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1. [5 pts.] (Complete reducibility and group cohomology) In this
problem, G is a group, k is a field, and all G-modules are assumed to
be k-vector spaces (i.e., we are considering kG-modules). Recall that a
G-module M is called simple or irreducible if its only G-submodules are
0 and M itself. By the Jordan-Hölder Theorem, every finite-dimensional
G-module V has a filtration 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V with all the
subquotients Vj/Vj−1 irreducible. These composition factors are unique
up to isomorphism and reordering. V is called completely reducible if V
is a direct sum of irreducible G-modules. The aim of this problem is to
prove:

Theorem 1 Let G be a group, k a field. Then every finite-dimensional

kG-module is completely reducible if and only if H1(G, W ) = 0 for every

finite-dimensional kG-module W .

To handle the “only if” direction, suppose H1(G, W ) 6= 0. Use the re-
lationship between group cohomology and Ext, as well as the connec-
tion between Ext1 and classification of extensions, to construct a finite-
dimensional kG-module that is not completely reducible.

For the other direction, suppose H1(G, W ) = 0 for every finite-dimensional
kG-module W . Given any short exact sequence

0 → V1
α
−→ V

β
−→ V2 → 0

of finite-dimensional kG-modules with V1 irreducible, apply Homk( , V1)
and then group cohomology (you only need H0 and H1). Deduce that
H0(G, Homk(V, V1)) 6= 0, and thus that there is a G-equivariant splitting
to α. Then use induction.

Solution. Suppose H1(G, W ) 6= 0 for some finite-dimensional kG-module
W . We have H1(G, W ) ∼= Ext1kG(k, W ), which corresponds to classes of
extensions of kG-modules

0 → W → X
q
−→ k → 0,
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where k has the trivial G-action. We claim X is not completely reducible.
For otherwise, X =

⊕
i Xi for some simple finite-dimensional kG-modules

Xi, and since q is surjective and X is the direct sum of the Xi’s, q must
be non-zero on some Xi. Since q : Xi → k is non-zero and Xi and k are
both simple, q restricted to Xi must be an isomorphism. Then there is a

splitting map k
∼=
−→ Xi ↪→ X , contradicting the fact that the extension X

of k by W is non-trivial in Ext.

For the other direction, suppose given a short exact sequence

0 → V1
α
−→ V

β
−→ V2 → 0

of finite-dimensional kG-modules with V1 irreducible. Since k is a field,
Homk( , V1) is exact and gives a short exact sequence of finite-dimensional
kG-modules

0 → Homk(V2, V1)
β∗

−→ Homk(V, V1)
α∗

−−→ Homk(V1, V1) → 0.

Take the corresponding long exact sequence in group cohomology. Since,
by assumption, H1 vanishes on all finite-dimensional kG-modules, this
degenerates to a short exact sequence

0 → Homk(V2, V1)
G β∗

−→ Homk(V, V1)
G α∗

−−→ Homk(V1, V1)
G → 0.

In particular, the identity map V1 → V1, which is certainly G-equivariant,
has a G-equivariant lifting V → V1 under α∗. That means precisely
that our original exact sequence splits in the category of kG-modules.
So V ∼= V1 ⊕ V2. Now we argue by induction on the number of simple
composition factors that all finite-dimensional kG-modules V are com-
pletely reducible. If there is only one composition factor, V is simple and
this is obvious. Otherwise, V contains a simple submodule V1 and the
quotient V2 has shorter length, hence is completely reducible by inductive
hypothesis. Since we’ve just shown that V ∼= V1 ⊕ V2, that takes care of
the inductive step. �

2. [4 pts.] Suppose G is finite group and the characteristic of k is either 0
or relatively prime to |G|. Verify the cohomology vanishing criterion in
Problem 1 and deduce Maschke’s Theorem, that every finite-dimensional
kG-module is completely reducible. Hint: Given a 1-cocycle f : G → W ,
“average” its values to get an element w ∈ W with f = dw.

Solution. Let f : G → W be a 1-cocycle. Let w = 1
|G|

∑
g∈G f(g), the

“average” of the values of f . This makes sense since k is a field and |G| is
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(by the assumption on the characteristic) non-zero in k. Then

dw(h) = h · w − w

= −w +
1

|G|

∑

g∈G

h · f(g)

= −w +
1

|G|

∑

g∈G

(
f(hg) − f(h)

)

(cocycle identity)

= −w +


 1

|G|

∑

g̃∈G

f(g̃)


 −

|G|

|G|
f(h)

= −w + w − f(h) = −f(h).

In other words, f = d(−w) and f is a coboundary. Thus the condition of
(1) holds and Maschke’s Theorem follows. �

3. [6 pts.] (Grothendieck, Borel-Serre) Let X and Y be topological
spaces, f : X → Y a continuous map, and F a sheaf of abelian groups
over X . Recall (Weibel, Exercise 2.6.2) that the push-forward functor
f∗ is a right adjoint and is therefore left exact. Its derived functors are
denoted Rjf∗.

(a) Show that Rjf∗F is the sheaf associated to the presheaf

U 7→ Hj(f−1(U), F).

Solution. First of all, a comment about the fact that I said “presheaf”
here. The gluing condition is satisfied when j = 0, since F is a
sheaf and not just a presheaf. But for higher values of j, suppose
U = U1 ∪U2 with Uj open. Then we have a Mayer-Vietoris sequence

Hj−1(f−1(U1 ∩ U2), F)
∂
−→ Hj(f−1(U), F)

→ Hj(f−1(U1), F) ⊕ Hj(f−1(U2), F)

→ Hj(f−1(U1 ∩ U2), F)

The map ∂ is thus an obstruction to the gluing condition for this value
of j; i.e., if ∂ 6= 0, then a class in Hj−1(f−1(U), F) is not necessarily
determined by its restrictions to f−1(U1) and f−1(U2). However,
the other direction of the gluing condition is satisfied, i.e., classes
in Hj−1(f−1(Uk), F) with the same restriction to f−1(U1 ∩ U2) do
come from a class over f−1(U).

Now let’s check the assertion. Let (I•, d) be an injective resolution of
F over X . By definition, Rqf∗(F) is the cohomology of the complex
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of sheaves (f∗(I
•), f∗d) over Y , i.e.,

Rqf∗(F) = Hq
(
f∗(I

•), f∗d
)

= ker
(
f∗d : f∗(I

q) → f∗(I
q+1)

)

/ image
(
f∗d : f∗(I

q−1) → f∗(I
q)

)
.

But a quotient sheaf is, by definition, the sheafification of the quotient
of the corresponding presheaves. So Rqf∗(F) is the sheafification of
the presheaf

U 7→ ker
(
f∗d : f∗(I

q)(U) → f∗(I
q+1)(U)

)

/ image
(
f∗d : f∗(I

q−1)(U) → f∗(I
q)(U)

)
.

But by the recipe for computing cohomology,

Hq(f−1(U), F) = Hq
(
Γ

(
f−1(U), I•

)
, d

)
.

By the definition of f∗, this is the same as

Hq
(
Γ (U, f∗I

•) , f∗d
)
,

which is precisely what we had for the presheaf defining Rqf∗(F). �

(b) Deduce from (a) that if, for a point y ∈ Y , every neighborhood
of f−1(y) in X contains a neighborhood of the form f−1(U), U a
neighborhood of y in Y (this condition is satisfied if, for example, X
and Y are locally compact Hausdorff and f is proper), then the stalk
of Rjf∗F at y ∈ Y is cohomology group Hj(f−1(y), ι−1F), where
ι : f−1(y) ↪→ X is the inclusion.

Solution. First note that if a sheaf G] is the sheafification of a presheaf
G, then the stalk of G] at a point y is the same as

lim
−→
y∈U

G(U).

(See standard books on sheaf theory, e.g., Godement II.1.2.) Apply
this with G] = Rjf∗F and with G the presheaf of (a). That gives

(
Rjf∗F

)
y

= lim
−→
y∈U

Hj(f−1(U), F).

We want to identify this (under certain topological conditions) with
Hj(f−1(y), ι−1F). Now for each open U containing y, the inclusion
f−1(y) → f−1(U) induces a map

Hj(f−1(U), F) → Hj(f−1(y), ι−1F),

and as U varies, these satisfy an obvious compatibility condition. So
by the universal property of the colimit, we get a map

(
Rjf∗F

)
y

= lim
−→
y∈U

Hj(f−1(U), F) → Hj(f−1(y), ι−1F)
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which under favorable circumstances should be an isomorphism.

The condition that every neighborhood of f−1(y) in X contains a
neighborhood of the form f−1(U), U a neighborhood of y in Y , im-
plies that open sets of the form f−1(U) are cofinal in the family of
all open neighborhoods of f−1(y). Thus we get

lim
−→
y∈U

Hj(f−1(U), F) = lim
−→

f−1(y)⊆f−1(U)

Hj(f−1(U), F)

= lim
−→

f−1(y)⊆V

Hj(V, F).

This maps isomorphically to Hj(f−1(y), ι−1F) under mild condi-
tions (see Godement, Théorème II.4.11.1), for example, if X is para-
compact and f−1(y) is closed (the latter is automatic if Y is Haus-
dorff, or if X is metrizable). �

(c) Show that there is a spectral sequence with E2 term

Ep,q
2 = Hp(Y, Rqf∗F)

converging to Hp+q(X, F). (Hint: Factor the unique map X → pt

as X
f
−→ Y → pt and use a composition-of-functors spectral sequence.

Check that all the requirements for this are satisfied. You may use
the result of Weibel, Exercise 2.6.3.)

Solution. As explained in the hint, let cX : X → pt and cY : Y → pt
be the “collapse” maps. Then cX = cY ◦ f . Furthermore,

Rj(cX )∗(F) = Hj(X,F) and Rj(cY )∗(G) = Hj(Y,G).

So the result will follow from the composition-of-functors spectral
sequence if the conditions of Theorem 5.8.3 in Weibel are satisfied.
We need to check that f∗ sends injective sheaves over X to acyclic
sheaves over Y . But f∗ is right adjoint to f−1 (Weibel, Exercise
2.6.2), and f−1 is exact (Weibel, Exercise 2.6.6), so f∗ preserves
injectives (Weibel, Proposition 2.3.10), and the condition holds. �

(d) Suppose the topological condition in (b) is satisfied, e.g., X and Y are
locally compact Hausdorff and f is proper, and that F and f have the
property that Hq(f−1(y), ι−1F) = 0 for all q > 0 and for all y ∈ Y .
Deduce from (b) that Rqf∗F = 0 for all q > 0, and then deduce from
(c) that there are natural isomorphisms Hp(X, F) ∼= Hp(Y, f∗F) for
all p.

Solution. Apply the spectral sequence from (c),

Hp(Y, Rqf∗F) ⇒ Hp+q(X, F).

If the conditions in (b) are satisfied, then for q > 0, the stalk of Rqf∗F
at y is Hq(f−1(y), ι−1F), which by assumption vanishes. Thus every
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stalk of Rqf∗F vanishes, and so Rqf∗F vanishes. Hence E2 of the
spectral sequence is concentrated on the p-axis, so all differentials
must be zero, and in addition, there cannot be any extension issues
(since Ep,q

2 = 0 for q > 0). Thus the spectral sequence collapses at
E2 to give natural isomorphisms Hp(X, F) ∼= Hp(Y, f∗F) for all p.
�

4. [5 pts.] (See Weibel Exercises 9.1.4 and 9.6.4.) Let k be a field of char-
acteristic 0, and let R be the truncated polynomial algebra k[x]/(xn+1).
Show that R has a periodic resolution as an R⊗Rop-module, and use this
to compute HH∗(R). Then compute HC∗(R).

Solution. Observe that in this case Re = R ⊗ Rop = k[x, y]/(xn+1, yn+1)
has dimension (dim R)2 = (n + 1)2 over k, and the monomials xiyj with
0 ≤ i, j ≤ n are a basis. Following in the hint in Weibel, consider the
sequence of Re-modules

· · ·
v
−→ Re u

−→ Re v
−→ Re u

−→ Re ε
−→ R → 0,

where ε is the ring homomorphism induced by sending both x and y to x,
u is multiplication by x−y, and v is multiplication by

∑
i+j=n xiyj . Since

uv = vu = xn+1 −yn+1 = 0 and ε(uf(x, y)) = (x−x)f(x, x) = 0, this is a
complex, periodic to the left with period 2. Since ε is clearly split by the
map sending a polynomial in x to itself (i.e., without any terms involving
y), ε is surjective, and ker ε has dimension (n + 1)2 − (n + 1) = n(n + 1)
over k. Now the image of u in total degree m = i + j + 1 is spanned
by all xi+1yj − xiyj+1, 0 ≤ i, j ≤ n, i + j + 1 = m. Now we can count
dimensions: the subspace of Re of total degree m in x and y has dimension
min(m+1, 2n−m+1) and the dimension of the image of u in total degree
m = i + j + 1 has dimension

min
(
min(m + 1, 2n− m + 1), min(m, 2n − m + 2)

)

=

{
m − 1, 1 ≤ m ≤ n + 1,

2n − m + 1, n + 1 ≤ m ≤ 2n.

Summing up, one finds that dim imageu = n(n+1)
2 · 2 = n(n + 1) =

dim ker ε. Thus dim keru = (n + 1)2 − n(n + 1) = n + 1. However,
the image of v contains

∑

i+j=n

xi+myj =

n−m∑

i=0

xi+myn−i,

0 ≤ m ≤ n, and these elements are obviously linearly independent (since
they have different degrees), so dim image v ≥ n+1. Since image v ⊆ keru,
we must have equality, and thus our complex is a resolution of R by free
Re-modules.
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Now we can compute HH∗(R). This is TorRe

∗ (R, R), so we compute it
by tensoring our resolution (over Re) with R and taking homology. Since
R ⊗Re Re = R, we get the complex

· · ·
v∗−→ R

u∗−→ R
v∗−→ R

u∗−→ R,

where u∗ and v∗ are induced by u and v after mapping both x and y
to x. So u∗ is multiplication by x − x = 0, and v∗ is multiplication
by

∑
i+j=n xixj = (n + 1)xn. Since we are in characteristic 0, n + 1 is

invertible, so v∗ can be replaced by multiplication by xn and our complex
becomes

· · ·
xn

−−→ R
0
−→ R

xn

−−→ R
0
−→ R,

Thus we see

HHm(R) =





R, m = 0,

R/(xn) = k[x]/(xn), m ≥ 1 odd,

kerxn = xR, m ≥ 2 even.

As k-vector spaces, we thus see that dim HHm = n for m ≥ 1.

Finally, we compute HC∗(R) from the SBI sequence. Recall that for
any ring, we always have HC0(R) = HH0(R), which coincides with
R itself if R is commutative. Also, for R commutative, we know that
B : HC0(R) → HH1(R) can be identified (up to sign) with the exterior
differential d : R → ΩR/k. Since the d(xm+1/(m + 1)) = xm dx span
HH1(R), this map is surjective. (Here we are using characteristic zero
again in order to divide by m + 1.) From the exact sequence

HC0(R)
B
−→ HH1(R)

I
−→ HC1(R) → 0,

it follows that HC1(R) = 0. We now show by induction on m that
HC2m−1(R) = 0 and dim HC2m(R) = n + 1 for m ≥ 1. Indeed we’ve
show already that HC1(R) = 0. Next consider the exact sequence

0 = HC1(R)
B
−→ HH2(R)

I
−→ HC2(R)

S
−→ HC0(R)

B
−→ HH1(R)

I
−→ HC1(R) = 0.

Since all vector spaces are finite dimensional, the rank-nullity formula
implies the alternating sum of the dimensions must vanish. So

dim HH2(R) + dim HC0(R) = dim HC2(R) + dim HH1(R).

Since we already know dim HHm(R) is independent of m for m ≥ 1, this
gives dim HC2(R) = dim HC0(R) = n + 1.

To show HC3(R) = 0, because of the exact sequence

HC2(R)
B
−→ HH3(R)

I
−→ HC3(R)

S
−→ HC1(R) = 0,
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it’s enough to show that B : HC2(R) → HH3(R) is surjective. Assume
for now that we’ve checked this. Then consider the exact sequence

0 = HC3(R)
B
−→ HH4(R)

I
−→ HC4(R)

S
−→ HC2(R)

B
−→ HH3(R)

I
−→ HC3(R) = 0.

The same argument as before shows that

dim HH4(R) + dim HC2(R) = dim HC4(R) + dim HH3(R),

and so in this way we find dim HC4(R) = dim HC2(R) = n + 1. The rest
of the induction is exactly the same.

It remains to show that B : HC2m(R) → HH2m+1(R) is always surjec-
tive. Recall we’ve already proved this for m = 0. By the way the induction
works, we can assume we’ve already shown that dim HC2m(R) = dim R =
n+1, and we also know dim HH2m+1(R) = n. As explained in Weibel, Ex-
ercise 9.8.2, the map B comes from the d2 differential in the first-quadrant
spectral sequence with E2

p,q = Hq(R), p ≥ 0 even, and E2
p,q = 0, p odd,

arising from the cyclic homology double complex when you take first ho-
mology along the columns, then homology along the rows. This differential
sends HH2m(R) ∼= xR in the (2, 2m) position to HH2m+1(R) ∼= R/(xn) in
the (0, 2m+1) position. But one can see that this map is compatible with
the periodicity of HH∗ of period 2 coming from the periodic resolution
we constructed earlier, so it agrees with the map H̃H0(R) → HH1(R)

studied earlier. (Here H̃H0(R) denotes ‘reduced homology,’ obtained by
dividing out by the extra copy of k in HH0 coming from the scalars.)
Since this map is an isomorphism, B is surjective in all degrees.

Incidentally, there is another way to compute the cyclic homology, using
Hλ

• and reducing to the case n = 1, but I won’t give it here. �
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