MATH 602 (Homological Algebra)
 Final Assignment (in lieu of an exam)

Prof. Jonathan Rosenberg

due Wednesday, May 16, 2007
N.B.: This assignment is worth 20 points instead of 10. It is cumulative, though with more emphasis on the second half of the course.

1. [5 pts.] (Complete reducibility and group cohomology) In this problem, G is a group, k is a field, and all G-modules are assumed to be k-vector spaces (i.e., we are considering $k G$-modules). Recall that a G-module M is called simple or irreducible if its only G-submodules are 0 and M itself. By the Jordan-Hölder Theorem, every finite-dimensional G-module V has a filtration $0=V_{0} \subset V_{1} \subset \cdots \subset V_{n}=V$ with all the subquotients V_{j} / V_{j-1} irreducible. These composition factors are unique up to isomorphism and reordering. V is called completely reducible if V is a direct sum of irreducible G-modules. The aim of this problem is to prove:

Theorem 1 Let G be a group, k a field. Then every finite-dimensional $k G$-module is completely reducible if and only if $H^{1}(G, W)=0$ for every finite-dimensional $k G$-module W.

To handle the "only if" direction, suppose $H^{1}(G, W) \neq 0$. Use the relationship between group cohomology and Ext, as well as the connection between Ext ${ }^{1}$ and classification of extensions, to construct a finitedimensional $k G$-module that is not completely reducible.
For the other direction, suppose $H^{1}(G, W)=0$ for every finite-dimensional $k G$-module W. Given any short exact sequence

$$
0 \rightarrow V_{1} \xrightarrow{\alpha} V \xrightarrow{\beta} V_{2} \rightarrow 0
$$

of finite-dimensional $k G$-modules with V_{1} irreducible, apply $\operatorname{Hom}_{k}\left(_, V_{1}\right)$ and then group cohomology (you only need H^{0} and H^{1}). Deduce that $H^{0}\left(G, \operatorname{Hom}_{k}\left(V, V_{1}\right)\right) \neq 0$, and thus that there is a G-equivariant splitting to α. Then use induction.
2. [4 pts.] Suppose G is finite group and the characteristic of k is either 0 or relatively prime to $|G|$. Verify the cohomology vanishing criterion in Problem 1 and deduce Maschke's Theorem, that every finite-dimensional $k G$-module is completely reducible. Hint: Given a 1-cocycle $f: G \rightarrow W$, "average" its values to get an element $w \in W$ with $f=d w$.
3. [6 pts.] (Grothendieck, Borel-Serre) Let X and Y be topological spaces, $f: X \rightarrow Y$ a continuous map, and \mathcal{F} a sheaf of abelian groups over X. Recall (Weibel, Exercise 2.6.2) that the push-forward functor f_{*} is a right adjoint and is therefore left exact. Its derived functors are denoted $R^{j} f_{*}$.
(a) Show that $R^{j} f_{*} \mathcal{F}$ is the sheaf associated to the presheaf

$$
U \mapsto H^{j}\left(f^{-1}(U), \mathcal{F}\right)
$$

(b) Deduce from (a) that if, for a point $y \in Y$, every neighborhood of $f^{-1}(y)$ in X contains a neighborhood of the form $f^{-1}(U), U$ a neighborhood of y in Y (this condition is satisfied if, for example, X and Y are locally compact Hausdorff and f is proper), then the stalk of $R^{j} f_{*} \mathcal{F}$ at $y \in Y$ is cohomology group $H^{j}\left(f^{-1}(y), \iota^{-1} \mathcal{F}\right)$, where $\iota: f^{-1}(y) \hookrightarrow X$ is the inclusion.
(c) Show that there is a spectral sequence with E_{2} term

$$
E_{2}^{p, q}=H^{p}\left(Y, R^{q} f_{*} \mathcal{F}\right)
$$

converging to $H^{p+q}(X, \mathcal{F})$. (Hint: Factor the unique map $X \rightarrow \mathrm{pt}$ as $X \xrightarrow{f} Y \rightarrow \mathrm{pt}$ and use a composition-of-functors spectral sequence. Check that all the requirements for this are satisfied. You may use the result of Weibel, Exercise 2.6.3.)
(d) Suppose the topological condition in (b) is satisfied, e.g., X and Y are locally compact Hausdorff and f is proper, and that \mathcal{F} and f have the property that $H^{q}\left(f^{-1}(y), \iota^{-1} \mathcal{F}\right)=0$ for all $q>0$ and for all $y \in Y$. Deduce from (b) that $R^{q} f_{*} \mathcal{F}=0$ for all $q>0$, and then deduce from (c) that there are natural isomorphisms $H^{p}(X, \mathcal{F}) \cong H^{p}\left(Y, f_{*} \mathcal{F}\right)$ for all p.
4. [5 pts.] (See Weibel Exercises 9.1.4 and 9.6.4.) Let k be a field of characteristic 0 , and let R be the truncated polynomial algebra $k[x] /\left(x^{n+1}\right)$. Show that R has a periodic resolution as an $R \otimes R^{\mathrm{op}}$-module, and use this to compute $H H_{*}(R)$. Then compute $H C_{*}(R)$.

