) \xrightarrow{I} H C_{1}(R)=0 .
\end{aligned}
$$

Since all vector spaces are finite dimensional, the rank-nullity formula implies the alternating sum of the dimensions must vanish. So

$$
\operatorname{dim} H H_{2}(R)+\operatorname{dim} H C_{0}(R)=\operatorname{dim} H C_{2}(R)+\operatorname{dim} H H_{1}(R)
$$

Since we already know $\operatorname{dim} H H_{m}(R)$ is independent of m for $m \geq 1$, this gives $\operatorname{dim} H C_{2}(R)=\operatorname{dim} H C_{0}(R)=n+1$.
To show $H_{3}(R)=0$, because of the exact sequence

$$
H C_{2}(R) \xrightarrow{B} H H_{3}(R) \xrightarrow{I} H C_{3}(R) \xrightarrow{S} H C_{1}(R)=0,
$$

it's enough to show that $B: H C_{2}(R) \rightarrow H H_{3}(R)$ is surjective. Assume for now that we've checked this. Then consider the exact sequence

$$
\begin{aligned}
& 0=H C_{3}(R) \xrightarrow{B} H H_{4}(R) \xrightarrow{I} H C_{4}(R) \\
& \xrightarrow{S} H C_{2}(R) \xrightarrow{B} H H_{3}(R) \xrightarrow{I} H C_{3}(R)=0 .
\end{aligned}
$$

The same argument as before shows that

$$
\operatorname{dim} H H_{4}(R)+\operatorname{dim} H C_{2}(R)=\operatorname{dim} H C_{4}(R)+\operatorname{dim} H H_{3}(R)
$$

and so in this way we find $\operatorname{dim} H C_{4}(R)=\operatorname{dim} H C_{2}(R)=n+1$. The rest of the induction is exactly the same.
It remains to show that $B: H C_{2 m}(R) \rightarrow H H_{2 m+1}(R)$ is always surjective. Recall we've already proved this for $m=0$. By the way the induction works, we can assume we've already shown that $\operatorname{dim} H C_{2 m}(R)=\operatorname{dim} R=$ $n+1$, and we also know $\operatorname{dim} H H_{2 m+1}(R)=n$. As explained in Weibel, Exercise 9.8.2, the map B comes from the d^{2} differential in the first-quadrant spectral sequence with $E_{p, q}^{2}=H_{q}(R), p \geq 0$ even, and $E_{p, q}^{2}=0, p$ odd, arising from the cyclic homology double complex when you take first homology along the columns, then homology along the rows. This differential sends $H H_{2 m}(R) \cong x R$ in the $(2,2 m)$ position to $H H_{2 m+1}(R) \cong R /\left(x^{n}\right)$ in the $(0,2 m+1)$ position. But one can see that this map is compatible with the periodicity of $H H_{*}$ of period 2 coming from the periodic resolution we constructed earlier, so it agrees with the map $\widetilde{H H_{0}}(R) \rightarrow H H_{1}(R)$ studied earlier. (Here $\widetilde{H H}_{0}(R)$ denotes 'reduced homology,' obtained by dividing out by the extra copy of k in $H H_{0}$ coming from the scalars.) Since this map is an isomorphism, B is surjective in all degrees.
Incidentally, there is another way to compute the cyclic homology, using H_{\bullet}^{λ} and reducing to the case $n=1$, but I won't give it here.

