MATH 602 (Homological Algebra) Final Assignment (in lieu of an exam)

Prof. Jonathan Rosenberg

due Wednesday, May 16, 2007

N.B.: This assignment is worth 20 points instead of 10. It is cumulative, though with more emphasis on the second half of the course.

1. [5 pts.] (Complete reducibility and group cohomology) In this problem, G is a group, k is a field, and all G-modules are assumed to be k-vector spaces (i.e., we are considering kG-modules). Recall that a G-module M is called simple or irreducible if its only G-submodules are 0 and M itself. By the Jordan-Hölder Theorem, every finite-dimensional G-module V has a filtration $0 = V_0 \subset V_1 \subset \cdots \subset V_n = V$ with all the subquotients V_j/V_{j-1} irreducible. These composition factors are unique up to isomorphism and reordering. V is called completely reducible if V is a direct sum of irreducible G-modules. The aim of this problem is to prove:

Theorem 1 Let G be a group, k a field. Then every finite-dimensional kG-module is completely reducible if and only if $H^1(G, W) = 0$ for every finite-dimensional kG-module W.

To handle the "only if" direction, suppose $H^1(G, W) \neq 0$. Use the relationship between group cohomology and Ext, as well as the connection between Ext¹ and classification of extensions, to construct a finitedimensional kG-module that is not completely reducible.

For the other direction, suppose $H^1(G, W) = 0$ for every finite-dimensional kG-module W. Given any short exact sequence

$$0 \to V_1 \xrightarrow{\alpha} V \xrightarrow{\beta} V_2 \to 0$$

of finite-dimensional kG-modules with V_1 irreducible, apply $\operatorname{Hom}_k(\underline{\ }, V_1)$ and then group cohomology (you only need H^0 and H^1). Deduce that $H^0(G, \operatorname{Hom}_k(V, V_1)) \neq 0$, and thus that there is a *G*-equivariant splitting to α . Then use induction.

- 2. [4 pts.] Suppose G is finite group and the characteristic of k is either 0 or relatively prime to |G|. Verify the cohomology vanishing criterion in Problem 1 and deduce *Maschke's Theorem*, that every finite-dimensional kG-module is completely reducible. **Hint:** Given a 1-cocycle $f: G \to W$, "average" its values to get an element $w \in W$ with f = dw.
- 3. [6 pts.] (Grothendieck, Borel-Serre) Let X and Y be topological spaces, $f: X \to Y$ a continuous map, and \mathcal{F} a sheaf of abelian groups over X. Recall (Weibel, Exercise 2.6.2) that the push-forward functor f_* is a right adjoint and is therefore left exact. Its derived functors are denoted $R^j f_*$.
 - (a) Show that $R^j f_* \mathcal{F}$ is the sheaf associated to the presheaf

$$U \mapsto H^j(f^{-1}(U), \mathcal{F}).$$

- (b) Deduce from (a) that if, for a point y ∈ Y, every neighborhood of f⁻¹(y) in X contains a neighborhood of the form f⁻¹(U), U a neighborhood of y in Y (this condition is satisfied if, for example, X and Y are locally compact Hausdorff and f is proper), then the stalk of R^jf_{*}F at y ∈ Y is cohomology group H^j(f⁻¹(y), ι⁻¹F), where ι: f⁻¹(y) → X is the inclusion.
- (c) Show that there is a spectral sequence with E_2 term

$$E_2^{p,q} = H^p(Y, R^q f_* \mathcal{F})$$

converging to $H^{p+q}(X, \mathcal{F})$. (**Hint:** Factor the unique map $X \to \text{pt}$ as $X \xrightarrow{f} Y \to \text{pt}$ and use a composition-of-functors spectral sequence. Check that all the requirements for this are satisfied. You may use the result of Weibel, Exercise 2.6.3.)

- (d) Suppose the topological condition in (b) is satisfied, e.g., X and Y are locally compact Hausdorff and f is proper, and that F and f have the property that H^q(f⁻¹(y), ι⁻¹F) = 0 for all q > 0 and for all y ∈ Y. Deduce from (b) that R^qf_{*}F = 0 for all q > 0, and then deduce from (c) that there are natural isomorphisms H^p(X, F) ≅ H^p(Y, f_{*}F) for all p.
- 4. [5 pts.] (See Weibel Exercises 9.1.4 and 9.6.4.) Let k be a field of characteristic 0, and let R be the truncated polynomial algebra $k[x]/(x^{n+1})$. Show that R has a periodic resolution as an $R \otimes R^{\text{op}}$ -module, and use this to compute $HH_*(R)$. Then compute $HC_*(R)$.